Proceedings of:

The Twenty-Ninth Annual Meeting of

The American Society for
Precision Engineering

November 9 to November 14, 2014
The Westin Boston Waterfront
Boston, Massachusetts, USA

The American Society for Precision Engineering (ASPE) is a multidisciplinary professional and technical society concerned with research and development, design, manufacture and measurement of high accuracy components and systems. ASPE activities encompass relevant aspects of mechanical, electronic, optical and production engineering, physics, chemistry, and computer and materials science. Membership is open to anyone interested in any aspect of precision engineering.

Founded in 1986, ASPE provides a focus for a diverse but important community. Other professional organizations have covered aspects of precision engineering, always as a sideline to their principal goals. ASPE is based on the core of generic concepts necessary to achieve precision in any application; independent of discipline, ASPE intends to be the focus for precision technology — and to represent all facets from research to application.
Preface

This book comprises the proceedings of the 29th ASPE Annual Meeting. The contributions reflect the authors’ opinions and are published as presented to ASPE, without change. Their inclusion in this publication does not necessarily constitute endorsement by the ASPE, or its editorial staff.

Individual readers of this book and nonprofit libraries acting for them are permitted to make fair use of the material contained in this book to be used in teaching or research, provided they copy said paper in total, as written by the author. Permission is granted to quote excerpts from the scientific or technical works in this book with proper acknowledgment of the source to include the following: the author’s name, the book name, and the ASPE tag line. Reproduction of figures and tables is likewise permitted from the contents of this book, provided that the same acknowledgment of the same source and content is permitted.

Any other type reproduction, systematic copying or multiple reproduction of any material in this book is expressly prohibited except with the written permission of the ASPE editorial staff, addressed to the Society’s headquarters.
Welcome Note

Welcome to the Twenty-Ninth Annual Meeting of The American Society for Precision Engineering. Convening this year in the fabulous city of Boston, Massachusetts, USA, at The Westin Boston Waterfront, the 2014 Annual Meeting will provide a forum for presentation and discussion of the latest technical information and achievements in precision engineering. The meeting will introduce new concepts, processes, equipment, and products while highlighting recent advances in precision measurement, design, control, and fabrication. The program includes a series of oral and poster paper presentations, tutorials on precision engineering topics, exhibits displaying the state-of-the-art in precision engineering products and research, commercial sessions for exhibitor presentations, a student competition, a mentoring session for students and tours of local precision engineering facilities. Many social events including lunches, dinner, breaks and hospitality hours will allow ample time for networking and personal exchanges. If there’s time, enjoy the many sites to see in Boston, Cambridge and the New England area.

Precision engineering is important in a wide variety of fields, from manufacturing to microelectronics to basic science. The Society serves as a focus for precision engineers across all of these fields. The Annual Meeting has evolved into an international forum for the exchange of ideas and presentation of research results relating to precision engineering, metrology, controls, and system integration. Precision engineers and scientists from private industry, government laboratories, and universities meet to learn about the latest developments and to exchange ideas about the future directions of these technologies.
2014 Organizing & Technical Program Committee

Mark L. Schattenburg
Massachusetts Institute of Technology
Conference Chairperson

Luis A. Aguirre, 3M Company
Vivek G. Badami, Zygo Corporation – AMETEK
Dannis M. Brouwer, University of Twente
Marcin B. Bauza, Carl Zeiss Industrial Metrology, LLC
Shih-Chih Chen, The Chinese University of Hong Kong
Thomas A. Dow, North Carolina State University
Jonathan D. Ellis, University of Rochester
Christopher J. Evans, University of North Carolina – Charlotte
Craig R. Forest, Georgia Institute of Technology
Vasishta Ganguly, University of North Carolina – Charlotte
Robert D. Grejda, Corning Tropel Corporation
Ralf K. Heilmann, Massachusetts Institute of Technology
Jonathan B. Hopkins, University of California – Los Angeles
Bradley H. Jared, Sandia National Laboratories
Byron R. Knapp, Professional Instruments Company
Mark T. Kosmowski, Electro-Scientific Industries, Inc.
Richard K. Leach, University of Nottingham
Don A. Lucca, Oklahoma State University
Steve J. Ludwick, Aerotech, Inc.
Dan E. Luttrell, Kriterion, LLC
Eric R. Marsh, The Pennsylvania State University
Kate M. Medicus, Optimax Systems, Inc.
Brian P. O’Connor, Aerotech, Inc.
Robert M. Panas, Lawrence Livermore National Laboratory
Corie R. Neufeld, Electro Scientific Industries, Inc.
Seno Rekawa, Lawrence Berkeley National Laboratory
Stuart T. Smith, University of North Carolina – Charlotte
Deming Shu, Argonne National Laboratory
Alexander H. Slocum, Massachusetts Institute of Technology
Mark A. Stocker, Cranfield Precision, Division of Fives Landis Ltd.
Maria J. Telleria, MIT Lincoln Laboratory
Hans-Jochen Trost, MicroFab Technologies, Inc.
Allen Y. Yi, The Ohio State University
William Zhang, NASA Goddard Space Flight Center

ASPE gratefully acknowledges the time and the effort of the organizing and technical program committee to bring the precision engineering community this program.
29th Annual Meeting

Contents

- Preface ... ii
- Welcome Note ... iii
- Organizing Committee ... iv
- Table of Contents .. v
- 2014 Scholarship Recipients and Sponsors vi
- Program Schedule ... vii
- Keynote Address ... viii
- Technical Exhibitors ... ix
- Sustaining Corporate Sponsors x
- Corporate Sponsors .. xi
- Lifetime Achievement & Distinguished Service Award xii
- Technical Paper Index ... 1-12
- Technical Papers ... 15-693
- Author Index ... 695-700
2014 Scholarship Recipients

2014 Carl Zeiss Student Scholarship

Congratulations to Herminso Villarraga-Gómez, University of North Carolina – Charlotte, for being awarded the Carl Zeiss Student Scholarship for 2014. This award includes the ASPE Annual Meeting registration fee and 4 tutorial fees. It also provides for travel and lodging to the ASPE Annual Meeting, as well as to Carl Zeiss Industrial Metrology for a visit to the facility in Maple Grove, Minnesota.

ASPE gratefully acknowledges Carl Zeiss’ five year commitment to provide this student scholarship through ASPE. The scholarship is valued at $5,000 each year.

2014 ASPE Student Scholarships

ASPE is pleased to award 2 student scholarships for the 29th ASPE Annual Meeting. The ASPE Student Scholarships include a waiver of the Annual Meeting registration fee and 4 tutorial fees. It also includes an honorarium to cover travel and lodging expenses to the 29th ASPE Annual Meeting in Boston. This year’s scholarship recipients are as follows:

Gregory L. Holst (Craig R. Forest, Advisor), Georgia University of Technology, Georgia, USA
Kazunori Watanabe (Jiwang Yan, Advisor), Keio University, Japan

ASPE is able to award student scholarships because of the generous contributions from organizations, as well as from many ASPE Members and ASPE supporters. ASPE believes the education and support of the next generation of precision engineers is crucial to the advancement of the field.

Corporate Sponsors of the 2014 ASPE Student Scholarships

Corning Incorporated
Corning, New York, USA

Lion Precision
St. Paul, Minnesota, USA

Makino, Inc.
Mason, Ohio, USA

Moore Nanotechnology Systems, LLC
Swanzey, New Hampshire, USA
Program Schedule

29th ASPE Annual Meeting

Time Table

<table>
<thead>
<tr>
<th>Time</th>
<th>Sun., Nov. 9</th>
<th>Mon., Nov. 10</th>
<th>Tues., Nov. 11</th>
<th>Wed., Nov. 12</th>
<th>Thurs., Nov. 13</th>
<th>Fri., Nov. 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td>+ Registration – Harbor Wing</td>
<td>Registration – Harbor Wing</td>
<td>Registration – Harbor Wing</td>
<td>Registration – Harbor Wing</td>
<td>Registration – Harbor Wing</td>
<td>Technical Tours</td>
</tr>
<tr>
<td>9:00</td>
<td>Tutorials* Rooms: Griffin, Lewis, Carlton, Burroughs, Harbor I, Harbor II</td>
<td>Technical Session I Harbor Ballroom</td>
<td>Technical Session III Harbor Ballroom</td>
<td>Technical Session VI Harbor Ballroom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>Sightseeing Tour 10:00 AM – 4:30 PM Meet in Main Lobby of The Westin at 9:45 AM</td>
<td>Break – Galleria</td>
<td>Break – Galleria</td>
<td>Technical Session II Harbor Ballroom</td>
<td>Technical Session VII Harbor Ballroom</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch On-Your-Own</td>
<td>Lunch and Committee Meetings Marina Ballroom</td>
<td>Awards Lunch and Business Meeting Marina Ballroom</td>
<td>Lunch, Open Forum & Poster Award Harbor Ballroom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00</td>
<td>Tutorials*</td>
<td>Commercial Session I Harbor Ballroom</td>
<td>Technical Session V Harbor Ballroom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td></td>
<td>Break – Galleria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td></td>
<td>Commercial Session II Harbor Ballroom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00</td>
<td></td>
<td>Poster Session Galleria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td>Welcome Reception Marina Ballroom</td>
<td>Hospitality Hour Galleria</td>
<td></td>
<td>Hospitality Hour Galleria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:00</td>
<td></td>
<td></td>
<td>Load Buses to Dinner at the JFK Presidential Library & Museum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:00</td>
<td></td>
<td></td>
<td>Meet in Lobby of the Westin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+ Early Check-In & Registration will be available from 4:00 PM – 7:00 PM on Saturday, November 8 in the Harbor Wing

* Check the hotel event board, the pocket program or the ASPE website for rooms for specific tutorials

Exhibit Open Hours – Galleria Exhibit Hall

Student Competition – Stone Room
Keynote Address

Dr. Mark Johnson
U. S. Department of Energy

Monday, November 10, 2014 7:00 p.m.
Session chair: Alexander H. Slocum, Massachusetts Institute of Technology

Innovation in Manufacturing Technologies for Clean Energy

ASPE is pleased to welcome Dr. Mark Johnson as this year’s keynote speaker. Dr. Johnson currently serves as the Director of the Advanced Manufacturing Office in the U.S. Department of Energy under the Office of Energy Efficiency and Renewable Energy. The Advanced Manufacturing Office (AMO) is focused on creating a fertile innovation environment for advanced manufacturing, enabling vigorous domestic development of new energy-efficient manufacturing processes and materials technologies to reduce the energy intensity and life-cycle energy consumption of manufactured products. The Keynote Address will take place on Monday, November 10 at 7:00 PM at The Westin Boston Waterfront, just after the Welcome Reception.
Technical Exhibitors

ABTech, Inc.
Aerotech, Inc.
Alicona
AMETEK – Precitech, Inc.
attocube Systems AG
Bal-tec
Bilz Vibration Technology
Bruker Nano Surfaces
Carl Zeiss Industrial Metrology
Center for Precision Metrology – UNC-Charlotte
Chardon Tool
Cranfield Precision, Div. of Fives Landis Ltd.
Heidenhain Corporation
K&Y Diamond
KAMAN Precision Products
KERN Microtechnik GmbH
Kugler of America, Ltd.
Lion Precision
Machine Dynamics Research Lab. – Penn State
Makino
Market Tech, Inc.

MicroLam
Moore Nanotechnology Systems, LLC
National Instruments
New Way Air Bearings, Inc.
nPoint, Inc.
Optical Perspectives Group LLC
Optikos Corporation
piezosystem jena
Polytec, Inc.
Precision Engineering Center – N.C. State
Precision Environments, Inc.
Precision MicroDynamics, Inc.
Professional Instruments Company, Inc.
Riverhawk Company
Schneider Optical Machines
Starrett Tru-Stone Technologies
TMC Ametek
TRIOPTICS USA
VDL Enabling Technologies Group USA
Vermont Photonics Technologies
Western Environmental Corporation
Zygo Corporation

Commercial Session

Tuesday, November 11, 2014
1:30 PM - 2:30 PM
3:00 PM - 4:00 PM
Harbor Ballroom

Session Co-Chairs:
Vivek G. Badami, Zygo Corporation
Seno B. Rekawa, Lawrence Berkeley National Laboratory

Exhibitor representatives are invited to make brief presentations on their organization’s products associated with precision engineering. This provides participants with the opportunity to receive timely information on new technologies that have been commercialized into products and services, as well as information on advances that can be expected in the near future.
ASPE 2014 Sustaining Corporate Sponsors

3M Company
St. Paul, MN 55144
Phone: (888) 364-3577
www.mmm.com

Chardon Tool
115 Parker Court
Chardon, OH 44024
Phone: (440) 286-6440
www.ChardonTool.com

Makino
7680 Innovation Way
Mason, OH 45040
Phone: (513) 573-7200
www.makino.com

Aerotech, Inc.
101 Zeta Drive
Pittsburgh, PA 15238-2897
Phone: (412) 963-7470
www.aerotech.com

Cranfield Precision
Division of Fives Landis Ltd.
Woburn House
3 Adams Close
Kempston, Bedford, MK42 7JE
United Kingdom
Phone: +44 (0)1234 312820
www.cranfieldprecision.com

Mitutoyo America Corporation
945 Corporate Boulevard
Aurora, IL 60504-9102
Phone: (630) 723-3619
www.mitutoyo.com

Ametek Precitech, Inc.
44 Blackbrook Road
Keene, NH 03431
Phone: (603) 357-2511
www.precitech.com

Keysight Technologies
5301 Stevens Creek Boulevard
Santa Clara, CA 95051
Phone: (408) 553-7975
www.keysight.com

Moore Nanotechnology Systems LLC
230 Old Homestead Highway
Swanzey, NH 03446
Phone: (603) 352-3030
www.nanotechsys.com

Carl Zeiss Industrial Metrology LLC
6250 Sycamore Lane North
Maple Grove, MN, 55369
Phone: 763-744-2400
www.zeiss.com/metrology

Lion Precision
563 Shoreview Park Road
St. Paul, MN 55126-7014
Phone: (651) 484-6544
www.lionprecision.com

Professional Instruments Company
7800 Powell Road
Hopkins, MN 55343
Phone: (952) 933-1222
www.airbearings.com
ASPE 2014 Corporate Sponsors

ADCOLE Corporation
669 Forest Street
Marlborough, MA 01752
Phone: (508) 485-9100
www.adcole.com

Delta Tau Data Systems
21314 Lassen Street
Chatsworth, CA 91311 USA
Phone: 818-998-2095
www.deltatau.com

Alicona
1261 Humbracht Circle
Suite G
Bartlett, IL 60103 USA
Phone: (630) 372-9900
www.alicona.com

K & Y Diamond
2645 Diab St. Laurent
Quebec H4S 1E7
CANADA
Phone: (514) 333-5606
www.kydiamond.ca

Contour Fine Tooling, Inc.
143 Jaffrey Road
Marlborough, NH 03455
Phone: (603) 876-4908
www.contour-diamonds.com

Specialty Components, Inc.
14 Village Lane
Wallingford, CT 06492
Phone: 203-284-9112
www.specialtycomponents.com

Center for Precision Metrology
University of North Carolina at Charlotte
9201 University Blvd.
Charlotte, NC 28223
Phone: (704) 687-8499
cpm.uncc.edu/

VDL Enabling Technologies Group USA
3758 Spinnaker Court
Fremont, CA 94538
(510) 996-4660
www.vdletg.com

Corning Inc.
Corning, NY 14831
Phone: (607) 974-3842
www.corning.com

Zygo Corporation
Laurel Brook Road
Middlefield, CT 06455-0448
Phone: (860) 347-8506
Toll-free: (800) ZYGO-NOW
www.zygo.com
2014 ASPE Lifetime Achievement Award

Steven R. Patterson
University of North Carolina – Charlotte

This year’s Lifetime Achievement will be awarded to Dr. Steven R. Patterson, University of North Carolina – Charlotte. Steve Patterson received his B.S. degree (with honors) in physics from the California Institute of Technology, M.S. and Ph.D. in applied science from the University of California at Davis and M.A. (with honors) in biblical studies from Dallas Theological Seminary. A charter member of ASPE, he has served on its Board of Directors including as president in 2006. He served for more than a decade as an associate editor for Precision Engineering, the journal of the ASPE.

Steve began his involvement with precision engineering in 1970 at the Air Force Weapons Laboratory where he worked with early applications of diamond turning in high-power laser systems, eventually serving there as the Chief of the Optical Physics group. He subsequently joined the Lawrence Livermore National Laboratory as part of the team that designed and built the Large Optics Diamond Turning Machine. At the Lawrence Livermore Laboratory he worked in the areas of fabrication technology and precision interferometry, leading the Materials Fabrication Division there and briefly serving as the initial national program manager for the National Ignition Facility during its conceptual phase. In 1993 he joined the University of North Carolina at Charlotte as the SPX Distinguished Professor of Engineering. For five years beginning in 2003 he returned to the Lawrence Livermore National Laboratory to serve as Associate Director of Engineering before resuming his position at the University.

Steve’s technical interests include precision machine design, diamond-turning, machine control and ultra-precision dimensional measurement. He has studied the thermal and long-term temporal stability of a variety of materials used in precision engineering applications. His interests also include engineering education and in particular the training of the next generation of precision engineers.

Steve is a fellow of the SPIE, and has served as a member standards committees for both ASME and IFAC. He is the author or co-author of over fifty papers in the field of optics and precision engineering and a listed inventor on eight patents.

2014 ASPE Distinguished Service Award

Stephen J. Ludwick
Aerotech, Inc.

Dr. Stephen J. Ludwick, Aerotech, Inc., is the winner of this year’s Distinguished Service Award. Steve has been a member of ASPE since 1994 and was elected to the ASPE Board of Directors for 2 terms, including as President of the Society. While on the Board as a Director-at-Large, he served as Society Secretary. Steve has served on numerous Annual Meeting and Topical Meeting Committees, has chaired several Topical Meeting Committees, and served as Membership Committee Chair for 4 years. Currently Steve serves as an Associate Editor for the Journal.

Steve is the Director of Mechatronic Research for Aerotech Inc, a manufacturer of precision automation equipment used in advanced manufacturing operations. He joined Aerotech in 1999 and is currently responsible for developing precision motion control systems and feedback control algorithms with an emphasis on the interactions between mechanical, electrical, and algorithmic components of a design. Following a B.S. degree in Mechanical Engineering from Carnegie Mellon University, he studied at the Massachusetts Institute of Technology and received a doctorate in Mechanical Engineering for research into high-dynamic machine tools. Since 2007, he has also taught as an adjunct faculty member at the University of Pittsburgh.
Technical and Poster Sessions

The technical program of the 2014 ASPE Annual Meeting contains over 150 papers on precision engineering advances. Papers that lent themselves to significant verbal interaction, concise but important discoveries, or strongly visual or tactile subjects have been selected for the poster presentation. Authors will be in attendance to discuss their work during both poster sessions on Tuesday, November 11 from 4:00 pm - 5:30 pm and Wednesday, November 12 from 3:30 pm - 5:00 pm.

Session I

Redefining the SI

Tuesday, November 11, 2014, 8:30 AM - 10:00 AM

Session Chair: Byron R. Knapp (Professional Instruments Company) and Christopher J. Evans (University of North Carolina – Charlotte)

1. Invited: Contributions from Precision Engineering to the Envisaged New SI
 Bosse, H. (Physikalisch Technische Bundesanstalt) .. 15

2. Invited: A Constant from a Mass, a Mass from a Constant

3. The Construction and Characterization of the NIST-4 Permanent Magnet System

4. Fabrication of the Magnetic Circuit for the BIPM Watt Balance

Session II

Control of Environment and Vibration

Tuesday, November 11, 2014, 10:30 AM - 12:00 PM

Session Chair: Dannis M. Brouwer (University of Twente) and Dan E. Luttrell (Kriterion, LLC)

1. Design and Performance Overview of Advanced LIGO Two-Stage Vibration Isolation and Alignment System
2. A Multi-DOF Active Vibration Isolation Setup for a Coriolis Mass Flow Rate Meter
Staman, K.; van de Ridder, L.; Brouwer, D. M.; van Dijk, J. (University of Twente); Hakvoort, W. B. J. (Demcon) ... 41

3. Vibration Effects on an Environmentally Tolerant Scanning White Light Interferometer
Troutman, J.; Evans, C. J.; Schmitz, T. L. (University of North Carolina at Charlotte) 47

4. Reproducibility and Dynamic Stability of an ABBE-Compliant Linear Encoder-Based Measurement System for Machine Tools
Bosmans, N.; Qian, J.; Reynaerts, D. (Katholieke Universiteit Leuven) 51

5. Thermal Error Compensation for Large Heavy Duty Milling-Boring Machines
Aguirre, G.; Pérez de Nanclares, A.; Urreta, H. (IK4-IDEKO) .. 57

Session III
Advances in Precision Metrology
Wednesday, November 12, 2014, 8:30 AM - 10:00 AM
Session Chair: Ralf K. Heilmann (Massachusetts Institute of Technology) and Jonathan D. Ellis (University of Rochester)

1. Development of a System for 3-D Micro Metrology Using an Ultra-Small Diameter Optical Fiber Probe – Optical Analysis and Evaluative Experiment Using the 0.4 μm Diameter Stylus Shaft.
Murakami, H.; Tokuoh, N.; Fukuda, M. (The University of Kitakyushu); Katsuki, A.; Sajima, T. (Kyushu University) .. 63

2. A Study on Material Influences in Dimensional Computed Tomography
Villarraga-Gómez, H.; Morse, E. P.; Hocken, R. J.; Smith, S. T. (University of North Carolina at Charlotte) ... 67

3. Study on Dynamic Observation of sub-50 nm sized particles in Water Using Evanescent Field with a Compact and Mobile Apparatus
Khajornrungruang, P. (Kyushu Institute of Technology); Dean, P. J.; Babu, S. V. (Clarkson University) .. 73

4. Installation of a Vibrating Contacting Probe onto an Ultra Precision CMM
Claverley, J. D.; Leach, R. K. (National Physical Laboratory); Baas, M.; Widdershoven, I.; Spaan, H. A. M. (IBS Precision Engineering) 78

5. Machined Workpiece Error Prediction
Callaghan, R. P. (Independent Quality Labs, Inc.); Charlton Jr., T. (Charlton Associates, LLC) 84

Session IV
Precision Motion Control
Wednesday, November 12, 2014, 10:30 AM - 12:00 PM
Session Chair: Stuart T. Smith (University of North Carolina at Charlotte) and Shih-Chi Chen (The Chinese University of Hong Kong)

1. Friction Parameter Identification and Compensation Using the Elastoplastic Friction Model
Keck, A.; Zimmermann, J.; Sawodny, O. (University of Stuttgart) 89

2. Data-Driven Control Strategy for a Reticle Stage in a Lithographic Tool
Jiang, Y.; Yang, K.; Zhu, Y.; Hu, C. X. (Tsinghua University) ... 95
3. Hysteresis Motor Driven One Axis Magnetically Suspended Reaction Sphere
Zhou, L.; Imani Nejad, M.; Trumper, D. L.; (Massachusetts Institute of Technology) .. 101

4. Large-Stroke Piezo-Actuated Planar Motor For Nanopositioning Applications
Zhang, J.; Zou, H.; Xiong, Z. (University of Michigan-Shanghai Jiao Tong University Joint Institute); Huang, P. (Shanghai Jiao Tong University) .. 105

5. Tracking Control Performance of Ultrahigh Acceleration and High Velocity Linear Drive
Mechanism Using Learning Control Method
Sato, K.; Hama, T. (Tokyo Institute of Technology) .. 111

Session V
Ultra-Precision Machining and Forming
Wednesday, November 12, 2014, 1:30 PM - 3:00 PM
Session Chair: Alexander H. Slocum (Massachusetts Institute of Technology) and Craig R. Forest (Georgia Institute of Technology)

1. The Design and Development of a Novel ‘Twin Turret’ Machining Platform
Stock, M. A. (Cranfield Precision, Division of Cinetic Landis Ltd.) ... 115

2. Soft Mold-Based Hot Embossing for High-Resolution Patterning on Nonplanar Surfaces
Chen, J.; Chen, S.-C (The Chinese University of Hong Kong) ... 121

3. Design and Development of High-Frequency Actuator for Nanocoining
Nowak, W. J.; Garrard, K. P.; Dow, T. A. (North Carolina State University) ... 126

4. Synchronization System of Galvanometer Scanner and 2-axis Linear Stage for
Laser Routing in Wide Area FPCB coverlay
Kim, K.; Lee, J.; Yoon, K.; Park, J. (Korea Institute of Machinery & Materials (KIMM)) 132

5. Fabrication of a Flexure-based Linear Translation Stage with Integrated Optical Position System
Bado, P.; Said, A. A.; Dugan, M. A. (Translume); Bellouard, Y. (Eindhoven University of Technology) 134

Session VI
Design of Precision Machines
Thursday, November 13, 2014, 8:30 AM - 10:00 AM
Session Chair: Mark T. Kosmowski (Electro Scientific Industries) and Bradley H. Jared (Sandia National Laboratories)

1. Mechanical Design of Multiple Fresnel Zone Plates Precision Alignment Apparatus for
Hard XRay Focusing in Twenty-Nanometer Scale
Shu, D; Liu, J.; Gleber, S.-C.; Vila-Comamala, J.; Lai, B.; Maser, J.; Roehrig, C.; Wojcik, M. J.; Vogt, S. (Argonne National Laboratory) ... 138

2. Actuator Design for a High-Speed Large-Range Tip-Tilt-Piston Micro-Mirror Array
Panas, R. M. (Lawrence Livermore National Laboratory); Hopkins, J. B. (University of California - Los Angeles) ... 142

3. Flexure Design for a High-Speed Large-Range Tip-Tilt-Piston Micro-Mirror Array
Hopkins, J. B. (University of California - Los Angeles); Panas, R. M. (Lawrence Livermore National Laboratory) ... 147
4. Design of a Flexure-Based Dynamic-Tunable Five-Axis Nanopositioner
 Li, C.; Wang, J.; Chen, S.-C. (The Chinese University of Hong Kong) 153

5. Design of a Microfluidic Device to Extract Dyes from Fibers for Forensic Analysis
 Gunning, S. P.; Garrard, K. P.; Furst, S. J.; Dow, T. A. (North Carolina State University) 158

Session VII
Interferometry and Optics
Thursday, November 13, 2014, 10:30 AM - 12:20 PM
Session Chair: Marcin B. Bauza (Carl Zeiss Industrial Metrology, LLC) and Deming Shu (Argonne National Laboratory)

1. Invited: Interferometry and Optics as Employed in Advanced LIGO
 Shoemaker, D. H. (Massachusetts Institute of Technology) .. 162

2. Wide-Field Interference Microscopy for Areal Topography of Precision Engineered Surface
 Biegen, J. F.; Colonna de Lega, X; de Groot, P. J. (Zygo Corporation) 163

 Nowakowski, B. K.; Smith, D. T. (National Institute of Standards & Technology); Smith, S. T. (University of North Carolina at Charlotte) ... 167

4. A Novel Heterodyne Grating Interferometer System for In-Plane and Out-of-Plane Displacement Measurement with Nanometer Resolution

5. Phase Compensation for Dynamic Doppler Frequency Shifts
 Wang, C.; Ellis, J. D. (University of Rochester) .. 178

Session VIII
Precision Manufacturing and Assembly
Thursday, November 13, 2014, 1:30 PM - 3:00 PM
Session Chair: Jonathan B. Hopkins (University of California - Los Angeles) and Mark A. Stocker (Cranfield Precision, Division of Cinetic Landis Ltd.)

1. A Comparative Performance Analysis of FDM Machines Based on a Calibration Artefact
 D’Angelo, G.; Hansen, H. N.; Nielsen, J. S.; Rasmussen, J.; Pedersen, D. B. (Technical University of Denmark) ..183

 Mohammadi, H.; Poyraz, H. B.; Patten, J. A.; (Western Michigan University); Ravindra, D. R. (Micro-Laser Assisted Machining Technologies, LLC) .. 188

3. Efficient Micro-Concentrator for Microsystems-Enabled Photovoltaics

4. Design and Fabrication of an Optical System for a Balloon-Borne Space Telescope
 Furst, S. J.; Dow, T. A.; Garrard, K. P. (North Carolina State University) .. 196
Poster Sessions

Tuesday, November 11, 2014, 4:00 PM - 5:30 PM
Wednesday, November 12, 2014, 3:30 PM - 5:00 PM

Control of Precision Machines

1. Optimal Vibration Isolation for Shock Sensitive Machines
 Hansen-Schmidt, J.; Barth, T. (Bilz Vibration Technology AG);
 Granchi, W. J. (Bilz Vibration Technology, Inc.) .. 206

2. Characterizing Alternate Methods of Determining Velocity Information for Feedback Control of High Performance Stages
 Nakamura, K. (Nikon Corporation) ... 211

3. Linear Micro-Actuation System for Patch-Clamp Recording
 Kolb, I.; Holst, G. L.; Stockslager, M. A.; Kodandaramaiah, S. B.; Stoy, W.; Forest, C. R. (Georgia Institute of Technology); Boyden, E. S. (Massachusetts Institute of Technology) 215

4. Effective Calibration and Implementation of Galvanometer Scanners as Applied to Direct Metal Laser Sintering
 Land II, W. S. (University of North Carolina-Charlotte) 220

5. Optimal Zero Phase Error Tracking Feedforward Control For An Ultra-Precision Dual-Stage Actuated Wafer Stage
 Li, M.; Yang, K.; Zhu, Y.; Hu, C. X. (Tsinghua University) 226

 Los, A.; Mayer, J. R. R. (Ecole Polytechnique de Montreal) 232

7. Simple and Adaptive Discrete-Time Error Correction for the Ultra-Precision S-Curve Motion Profile Generation

8. Hybrid Controller to Compensate for Frictions in Ballscrew Feeddrives at Low and High Speed Tracking
 Oh, K.; Chung S.-C. (Hanyang University); Park, C.-H. (Korea Institute of Machinery & Materials (KIMM)) ... 241

9. Identification of Static and Dynamic Frictions in Ballscrew Servos
 Oh, K.; Chung S.-C. (Hanyang University); Park, C.-H. (Korea Institute of Machinery & Materials (KIMM)) ... 246

10. Development of Simple Power Supplying System in Multi-Wire EDM Slicing Method
 Okamoto, Y.; Suzuki, A.; Kimura, A.; Okada, A. (Okayama University);
 Kurihara, H.; Kido, M. (Makino Milling Machine Co. Ltd.) 251

11. Dynamic Simulation of Multi-Axis Machine Tools and Its Experimental Verification
12. Modeling and Parameter Identification of Geophone
Yasen, A.; Yin, W.; Zhu, Y. (Tsinghua University) .. 259

13. Combined Nonlinear Feedback and Cascaded Iterative Learning Control for an Ultra-Precision Dual-Stage Actuated Wafer Stage

14. Design of an Inverse Model Feedforward Controller Based on Identification Models of a Vibration Isolator
Zeng, H.; Yin, W.; Zhu, Y. (Tsinghua University) .. 269

Design of Precision Machines and Instruments

1. Design and Fabrication of a Mechanical Actuator for Phase Control of an X-ray Interferometer
Barney, J.; Thousand, J. D.; Smith, S. T. (University of North Carolina-Charlotte) 274

2. Compliant-Mount Air Bushing System for Low-Friction Motion of an Inclined-Plane Impact Testing Apparatus
Begg, N. D.; Wong, A. R.; Slocum, A. H. (Massachusetts Institute of Technology) 278

3. Large Stroke Scanning System for Femtosecond Micromachining of Custom Optical Structures in Ophthalmic Materials
Brooks, D. R.; Brown, N. S.; Savage, D. E.; Knox, W. H.; Ellis, J. D. (University of Rochester) 280

4. Analysis of Temperature Distribution in Ballscrew Systems by the Finite Element Method
Cao, L.; Chung, S.-C. (Hanyang University); Park, C.-H. (Korea Institute of Machinery & Materials (KIMM)) ... 285

5. Thermal Error Modeling of Shape Elements in Giant Floor Type Boring Machines
Cao, L.; Min, B.-K.; Chung S.-C. (Hanyang University) ... 289

6. Actuation Schemes for Flexible Hull, Undersea Vehicles
Daniel, P. H.; Church, J. C.; Trumper, D. L. (Massachusetts Institute of Technology) 293

7. A Wind Energy Plan that Fits America’s Resources
Devitt, A. J. (American Offshore Energy) .. 297

9. Estimation of Heat Generation in the Linear Motion Bearings
Khim, G.; Jang, S.-H.; Park, C.-H. (Korea Institute of Machinery & Materials (KIMM)) 307

10. Design of Compact Sensing System of VCM Spherical Actuator
Kim, H. (Korea Institute of Machinery & Materials (KIMM)); Park, J.; Woo, S.; Gweon, D.G. (Korea Advanced Institute of Science and Technology (KAIST)) 310

11. Effects of Pressure Pulsations on an Oil Hydrostatic Spindle

12. Localized Growth and Force Detection of Carbon Nanotubes on Multi-axis MEMs Sensor
Ladner, I.; Cullinan, M. A. (The University of Texas at Austin) 320

13. Synthesis of Thermal Errors in Giant Floor Type Boring Machines
Min, B.-K.; Cao, L.; Chung S.-C. (Hanyang University) .. 325
Montesanti, R. C. (Lawrence Livermore National Laboratory) .. 329

15. Corrective Machining of Freeform Surfaces Using the UPC 400
Niehaus, F.; Huttenhuis, S.; (Schneider GmbH & Co. KG); Pisarski, A. (Schneider Optical Machines) ... 335

16. Hydraulically Controlled Magnetic Bougienage for Correction of Long-gap Esophageal Atresia
Noh, M.; Trumper, D. L. (Massachusetts Institute of Technology); Mooney, D. P. (Boston Children's Hospital) .. 341

17. Short-Distance Remote Sensing Using Low-Cost UAV and Board Computer
Obara, T.; Oyama, K.; Wakabayashi, H.; Shirai, K. (Nihon University) ... 345

18. Design and Control of a Dual Voice Coil Linear Nano-Positioner
Okyay, A.; Erkorkmaz, K.; Khamesee, B. (University of Waterloo) ... 349

19. Analysis of Material Mechanics for Pneumatic Rubber Actuators (Material Properties Experiment and Motions of NBR Bellows Actuators)
Ono, M.; Yamagishi, K.; Shimazaki, M.; Sakamoto, M.; Hiroi, T. (Tokyo Metropolitan College of Industrial Technology); Furushima, T.; Manabe, K. (Tokyo Metropolitan College of Technology) ... 354

20. A Roll-Bonding Machine for Polymeric Films
Padhye, N.; Parks, D. M.; Slocum, A. H.; Trout, B. L. (Massachusetts Institute of Technology) 357

Sakamoto, M.; Ono, M.; Shimazaki, M.; Takahashi, K. (Tokyo Metropolitan College of Industrial Technology) ... 361

22. The Analysis of Ironless Moving-Permanent-Magnet Synchronous Linear Motor Thrust Fluctuation
Song, Y.; Zhang, M.; Zhu, Yu (Tsinghua University) ... 365

23. Design and Testing of a Back-Pressure Regulating Valve to Reduce the Water Contamination Risk in New Delhi
Taylor, D. D. J.; Slocum, A. H.; Hanumara, N. C. (Massachusetts Institute of Technology) 371

24. Development of an X-ray Interferometric and Micro-CT Facility
Thousand, J. D.; Smith, S. T. (University of North Carolina-Charlotte) ... 375

25. Magnet Assisted Stage for Efficient Wafer Scanning
Yoon, D.; Pan, Y.; Okwudire, C. E. (University of Michigan) ... 380

26. A New Optimization Method to Achieve Coincidence of Modal Nodal Lines

27. Design and Analysis of Ironless Permanent Magnet Linear Synchronous Motor with Little Force Ripples for Ultra-precision Positioning Systems
Zhi, F.; Zhang, M.; Zhu, Yu. (Tsinghua University) ... 389

28. A Flexure-Based Roll-to-Roll Machine for Fabricating Flexible Photonic Devices
Zhou, X.; Xu, H.; Zhao, N.; Chen, S.-C. (The Chinese University of Hong Kong) ... 395

Zhu, Y.; Ye, W.; Zhang, M. (Tsinghua University) ... 399
Interferometry and Optics

1. Spectral Imaging Metrology Using Chromatic Aberration
 Habibi, N.; Farahi, F. (University of North Carolina-Charlotte); Abolbashari, M. Optoniks, Inc.) 403

2. Periodic Error Compensation Using Frequency Measurement with Continuous Wavelet Transform
 Lu, C.; Tarbutton, J. (University of South Carolina); Troutman, J.; Schmitz, T. L. (University of North Carolina-Charlotte); Ellis, J. D. (University of Rochester) 408

3. Beam Aberration Analysis of Differential Wavefront Interferometry
 Yu, X.; Gillmer, S. R.; Wang, C.; Ellis, J. D. (University of Rochester) .. 412

4. Absolute Thickness Metrology with High Precision Using Low Coherence Interferometry
 Zhao, Y.; Schmidt, G.; Moore, D. T.; Ellis, J. D. (University of Rochester) ... 417

Multi-Axis Machine Design

1. Research and Analysis of Voice Coil Motor with MAGLEV Gravity Compensation and Micro-Stage
 Chi, F.; Wu, L.; Zhang, Z.; Cheng, J. (Shanghai Micro Electronic Equipment Co., Ltd.) 422

2. Modeling of Planar Motors with Moving Circular Coils for Long-Stroke Motion Along Axes and Full Rotation in \(\zeta \) Direction
 Liu, F.; Zhang, M.; Zhu, Y.; Chen, A.; Liu, Z. (Tsinghua University) .. 428

3. Design and Performance of a 6-DOF Inchworm-Type Positioning Stage
 Torii, A.; Ishibashi, S.; Doki, K.; Mototani, S. (Aichi Institute of Technology) 434

Nano-Positioning

1. Development of a Precise Positioning Stage Traveling on a Micro-Pitch Rack
 Honda, S. (Tokyo Metropolitan University) ... 439

2. Design and Control of a Millimeter-Range Piezoelectric Stage Using Self-Guided Displacement-Amplification Flexure Mechanisms
 Hong, D.; Jeong, J. (Korea University); Choi, Y.-M. (Korea Institute of Machinery and Materials) 443

3. A Grating Interferometer-Based Six-Degree-of-Freedom Measurement Method for Ultra-Precision Motion Stages

4. Development of a Three-DOF Dual-Servo System for Static, Quasi-Static and Dynamic Errors of a Linear Axis
 Lee, J.-C.; Lee, K.-II; Yang, S.-H. (Kyungpook National University) .. 451

5. Evaluation of Periodic Error Compensation Using a Time Domain Regression Algorithm
 Troutman, J.; Ganguly, V.; Schmitz, T. L. (University of North Carolina at Charlotte); Nguyen, N. (Agilent Technologies, Inc.) ... 457
Precision Component Design

1. **Pneumatic Volume De-Amplification Mechanism for a Handheld Pipette**
 Beroz, J. D.; Lewandowski, J.; Hart, A. J. (Massachusetts Institute of Technology); Jiang, S. (University of Michigan) .. 463

2. **Evolute of a Surface as a Utility for Specification, Characterization and Measurement of Freeform Surfaces**

3. **Static and Dynamic Characterization of Hydrostatic Bearings with Micro Gap Sizes**
 Fritz, M.; Stauder, A. (KERN Microtechnic GmbH); Kuhfuß, B. (Universität Bremen) 469

4. **Fiber Launching and Collimating Device with Polarization Control and Alignment-Preserving Reconnection**
 Keene, A. D.; Pullan, E. E.; Ricci, M. A.; Lanphear, J.; Echter, M. A.; Ellis, J. D. (University of Rochester) 473

5. **Flexural Transmission Design: How To Change An Output For A Given Input**
 Thomas, M. A. C.; Culpepper, M. L. (Massachusetts Institute of Technology) 479

6. **Hyperthermia Operation of Intelligent Medicine to Eliminate Cancer**
 Watanabe, T. (World Technology Instrument Co., Ltd.) 481

Precision Machining Processes

1. **Manufacture and Functional Testing of Micro Forming Tools with Well-Defined Tribological Properties**
 Böhmermann, F.; Preuss, W. R.; Riemer, O. (Bremen University) 486

2. **Dependence of the Cutting Forces on Cutting Speed in High Speed Diamond Turning**
 Brinksmeier, E.; Ohlsen, I.; Preuss, W. R. (University of Bremen) 492

3. **Tool Wear in High Speed Diamond Milling**
 Brinksmeier, E.; Menten, A.; Preuss, W. R. (University of Bremen) 494

 Cao, Z. C.; Cheung, C.-F. (The Hong Kong Polytechnic University) 496

5. **The Optimal Method of Cutting Path Planning of Complex Optical Surface by Using Fast Tool Servo and Analysis of Hermite Interpolation**
 Du, J.; Sun, Z.; Zhao, J.; Li, C. (Harbin Institute of Technology) 502

6. **Measurement of Saw Wire Temperature During Cutting of Rock in Vacuum**
 Furutani, K.; Inukai, R.; Takano, T. (Toyota Technological Institute); Okada, T. (Institute of Space and Astronautical Science, JAXA); Saiki, K. (Osaka University); Ohue, H. (Tokusen Kogyo Co. Ltd.) 508

7. **Precision Belt Grinding with Macroscopic Shaped Al2O3 Abrasives**
 Gebb II, D. M.; Dow, T. A.; Garrard, K. P. (North Carolina State University) 512

8. **Measurement and Prediction of Diamond Tool Wear During Steel Machining**
 Hesler, G. S.; Dow, T. A.; Suit, B. (North Carolina State University) 516

9. **Ultra-Precision Sinusoidal Patterns Machining Using a Planing Machine**
 Je, T.-J.; Choi, H.-J.; Jeon, E.-C.; Choi, D.-S. (Korea Institute of Machinery and Materials (KIMM)); Park, E.-S. (University of Science & Technology) 521
10. An Innovative Investigation on Chip Thickness Model with Application to Cutting Forces Modelling in Micro Milling
Jiao, F.; Cheng, K. (Brunel University) ... 525

11. Magnesium Alloy Chip Formation Mechanism
Kaneeda, T. (Okayama University of Science); Anthony, L. (Waseda University). .. 529

12. Process Optimization in Micro Grinding of Freeform Surfaces
Knapp, B. R. (Professional Instruments Company) .. 533

13. The Tungsten Carbide Machining by the PCD Coated Carbide Endmills – Effect of the Tool-Path Steps
Ono, T. (Kyushu Sangyo University) .. 535

14. Towards In-Line Adaptive Tool Wear Compensation in Micro-EDM Milling Based on Real-Time Pulse Counting and Classification
Wang, J.; Ferraris, E.; Qian, J.; Reynaerts, D. (KU Leuven); Baggi, C. (Sarix SA) 539

15. Fabrication of Microstructures on Polycrystalline Diamond Using Chemical Reaction-Assisted μ-EDM
Watanabe, K.; Yan, J. (Keio University) .. 545

Precision Manufacturing

1. Large-Aperture Ultra-Precision Air Bearing Spindle
Arneson, D. A.; Oss, D. D.; Liebers, M. J.; (Professional Instruments Company);

2. High-Temperature Precision Design: Glass Slumping on Air Bearing Mandrels
Chalifoux, B.; DeTienne, M.; Fucetola, J. J.; Heilmann, R. K.; Schattenburg, M. L. (Massachusetts Institute of Technology) 553

Furushiro, N.; Hirooka, D.; Yamaguchi, T. (Kansai University); Matsuda, S.; Iwasa, Y.;
Terauchi, S. (Osaka Yakin Kogyo Co., Ltd.) .. 555

4. Design and Fabrication of a Metallic-Ellipsoidal Mirror for Focusing Neutron Beams
Guo, J.; Yamagata, Y.; Morita, S.; Takeda, S.; Kato, J. (RIKEN Center for Advanced Photonics (RAP)); Hino, M. (Kyoto University); Furusaka, M. (Hokkaido University) 559

5. Geometric Simulation Based Tool Wear Compensation in Micro Die-Sinking EDM Process
Heo, S.; Kim, T.-G.; Lee, C.-H.; Min, B.-K. (Korea Institute of Machinery & Materials (KIMM));
Lee, S.-J. (Yonsei University). ..563

6. Modeling of Micro Drill Dynamics Based on 2-D Finite Element Method
Jin, X.; Koya, N. (Oklahoma State University). ... 567

7. Optical Property Simulation Using Measured Form Profile of Segmented Neutron Ellipsoidal Mirrors
Morita, S.-Y.; Yamagata, Y.; Guo, J.; Takeda, S. (RIKEN Center for Advanced Photonics);
Furusaka, M. (Hokkaido University) ... 569

8. Improving Surface Roughness of Silicon Using the Micro-Lam Process Through Single Point Diamond Turning
9. A New Approach of the Gear Cutting for a High-Mix Low-Volume Production
Terai, H.; Asao, T.; Yagami, R. (Kitakyushu National College of Technology) 578

10. Electrostatic Self-Assembly on a Liquid Film for the High-Precision Mounting of MEMS
Tondorf, M.; Gan, Y.; Huhn, A.; Wilde, J. (Albert-Ludwigs-Universität Freiburg) 582

11. Effect of Lapping Trajectory on Diamond Surface Topography
Yang, N.; Zong, W. J.; Li, Zeng W.; Sun, T. (Harbin Institute of Technology) 588

Precision Metrology

1. Measurement of Surface Mechanical Dynamic Characteristics by Piezo Excited Micro Tuning Fork
Aoyama, H.; Jing, X. (The University of Electro-Communications) 592

2. Form and Outlier Removal by Modal Filtering of Confocal Measurements of Laser-Sintered Additive Manufactured Surfaces
Burns, C. M.; Brown, C. A. (Worcester Polytechnic Institute) 596

Deni, M. (MDM-Metrosoft); Kniel, K. (Physikalisch Technische Bundesanstalt) 602

4. Measuring High-Slope Parts Using Coherence Scanning Interferometry
Fay, M. F.; Colonna de Lega, X.; Schmidt, M.; de Groot, P. J. (Zygo Corporation) 604

5. Rotary Axis Qualification for Coordinate Metrology Using Iterative Optical Methods
Felker, S. J.; Seugling, R. M.; Doane, D. (Lawrence Livermore National Laboratory) . 609

6. The Effect of Stylus Tip Dimension and Filter Band Pass on Surface Roughness Measurement
Holzhauer, S.; Evans, R. D. (The Timken Company) 611

7. Proposal for an Interferometer to Simultaneously Acquire Interferograms with Different Carrier Frequencies for Two Step Fourier Transform Method
Kamiya, K.; Tambo, A.; Matsumoto, K.; Nomura, T. (Toyama Prefectural University); Tashiro, H.; (Toyama University); Suzuki, S (Nagano National College of Technology) 616

8. Real-Time Straightness Motion Error Measurement and Compensation System for the 8G High-Resolution Flat-Panel Manufacturing Machine
Kim, J.-J.; Park, S.-H.; Son, T.-K.; Jang, S.-D. (Samsung Electronics) 620

9. Pressure-Vessel Effects in an Air Bearing Spindle

10. Uncertainty Sources in Multi-Probe Error Separation
Marsh, E. (The Pennsylvania State University); Knapp, B. R.; Arneson, D. A. (Professional Instruments Company) 628

11. Laser Scanner Two-face Errors on Spherical Targets

12. Updates of the Dimensional Metrology of a Plasmonic Nano Lithography Machine
Ni, K.; Hocken, R. J.; Smith, S. T. (University of North Carolina-Charlotte) 637
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Centering Aspheres Using a Dual Beam Method</td>
<td>Parks, R. E. (Optical Perspectives Group, LLC)</td>
<td>644</td>
</tr>
<tr>
<td>16</td>
<td>Evaluation of Fitting Methods Performance in Diameter Measurement Using Coordinate Measuring Machine</td>
<td>Rosa, V. A. O.; Pereira, L. C.; Bertholdi, J.; Arencibia, R. V. (Federal University of Uberlândia)</td>
<td>654</td>
</tr>
<tr>
<td>17</td>
<td>Point Removal for Fitting Spheres to 3-D Laser Scanner Data</td>
<td>Shilling, K. M.; Muralikrishnan, B.; Sawyer, D. (National Institute of Standards & Technology)</td>
<td>660</td>
</tr>
<tr>
<td>18</td>
<td>Fundamental Study of Structural Health Monitoring By Lamb Waves Propagation</td>
<td>Shimazaki, M.; Sakamoto, M.; Ono, M. (Tokyo Metropolitan College of Industrial Technology)</td>
<td>666</td>
</tr>
<tr>
<td>20</td>
<td>Influence of the Photodetector Geometry on the Deflection Measurement in Atomic Force Microscopes</td>
<td>Steininger, J.; Schitter, G. (Vienna University of Technology)</td>
<td>674</td>
</tr>
<tr>
<td>22</td>
<td>Dimensional Metrology of Internal Features with X-Ray Computed Tomography</td>
<td>Villarraga-Gómez, H.; Morse, E. P.; Hocken, R. J.; Smith, S. T. (University of North Carolina-Charlotte)</td>
<td>684</td>
</tr>
</tbody>
</table>
INTERNATIONAL SYSTEM OF UNITS

The system of Weights and Measures was recognized as a necessary basis for science, agriculture, construction and trade from the very beginning of ancient civilization. The importance of a reliable system of Weights and Measures or generally speaking of a reliable System of Units is documented by the fact that it has always been regarded as a governmental task of high priority until today.

In 1960 the 11th General Conference on Weights and Measures (CGPM) adopted the name Système International d’Unités (International System of Units, international abbreviation SI), for the recommended practical system of units of measurement. The SI base units are a choice of seven well-defined units which by convention are regarded as dimensionally independent: the metre, the kilogram, the second, the ampere, the kelvin, the mole, and the candela. Derived units are those formed by combining base units according to the algebraic relations linking the corresponding quantities [1]. Taking into account the historical development of the system of units, also the SI was thought not to be static but to evolve to match the world's increasingly demanding requirements for precise measurements.

One important change to the SI was made in 1983 when the unit of length, the metre was defined by fixing the - at this time - best known numerical value of a natural constant, the speed of light in vacuum, namely, 299 792 458 metre per second.

ENVISAGED “NEW SI”

This concept of defining an SI base unit by fixing the numerical value of a properly chosen natural constant or at least a so-called defining constant also inspired the envisaged “New SI” or the possible future revision of the SI.

In the "New SI" four of the SI base units, namely the kilogram, the ampere, the kelvin and the mole, will be redefined in terms of invariants of nature; the new definitions are proposed to be based on fixed numerical values of the Planck constant (h), the elementary charge (e), the Boltzmann constant (k), and the Avogadro constant (N_A), respectively, see figure 1.

![FIGURE 1. Scheme of the base units and the defining constants in the New SI.](image)

Different highly sophisticated experiments have been performed to realize precise measurements of the above mentioned natural constants. However, “while remarkable progress has been made over the last few years, the conditions for adopting the redefinitions, as set by the CGPM at its 23rd meeting (2007), have not yet been fully met” [2].

It is important to note, that progress in precision manufacturing and precision engineering is necessary to enable the envisaged New SI. In this contribution some examples of precision machining tasks and achievements in precision dimensional metrology will be discussed.

The most demanding conditions are set for the determination of the Planck constant h, which in the New SI will be used to define the unit of mass, the kg. The Consultative Committee for Mass (CCM) has formulated different prerequisites [3] before the new definition of the unit of mass could be put into place as well as a roadmap of different necessary steps to be achieved to reach the target until 2018. The CCM roadmap activity has been endorsed by the CIPM at its 102nd meeting in 2013 [4].
One of the conditions defined by the CCM is that at least three independent experiments, including work from watt balance and XRCD experiments, yield consistent values of the Planck constant with relative standard uncertainties not larger than 5×10^{-8} and that at least one of these results should have a relative standard uncertainty not larger than 2×10^{-8}.

PRECISION EXPERIMENTS FOR h

To determine the value of the Planck constant with the above mentioned uncertainties two different approaches are followed in metrology institutes worldwide, namely the watt balance experiments and the x-ray crystal density (XRCD) experiments [5].

In the watt balance experiments the gravitational force of a mass standard is compared with compensating electromagnetic forces generated by a coil in a static homogenous magnetic field in two different configurations, namely with a stationary coil carrying a defined current (weighing phase) and with the same coil moving at constant speed, thus inducing a constant voltage over the coil (moving phase).

The precise alignment of the components of the watt balance as well as the control and interferometric measurement of the linear movement of the coil in the dynamic phase of the experiment are very demanding precision engineering challenges related to the watt balance experiments. In [6] an analysis on the alignment requirements was given for the watt balance operated at NRC. Different influences were analyzed, such as alignment of the laser beam, residual torques about horizontal axes and horizontal forces, alignment of the mass pan of the balance, determination of the Abbe offset, measurement and adjustment of the horizontal velocities, measurement of the angular velocities and changes in the coil position between phases. The resulting combined relative alignment uncertainty was estimated to be 5.5×10^{-9}. Recently, a new measurement value for the Planck constant h using the NRC watt balance has been reported with a relative uncertainty of 1.8×10^{-8} [7], which would satisfy the condition set by CCM with respect to the smallest uncertainty of one from at least three independent experiments to be not larger than 2×10^{-8}.

In the XRCD method one uses a high purity, highly enriched 28Si sphere (diameter of 93 mm and mass of about 1 kg) to precisely determine the Avogadro constant (N_A). The Avogadro constant links the atomic to the macroscopic world and is determined by the ratio of the density of an atomic unit cell of the 28Si sphere and the density of the macroscopic sphere. The measurement of the Avogadro constant is based on $N_A = n \cdot M / (\rho \cdot a^3)$, where $n = 8$ is the number of atoms per unit cell of a silicon crystal and ρ, M and a are the density, molar mass and lattice parameter, respectively. Precise measurements of the molar mass, the Si lattice parameter as well as the mass and the volume of the Si sphere are thus required to determine N_A. Because the molar Planck constant $h \cdot N_A$ is known from spectroscopy experiments with an uncertainty of 7×10^{-10} [8], a precise measurement of N_A also provides a precise value of h. The most precise value for N_A using the XRCD method with a standard uncertainty of 3×10^{-8} was published by the international Avogadro consortium in 2011 [9].

In addition to the production requirements for the pure isotope enriched silicon single crystal material, also the manufacturing specifications for surface quality (average roughness values below 0.3 nm) and spherical form (roundness deviation below 30 nm in amplitude) of the macroscopic silicon spheres are very demanding [10].

![FIGURE 2. Overview of different sphere manufacturing steps (hollowed ingot, cut form, turned, coarsely lapped and polished sphere).](image)

The biggest uncertainty contribution - about $2/3$ of the total budget - so far is due to the volume determination of the silicon spheres. A special spherical Fizeau interferometer has been developed for this purpose, see figure 3 for a schematic drawing [11] as well as techniques to characterize the influence of different surface layers on the determination of N_A[12].
FIGURE 3. Schematic drawing of the central part of the interferometer. The measured quantities are the distances between the sphere surface and the reference surfaces, d_1 and d_2, and the length of the empty etalon D.

Figure 4 shows a graphical representation of the resulting radius topography from all measurements performed on one of the silicon spheres manufactured along the process chain referred to in figure 2. One can clearly recognize the high symmetry with the characteristic of a rhombic dodecahedron – in the magnitude of several nanometers. This typical appearance of a cubic crystal is worked out in a unique and clear form (see figure 5) and could also be repeated on other spheres.

Although today three independent experiments for h have been published with uncertainties below $5 \cdot 10^{-8}$ and one experiment with an uncertainty below $2 \cdot 10^{-8}$ which also seem to be fairly consistent, one should not forget, that the CCM also requires procedures for the future realization and dissemination of the kilogram, as described in the mise en pratique, have been validated in accordance with the principles of the CIPM – MRA. This validation process of the procedures will need additional time as foreseen in the CCM roadmap.

Figure 6 shows up-to-date results and standard uncertainties of different experiments (watt balances and Avogadro) for determination of h, as published in [13].

\[(\frac{h}{c}) \times 10^9 \]

FIGURE 6. Recent measurement results for Planck’s constant h [13].

PRECISION EXPERIMENTS FOR k

For precise determination of the Boltzmann constant k, different approaches are followed at NMI’s worldwide. The most promising method with smallest achievable relative standard uncertainties below 10^{-8} is called acoustic gas thermometry (AGT). One experiment uses acoustic waves in a noble gas inside a precisely manufactured slightly ellipsoidal resonator to determine k [14], see figure 7.

FIGURE 7. Manufactured resonator for the NPL Boltzmann experiment [14].
The small uncertainty obtained with this experiment was reported to be $u_R = 0.71 \cdot 10^{-6}$.

In addition to other AGT experiments using spherical or slightly ellipsoidal resonators, there is another experiment which uses precisely manufactured cylindrical resonators for the AGT experiment [15].

One of the other independently developed methods for determination of k is based on dielectric-constant gas thermometry DCGT [16]. Here, the dielectric constant of a noble gas is measured under different pressures using a precise pressure balance. The calibration of the pressure balance is traceable to dimensional characterizations (diameter and form) of the effective area of cylindrical piston-cylinder pressure gauges, as shown in figure 8. Standard uncertainties of three-dimensional data of 8 nm for pistons and 16 nm for cylinders were obtained by a combination of high precision form and diameter measurements [17].

FIGURE 8. Piston cylinder pressure gauges used for the determination of the Boltzmann constant k by means of the DCGT method.

SUMMARY AND OUTLOOK

Some of the contributions from precision manufacturing and precision engineering for the progress of experiments in fundamental metrology aiming at the envisaged New SI were addressed. It has been shown how progress in manufacturing chains as well as in alignment and characterization of critical components of experiments contribute to the required further reduction of uncertainty of different experiments for determination of more precise numerical values of natural constants needed for the proposed definitions of the New SI. Although today the formal requirements of the CCM with respect to the uncertainty and consistency of at least three independent experiments for determination of the Planck’s constant h seem to be fulfilled, it will be of importance to follow the results of other watt balance experiments as well as repeated Avogadro experiments with a second lot of 28Si material, which are under preparation. It is also of importance to maintain the established manufacturing chains and the described precision experiments for future use.

ACKNOWLEDGEMENTS

The author gratefully acknowledges the support of colleagues from PTB as well as external partners involved in the activities for the redefinition of the SI.

REFERENCES

A constant from a mass, a mass from a constant

Jon R. Pratt1, Stephan Schlamminger1, Leon Chao1, David B. Newell1, Austin Cao2, Frank Seifert2, Darine Haddad2, Zeina Kubarych1 and Patrick Abbott1

1Quantum Measurement Division
National Institute of Standards and Technology
Gaithersburg, MD, USA
2Joint Quantum Institute
University of Maryland
College Park, MD, USA

Introduction
The International System of Units (SI) will soon be based on a set of fundamental constants with fixed, exact values known as defining constants [1,2]. For example, the unit of length was once derived from the space between two scratches on a metal bar, but now it can be derived anywhere at any scale using a defining constant, the speed of light. Similarly, it is planned that the unit of mass will cease to be derived from a single cylinder of platinum iridium (Pt-Ir) in a vault in Sevres, France near Paris, and instead it may be derived anywhere at any scale using the defining constants, most notably a fixed value of the Planck constant h.

The first step, of course, is fixing a value of h, which is now defined inexactl in terms of the existing standard of mass, the International Prototype of the Kilogram (IPK). This must be done based on experiments, with an uncertainty of less than 5 parts in 10^8 if the precision of mass is to be preserved after revising the units of measure. Multiple groups have recently crossed this threshold in precision using watt balance [3,4] and x-ray crystal density [5] approaches. At last, the long discussed decision whether to continue deriving h from the International Prototype of the Kilogram, or to instead derive the unit of mass from a fixed value of h [6], appears to be drawing to a close. A timeline has emerged: a pilot study on the realization of the kilogram from h is proposed for 2015, with revision of the SI slated for 2018.

The National Institute of Standards and Technology (NIST) recently used a watt balance known as NIST-3 to measure the Planck constant in terms of IPK with a relative uncertainty of approximately 4.5 parts in 10^8 [3]. Along the way to this new NIST value of h, the instrument was also employed to perform the reciprocal experiment: h was “fixed” and the unknown mass of a stainless steel mass standard was measured with reference only to standards of length, time (frequency), and electrical quantities, all derivable from fixed fundamental constants. This paper reviews the basic principles of a watt balance experiment and shares the results of this trial dissemination of mass directly from a set of defining constants, rather than from an artifact.

Watt Balance Principles
As illustrated in Figure 1, a watt balance has many elements in common with an ordinary compensation balance. There is a balance mechanism (a wheel pivoting on a knife edge in this case), a weighing pan suspended from the balance, and a moving coil actuator to apply compensation forces to hold a null position.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{nist-3-watt-balance.png}
\caption{Schematic drawing of the NIST-3 watt balance.}
\end{figure}
In operation, such balances employ the substitution principle. The force on the mass pan is either generated by the gravitational force from the mass set on top of the mass pan or by an electromagnetic force created by the actuator located below the mass pan. However, what sets a watt balance apart from its compensation balance counterpart is its ability to operate alternately in two separated modes.

In the weighing mode, dc current I is fed back through a coil in a magnetic field to produce a force that nulls the position of the balance mechanics and exactly balances the gravitational force acting on the test mass m, so that $BLI=mg$, where B is the magnetic flux density, L is the wire length in the coil, and g is the local gravitational acceleration.

In the velocity mode, the geometric factor BL is precisely calibrated in terms of length, time, and electrical standards. The calibration is achieved by moving the coil through the magnetic field while measuring its velocity v and the voltage U_v induced across the coil, i.e., $U_v = BLv$.

Measurements from the two operational modes allow one to compute a virtual comparison of electrical power to mechanical power, $U_vI=mgv$, both measured in watts, hence the name watt balance. A small number of such balances have been constructed over the years, and more are in the planning stages, as evident in the recent special issue of the journal Metrologia [7]. In the next section, we will focus on the interesting connection the experiment makes between classical and quantum physics.

A constant from a mass

The virtual comparison of electrical power to mechanical power embodied in the watt balance relation $U_vI=mgv$ creates an opportunity to evaluate a fundamental constant of quantum physics in terms of a Newtonian quantity, gravitational mass. This opportunity arises because the references used to measure the induced voltage U_v and the applied current I are very precisely known in terms of the Planck constant.

The basis of modern voltage standards is the Josephson effect, named after Brian Josephson, who was awarded the 1973 Nobel prize in physics for its discovery in 1962 [8]. The Josephson effect describes the quantum mechanical behavior of electrons in a pair of superconductors separated by a thin, non-superconducting barrier. Taken as a whole, this superconductor sandwich is called a Josephson junction. The electrons in the superconducting elements of these junctions are characterized by quantum mechanical wavefunctions, the relative phases of which can be locked through interaction with electromagnetic waves (i.e., by exposing the junction to microwave radiation). Because of this phase locking of the wavefunctions, a fixed voltage $V= fnh/2e$ develops across an array of such junctions, where f is the frequency of the electromagnetic excitation, n is the number of Josephson junctions in the array, e the elementary charge, and h the Planck constant. The summed junction voltage is a quantum reference that is stable and repeatable to a few parts in 10^{10} and depends only on a frequency, everything else being a constant.

During the velocity mode of watt balance experiments performed at NIST, the voltage induced across the coil U_v is compared to a fixed reference voltage produced by a programmable array of such Josephson junctions that was developed by another group of researchers at NIST [9]. The NIST Programmable Josephson Voltage System works at a selectable microwave frequency and features software controls that allow the user to program the array of junctions to produce a variety of reference voltages, including limited waveform capabilities. In practice on the NIST watt balance, the system is used to generate a nominal 1 V reference. The velocity of the balance is then controlled to minimize the difference (error signal) between U_v and this reference as measured using a bridge type circuit arrangement. This establishes U_v in terms of f, n, and the ratio $1/K_J$ where $K_J=2e/h$ is referred to as the Josephson constant.

A second quantum mechanical phenomenon is necessary to completely link a watt balance to the Planck constant. This phenomenon is a special variant of the Hall effect known as the quantum Hall effect. Recall that the Hall effect describes the migration of charge carriers in a conductor to one side of the conductor in the presence of a perpendicular magnetic field. As a result, a voltage appears across the conductor in a direction perpendicular to both the current flow and magnetic field direction. In 1985, Klaus von Klitzing was awarded the Nobel Prize in physics...
for his experimental work showing that this Hall voltage becomes exactly quantized if the conductor is a two dimensional electron gas in the presence of a strong magnetic field [10]. The energy level of the electrons and hence the Hall resistance is quantized in this case at integer fractions of $R_K = h/e^2$, where R_K is known as the von Klitzing constant. At present, NIST uses a gallium arsenide heterostructure cooled to 0.3 K in order to create a two dimensional electron gas suitable as a quantum Hall resistance standard and to serve as the US representation of the ohm [11]. NIST has also made great progress recently in the development of graphene based quantum Hall devices [12] that show potential of working at higher temperatures and lower magnetic fields than available with present devices.

During the weighing mode of a watt balance experiment, the electric current to null the balance position as the test mass is placed on and off the balance is measured using Ohm’s law by passing the current through a resistor and measuring the corresponding voltage drop, U_w. The value of U_w is once again measured via comparison to a Josephson array voltage standard, while the value of the resistor, R, is known, having been determined via comparison to a quantum Hall standard, $R = \alpha R_K$, where α is a proportionality constant measured using state-of-the-art bridge techniques [11].

With data available from both modes of the experiment, the electrical power is written as $P = UI = U_v/U_w/R$. Because both of the voltages are measured via the Josephson effect, and the resistance is measured via the quantum Hall effect, one obtains for the electrical power

$$P = n_w n_v f_w f_v h / 4\alpha.$$

In order to make a measurement of h, the mass m of a stable, Pt-Ir mass standard is determined by comparison to the US National prototype kilogram, then the local gravitational acceleration g is measured with an absolute gravimeter [13] and the electrical and mechanical powers are equated and solved for h

$$P = mgv \text{ or } h = 4\alpha mgv (n_w n_v f_w f_v).$$

A value of $h = 6.626 \, 069 \, 79 \times 10^{-34 \, J \, s}$ was determined over the course of six measurement campaigns in 2013 using a platinum iridium prototype. Typical data used for this determination are shown in Figure 2.

A mass from a constant

The equation for h in terms of mass can be rearranged to solve for mass in terms of h, or

$$m = n_w n_v f_w f_v h / (4\alpha g v),$$

where m, in this case, refers to the mass of an unknown test artifact to be determined. It is interesting to note that in this scheme, the unit of mass is no longer tied to a single cardinal value. The impact on scaling the unit of mass is beyond our scope here, but as observed in a recent essay by the lead author [14] it opens up the possibility of accurately weighing everything from “atoms to apples” in terms of the defining constants.

In June 2013, a stainless steel mass with a value unknown to the researchers at the watt balance was used on the NIST-3 watt balance. After 25 days of measurement on the watt balance, the mass of the artifact was determined using a previously recorded value $h = 6.626 \, 069 \, 79 \times 10^{-34 \, J \, s}$ to be
\[m_{WB} = (1 \text{ kg} + 338 \mu\text{g}) \pm 60 \mu\text{g} \]

The above estimate of the object's mass was determined in vacuum (0.5 Pa), in the absence of any significant buoyant forces. The value includes corrections for a variety of factors, including tidal corrections to gravity (e.g., see [3]). An important correction new to this work was the effect of magnetic forces arising from the weak magnetic properties (i.e., susceptibility and magnetization) of the stainless steel artifact.

Briefly, the magnetic properties of this artifact were determined using the balance apparatus. Changes in force on the balance were recorded as the magnetic flux densities around the balance pan were varied in a systematic fashion. Prescribed fields were applied using auxiliary coils positioned around the mass pan. From these force measurements, the volume magnetic susceptibility and the polarization of the artifact were deduced. The magnetic flux density at the weighing position due to the superconducting magnet and the vertical gradient of its field at this position were also determined. Combining these observations with an estimate of the artifact volume, the magnetic field was found to contribute an additional apparent mass of 11.6 \(\mu\text{g} \pm 6 \mu\text{g} \). This correction was already applied to the vacuum mass value given above.

Finally, the true mass of the artifact in air is slightly heavier than the vacuum mass, since an adsorbed layer of contaminants (mostly water) clings to mass artifacts when they are used in air. Because of this, we must explicitly estimate this sorption correction if we wish to compare the watt balance value to the true mass of the artifact that will be measured using conventional practices in air.

Based on data available in reference [15], which examined sorption factors for Pt-Ir and stainless steel kilogram mass artifacts using a vacuum mass comparator, we estimate the amount of material adsorbed on the surface to be \(\approx 14 \mu\text{g} \pm 5 \mu\text{g} \), so that the true mass, as determined by the watt balance approach, is

\[m_{WB} = (1 \text{ kg} + 352 \mu\text{g}) \pm 60 \mu\text{g} \]

In contrast, before and after the watt balance experiment, the NIST Mass and Force Group measured this stainless steel artifact on a mass comparator at ambient air conditions using a weighing design that included the Pt-Ir US National standard, for a determination of the true mass in terms of the SI kg. This value, \(m_{MG} \), includes a correction for the buoyant force of air acting on the artifact. In the most basic weighing comparison [16], this correction appears as follows

\[m_{MG} = m_{PtIr} - \rho_a (V_{PtIr} - V_{SS}) - C \]

where \(m_{PtIr} \) is the mass of the US National standard, \(\rho_a \) is the density of air, \(V_{SS} \) and \(V_{PtIr} \) are the volume of the unknown stainless steel and the platinum iridium US National standard mass artifacts, respectively, and \(C \) is the balance reading. Observe that this determination of mass includes the mass of adsorbed contaminants implicitly, since the entire determination was performed in ambient air. The magnitude of such contamination (in terms of mass) can vary over time, depending on a variety of features of the metal surface and its surrounding ambient environment, including obvious factors such as the surface roughness of the artifacts and the chemical composition of the metal surfaces and the air.

The NIST Mass and Force Group obtained the following value of the true mass for the stainless steel artifact

\[m_{MG} = (1 \text{ kg} + 324 \mu\text{g}) \pm 14 \mu\text{g} \]

The difference between this value, and that determined on the watt balance is

\[m_{WB} - m_{MG} = 28 \mu\text{g} \pm 62 \mu\text{g} \]

No significant difference between the two measurement methods is observed. This demonstrates the utility of a watt balance for making direct calibration of the true mass of stainless steel mass artifacts, which are the most common type of standards employed for mass metrology.

Conclusion

The SI is poised for a major revision where the unit of mass will no longer be based on an artifact definition. The experiment described here illustrates that, as expected, a watt balance capable of measuring the Planck constant can be used effectively in a reciprocal mode, so that the realization of mass at the kilogram level is
possible. In this regard, the experiment provides a useful preview of the methods and issues that surround the planned revision of the definition of the SI unit of mass. The experiment highlights the close coordination that is required between artifact mass metrology and the more abstract realization of the unit of mass engendered by the watt balance experiment, particularly during this transition from one unit definition to the other. That both methodologies yielded here the same outcome should lend confidence to the notion that a new definition of mass based on defining constants can succeed. Moving forward, it is apparent that the coordination between artifact metrology and watt balance experimentation must persist. After all, artifacts calibrated through reference to defining constants using a watt balance will be the means of disseminating the unit beyond NIST. Such artifacts are fully compatible with the existing mass infrastructure, and, until such time as watt balance instruments proliferate and become commonplace, traceability to the handful of such realizations will be achieved as it has always been, through exchanges of artifact mass standards.

REFERENCES

THE CONSTRUCTION AND CHARACTERIZATION OF THE NIST-4 PERMANENT MAGNET SYSTEM

Leon S. Chao, Frank Seifert, Shisong Li,
Darine Haddad, Stephan Schlamminger, and Jon R. Pratt
Fundamental Electrical Measurements Division
National Institute of Standards and Technology
Gaithersburg, MD, USA

ABSTRACT

A watt balance is an electromagnetic force balancing instrument to realize the unit of mass at the kilogram level. The magnet system is one of the key components. Our group at the National Institute of Standards and Technology is currently building a next-generation, permanent-magnet driven watt balance, NIST-4. We describe the construction of the magnet system, characterization of the field profile, and adjustment methods used to achieve an ideal magnetic field profile. Although the absolute field strength is not critical, the uniformity of the magnetic flux profile through the air gap of the magnet is essential for a watt balance experiment.

INTRODUCTION

A redefinition of the International System of Units, the SI, is impending and may occur as early as 2018. Specifically, in the context of mass metrology, the base unit kilogram will be redefined in terms of Planck’s constant, severing its current ties to the International Prototype Kilogram (IPK). Currently, the NIST-4 watt balance is under construction and will be used to realize the unit of mass in the United States.

THE MAGNET SYSTEM DESIGN

The design of the NIST-4 magnet system was inspired by the BIPM watt balance group. Two opposing Sm$_2$Co$_{17}$ segmented rings are housed inside a 60 cm diameter 1021 steel yoke. The magnetic circuit guides the field such that an almost azimuthally uniform field permeates through a 3 cm wide, 10 cm tall air gap defined by the inner and outer yokes.

While NIST was responsible for the conceptual design of the magnet system, the manufacturing was contracted to Electron Energy Corporation (EEC) with a specified field strength of 0.5 Tesla and a “flat profile” uniformity of $\pm 0.01\%$, or $\Delta B_r/B_r < 2 \times 10^{-4}$. Sm$_2Co_{17}$ is used for the active magnetic material. In order to magnetize the Sm$_2$Co$_{17}$, each ring is broken up in 40 sectors. Each 1 kg...
segment was sintered and magnetized by a capacitor bank individually.

For each of the 80 segments, the flux characteristics were measured and recorded. The position of every segment was then carefully chosen such that the resulting azimuthal and orthogonal fields were as similar as possible. Post-assembly measurements indicated the two magnet disks were within 0.2% of each other.

To facilitate the assembly process and to control the repulsive forces between segments, vacuum compatible epoxy was used to secure the magnet segments to the inner yoke plate while a steel retaining ring constricted them radially. A precision ground inner and outer yoke are bound by two identical outer yoke lids, providing the closed magnetic field circuit. Twelve holes on the top and bottom face allow access for hanging an inductance coil inside the precision air gap.

In order to insert the coil, a magnet splitting device was designed. Such a contraption must be able to constrain the unstable state once the magnet has been split and maintain vertical alignment. Each of the four 5 cm diameter steel guide rods is coupled with a frelon-coated linear bearing. The top and bottom yokes are bolted to the magnet splitter frame. Cranking a synchronized set of twin 1/64 gear reducers slowly rotates two lead screws, gradually separating the magnet and providing access to the internal air gap.

METHODS OF CHARACTERIZATION

Two methods were implemented in searching for an unwanted vertical magnetic flux gradient in the air gap: a hall probe and a gradiometer coil (GMC). Both EEC and NIST conducted initial independent hall probe measurements by scanning an 80 mm vertical sweep through each of the 12 access holes (Lakeshore MMZ-2518-UH and HMMT-6704-VR for the EEC and NIST system, respectively). EEC conducted similar hall probe measurements on two different days spaced 1.5 weeks apart (Fig. 4). They measured each access hole at 7 different heights inside the air gap. We measured each access hole continuously by attaching the hall probe to a motorized vertical translation stage.

The gradiometer coil, mean diameter of 433 mm, consisted of two concentric coils wound in series opposition. They are displaced vertically but wound on a single former. A motor driven translation stage moved the coil through the air gap at a constant 2 mm/s. One voltmeter measured the induced voltage of one coil, another the difference, which was used to calculate the gradient of the radial flux density along the vertical.

All four measurements were in good agreement, with their mean values differing by about 4 mT (< 8 parts per thousand) (Fig. 4). Each data point is comprised of averaging all 12 holes at the specified z location. The field slopes are all

FIGURE 3. Exploded view of the magnet system. The 1021 steel yokes are shaded in light grey and the Sm2Co17 disks are comprised of 40 individually magnetized wedges. The centering tubes are made from stainless steel and their purpose is to keep all the internal components concentric. Dowel pins maintain outer yoke alignment and steel screws lock the assembly together. Stainless steel retaining rings constrain the magnet wedges in the radial direction.

FIGURE 4. EEC and NIST hall probe/gradiometer coil measurements after the initial assembly. All four measurements indicate an approximate -13 µT/mm gradient.
approximately -13 \mu T/mm, about a factor of 10 larger than the desired field uniformity. These initial measurements also indicate a variation in the radial flux density of at least 1 mT, failing the requirement of \(\Delta B_r/B_r < 2 \times 10^{-4} \). Hence, field profile tuning adjustments were necessary.

FIELD PROFILE ADJUSTMENT

Two methods were attempted to fine-tune the field profile: (1) regrinding the outer middle yoke to make a 0.05 degree taper of the air gap geometry, and (2) introduce a tilt separation between the top two-thirds and bottom third of the magnet to increase the reluctance in the bottom yoke.

FIGURE 5. These data points represent the magnetic field measured with the hall probe and gradiometer coil before and after regrinding.

REDGRINDING THE OUTER YOKE

The method of regrinding the outer middle yoke (part number 2 in Fig. 1) was to add a slight taper to the air gap such that the top gap is nominally 3.000 cm wide and the bottom is 3.008 cm wide. After regrinding, EEC measured again the field profile to discover the grinding process overshot by 50%, resulting in a slope change from -13 \mu T/mm to +7 \mu T/mm. The outer middle yoke was sent back for a second regrinding, this time with the instruction to grind the gap with a less aggressive taper, 3.003 cm at the top and 3.008 cm at the bottom. This procedure failed to indicate any change; the first grinding and the second grinding showed the same gradient. Fig. 5 shows the results of the initial assembly, the first grinding and the second grinding.

From this, we decided to abandon the hall probe measurement setup. It is likely that the translation of the hall probe(s) were not purely vertical and/or nonlinear. For example, if the measurement setup was to blame, the “vertical” probe trajectory would only need a parasitic horizontal component of 0.24 mm over a path length of 80 mm to measure a 7 \mu T/mm gradient. While the probe was certainly positioned better than 1 mm in the center of the gap, an accuracy of 0.2 mm could not be ensured. After the second regrinding, another GMC measurement was taken, showing a -3.5 \mu T/mm gradient [2].

SEPARATION METHOD

Since the grinding process proved ineffective, other options were explored. A separation method was implemented, i.e. a gap between the bottom third of the magnet and the top two-thirds was introduced. We found that a flat profile was achieved when the separation was approximately 0.5 mm high. A stable and uniform azimuthal air gap can be maintained by inserting aluminum shim stock pieces at several azimuthal locations.

This separation increases the reluctance in the lower yoke. Hence, the lower Sm2Co17 magnet contributes less flux to the radial field through the precision air gap. While this azimuthal air gap helped achieve the desired flat profile, it also introduced a physical connection to the outside environment, allowing flux to leak out of the magnet, compromising the shielding.

During this experimental process, we noticed that the field profile slope changed by a few \mu T/mm every time the magnet was split and closed. The variability of the slope arose from non-parallel splitting, i.e. the magnet pieces initially tended to tilt before completely breaking contact. In this case, the lower part of the yoke touches the upper part on one localized spot along the edge. This redistributes the flux and concentrates it through the contact area, essentially walking the BH curve to the right and decreasing the relative permeability, \(\mu \). Even after the magnet is closed, it maintains a state of smaller relative permeability due to the hysteretic behavior of the BH curve. Hence, in the closed state the bottom yoke conducts the magnetic field worse and the flux in the gap is lowered [2].
However, this new phenomenon proved beneficial for tuning the field and a procedure was developed. (1) The magnet is opened by a little more than 1mm. (2) A 0.5 mm thick shim piece with a size of approximately 5 cm by 5 cm is inserted in the 1mm gap at an azimuthal position \(\alpha \). (3) The magnet is closed. Due to the shim, the magnet closes in a tilted fashion and the iron at the azimuthal position \(\alpha + 180^\circ \) is driven to the state with less relative permeability. Steps (1) through (3) are performed a total of six times, where the azimuthal position is advanced by 60\(^\circ\) every time. After this, the iron remains at the less permeable state for the entire circumference. [1]

This shimming process is repeatable. We were able to reproduce the shimming procedure several times, yielding an almost identical field profile each time (Fig. 7).

FIGURE 7. Radial flux density as a function of vertical position. The dashed line shows the effects of introducing a small tilt separation.

SHIMMING METHOD APPREHENSIONS

We have two concerns using this shimming method: How stable is the field obtained with this method? Does this process change the azimuthal symmetry of the field? We monitored the field profile for 3 days, taking data every 30 minutes and found the flux density drift in the center of the air gap to be about \(2.5 \times 10^{-10} \) T/h, or 0.5 parts per billion per hour. This is enough stability for a watt balance experiment where the flux integral is measured once per hour [2].

The azimuthal variation in the field symmetry proved harder to measure. This can only be done by measuring discrete points around the air gap, meaning the gradiometer coil would be obsolete since it measures the azimuthal integral. Using the hall probe, however, requires precise positioning. Due to the outer yoke design of the magnet, the air gap can be accessed through 12 discrete holes, the middle region of the air gap being 22.5 cm from the top surface. The hall probe must not only be able to reach this location but also be reproducibly inserted in all 12 holes. For example, a 1 mm deviation in the middle of the gap results in a 2.3 mT change. The measurements before and after magnet shimming indicated a similar maximum difference of 1.5 mT. Thus, it is unknown whether or not the uncertainty arises from field inhomogeneity or hall probe positioning error.

CONCLUSION

Both shimming methods have allowed us to achieve the desired field profile uniformity of .01%
(50 uT) over a 50 mm tall section of the air gap. In the end, we chose to shape the field with the method of alternating opening/closing tilt shimming because of higher repeatability and maintaining a closed magnet system.

The magnet has recently been installed in our watt balance. Most of the mechanics of the new watt balance have also been mounted on top of the magnet, inside the vacuum chamber. A handful of velocity mode (the calibration mode of a watt balance experiment to characterize the magnetic field) measurements have already been conducted but no further investigation has been done for uniformity changes. Since uniformity is a larger factor in the weighing mode, we will revisit this topic when we begin taking weighing mode measurements.

REFERENCES

FABRICATION OF THE MAGNETIC CIRCUIT FOR THE BIPM WATT BALANCE

Jan M. Ellinghaus2, Dave Arneson3, Christian Brecher2, Adrien Kiss1, Byron Knapp3, Thomas Lavergne1, Michael Stock1, Christian Wenzel2
1International Bureau of Weights and Measures (BIPM), Sèvres, France
2Fraunhofer Institute for Production Technology (IPT), Aachen, Germany
3Professional Instruments Company, Hopkins, Minnesota, USA

INTRODUCTION
Since 1889 the International Prototype of the Kilogram, kept at the BIPM, had served as the definition of the unit of mass in what is now known as the International System of Units (SI). It is the last material artefact to define a base unit of the SI, and it influences several other base units. This situation is no longer adequate in a time of ever increasing measurement precision.

It is therefore planned to redefine the unit of mass by fixing the numerical value of the Planck constant \cite{1,2}, similar to the present definition of the metre, which is based on a fixed numerical value of the speed of light. To ensure that the redefinition does not introduce a discontinuity in the magnitude of the kilogram, as a first step, a highly accurate determination of the Planck constant in the present SI system needs to be carried out, with a relative uncertainty in the order of 1 part in 108.

The most promising experiments for this purpose are the watt balance \cite{3} and the X-ray crystal density technique \cite{4}. A watt balance is an electromechanical apparatus which compares mechanical and electrical power and makes use of two macroscopic quantum effects, the Josephson effect and the quantum Hall effect, thus creating a relationship between a macroscopic mass and the Planck constant. The BIPM is developing a watt balance to ensure that in future the unit kilogram can be derived from the Planck constant.

In the BIPM watt balance a current-carrying coil is placed in the circular air gap of a magnetic circuit (\textit{FIGURE 1}). The sources of magnetic flux are two disks of Sm\textsubscript{2}Co\textsubscript{17} magnets (number 9 in \textit{FIGURE 2}), with opposite direction of magnetization. A closed yoke (numbers 1, 2, 3 and 4 in \textit{FIGURE 2}) made of a high permeability Fe-Ni alloy (Supra 50, ArcelorMittal) is used to concentrate the flux and to shape the radial magnetic field within the air gap, where the coil will be placed. The mean diameter of the air gap is 250 mm, its width is 13 mm and the height is 80 mm. The flux density in the centre of the air gap is 0.5 T.

An important requirement for the watt balance operation is that the flux density in the air gap is highly constant in the vertical direction, which requires that the width of the air gap is uniform to within several micrometers. In addition, the outer and inner poles shall be centered to better than 50 micrometers. This requires machining tolerances at the level of 1 micrometer and the use of a dedicated assembly device, capable of accurately positioning the parts in the presence of very large magnetic forces, up to 10 kN.

\textit{FIGURE 1. Magnetic circuit for the BIPM watt balance with magnetic flux lines. The system is rotationally symmetric around the vertical axis.}

From the manufacturing point of view this results in several critical parts determining the overall accuracy of the assembly and thus the feasibility for the experiment. The high permeability Fe-Ni alloy furthermore challenges the machining equipment since experience with this material is
The housing (number 1 in FIGURE 2), a bucket-like part about 350 mm in diameter and 300 mm in height, contains cylindrical and planar surfaces on the inside and outside with specified flatness and cylindricity as well as concentricity of a few micrometers. The core (number 2 in FIGURE 2) is a cylinder of Supra 50 iron-nickel soft magnetic alloy, 110 mm tall and 240 mm in diameter. It has to be cylindrical to better than 1 micrometer with perpendicular and planar top and bottom surface. The cover segments (numbers 3 and 4 in FIGURE 2) additionally contain angular surfaces specified to the same accuracy level.

FIGURE 2. Cross section of the BIPM watt balance magnet.

PRECISION MANUFACTURE

The critical components of the watt balance are made of Supra 50, a magnetically soft iron-nickel alloy with a density similar to steel but a coefficient of thermal expansion 30-40% less than typical carbon steel. The two components forming the nominally Ø250 mm circular air gap must have micrometer-level cylindricity and the larger of the two has a mass of 90.8 kg. To achieve this level of precision in such heavy parts, manufacturing skills, tools, and techniques were leveraged that were developed over 50 years of air bearing spindle manufacture. Instrumental to that effort is the retrofit of all of the grinding machines at Professional Instruments with compact ultra-precision air and oil hydrostatic spindles. Furthermore, on-machine gaging enables process monitoring and correction without removing the part from the machine. A bespoke indicating micrometer features a diamond lower anvil held in contact by a parallel flexure that also maintains vertical alignment of the metrology frame. A CEJ Mikrokator with a diamond tip measures displacement with 0.25 µm resolution. However, this measurement alone is not sufficient to certify cylindricity and perpendicularity. Independent verification of cylindricity required measurement of roundness, straightness, and perpendicularity using a roundness tester built upon a Moore No. 3 Universal Measuring Machine. Final diameter measurements were determined with a Zeiss Contura G2 CMM in a controlled environment while monitoring and correcting for thermal expansion. The estimated cylindricity from the combination of these measurements was 0.6 µm for the Core OD and 1.4 µm for the Housing ID.

QUALIFICATION OF SINGLE COMPONENTS

Successful application of the watt balance magnet requires highly accurate parts to allow for high accuracy of the assembled system. Specified form, shape and dimensional tolerances in the range of the nominal accuracy of conventional measuring equipment at parts of up to 90 kg require for special measuring procedures. Despite on-machine gaging and documented dimensional accuracy, independent measuring of the shape tolerances with different equipment was performed to enhance reliability of the measuring results.

Dimensional tolerances are less strict and were controlled using a CMM. Checking shape accuracy the second time was done with an adapted UP-machine tool. Work piece weight, shape and size did not allow application of standard measuring equipment. Even though ultra-precision machine tools are known to provide high accuracy linear and rotary axes and motion, the real accuracy was verified directly before the measurements. Linearity and parallelism as well as perpendicularity of the axes x, z and c were checked (FIGURE 3).
Accuracy of the single linear and rotary axes as well as their alignment was verified using capacitive sensors in combination with ultra-precision machined references. To eliminate influence of topology errors of the references reversal method and back-and-forth measurement were applied. Subsequently, cylindricity, flatness and perpendicularity of the single parts were measured using capacitive sensors with a setup comparable to conventional roundness testers, see FIGURE 4. Cylindricity was calculated from several roundness measurements along the cylindrical surface. Measuring the bottom surface in the same setup allowed for the calculation of flatness and perpendicularity. The measured results were in the range of the ones stated above and the good dimensional accuracy and form accuracy was verified.

FIGURE 3. Verification of feasibility of ultra-precision machine tool for detection of form tolerance.

FIGURE 4. Measuring of housing: flatness (top), cylindricity (right).

QUALIFICATION OF THE ASSEMBLY
Besides accuracy of the main parts, accuracy of several other parts as well as the assembly process influence the accuracy of assembly. Gap width in axial direction had to be constant to below 3 µm in a depth of 65 to 145 mm. Placement of core to housing is most critical since this determines constancy of gap width. The core is not placed directly on the lower magnet disk (parts 9, 10, 11 in FIGURE 2) but is supported by three titanium columns (one visible on FIGURE 2 as part 5) of nominally equal length. Thus, especially gap width was verified after a test assembly, without the magnets in place, before final assembly of the complete system.

For verification measurements, fiber-optic systems, flat eddy current sensors and capacitive sensors were discussed. Parallel detection of the inner and the outer surface of the gap instead of successively measuring and subsequently calculating the deviations was identified to be beneficial. Influence of straightness inaccuracies of the linear axes, positioning inaccuracies and vibrations as well as thermal influences could thus be reduced. A schematic of the measuring setup is given in FIGURE 5. Besides the length of the sensor, especially a slim design of the sensor head had to be realized.
Two capacitive sensors facing opposite directions with a nominal resolution of < 80 nm were selected. They offered the best compromise between achievable accuracy, size and cost. Measuring against the curved surfaces of housing and core did not harm accuracy since D >> d (D: diameter of core; d: measuring spot). A trial assembly, replacing the magnets with unmagnetic placeholders could thus be carried out. At every 30° the gap was controlled three times to ensure unbiased measurements (example see FIGURE 6). The sensor was moved with a motorized translation stage at constant velocity. The vertical variations in the central part of the air gap were well below 1 micrometer.

FIGURE 5. Alignment of capacitive sensors for detection of gap width between inner and outer magnetic poles.

FIGURE 6. Gap measurement: setup (above) and example measuring result (below)

ASSEMBLY OF THE MAGNETIC CIRCUIT
A special assembly device had been developed to accurately position the parts. A particular difficulty was the strong magnetic attraction of up to 10 kN between the magnets and the soft iron parts, which required a very stiff structure. FIGURE 7 shows the process of assembling the core with one of the magnet disks. The magnet disk (grey) is solidly fixed to an aluminum plate. The core (dark green) is placed on three titanium rods (blue) which are gently moved downwards by a manually operated gear system below the aluminum plate. A central, closely fitting 40 mm diameter titanium column (green) served in guiding the parts. After contact, the parts stick together due to the magnetic attraction.

FIGURE 7. Assembly of the core (dark green) with one of the two magnet disks (grey).
FIGURE 8 shows the insertion of the core and the two magnet disks into the bucket-like housing.

A particular difficulty consisted in finding the right compromise for the diameter of the central titanium alignment column: not too small to guarantee good centering, and not too large to avoid blocking of the parts. A nominal gap of 10 \(\mu \text{m} \) was finally chosen and the column was lubricated with graphite.

After the assembly, the geometry of the air gap was verified with the double capacitive sensor described above. It was found that at different angular positions, the gap width was uniform to within 2 \(\mu \text{m} \) over the central 30 mm. The poles were centered to within 10 \(\mu \text{m} \). Both are within specifications and the magnet is now inserted into the BIPM watt balance apparatus.

REFERENCES

INTRODUCTION
This paper gives an overview of the vibration isolation and positioning platform used in Advanced LIGO to support the interferometer's core optics [1-2]. The design of this system is based on the architecture of the platform used during the prototyping phase [3]. This five-ton two-and-half-meter wide system operates in ultra-high vacuum. It features two stages of isolation mounted in series. The stages are imbricated to reduce the overall height. Each stage provides isolation in all directions of translation and rotation. The system is instrumented with a unique combination of low noise relative and inertial sensors. The active control provides isolation from 0.1 Hz to 30 Hz. At the LIGO sites, it brings the platform motion down to $10^{-11}\sqrt{Hz}$ at 1 Hz. Active and passive isolation combine to bring the platform motion below $10^{-12}\sqrt{Hz}$ at 10 Hz. The passive isolation lowers the motion below $10^{-13}\sqrt{Hz}$ at 100 Hz. The next sections give an overview of the system's architecture, control strategy, design features and isolation results. A detailed presentation of all those aspects is given in [4-5].

SYSTEM OVERVIEW
A conceptual representation of the two-stage system is shown in Fig. 1. It represents the structure and the spring components in a schematic section view. Actuators and sensors are not displayed. The system is made of three main sub-assemblies: a base called “Stage 0” and two suspended stages called “Stage 1” and “Stage 2”. The stages are imbricated to minimize the volume occupied. The bottom plate of Stage 2 is the optical table on which the Advanced LIGO equipment is mounted. Stage 1 is suspended from Stage 0, and Stage 2 is suspended from Stage 1. The spring assemblies provide horizontal and vertical flexibility. They are symbolically represented by helicoids. The springs decouple the stages from each other in all directions of translation (called Longitudinal, Transverse and Vertical in Fig. 1) and all directions of rotation (called Pitch, Roll and Yaw in Fig. 1). The system is designed to minimize the cross couplings between degrees of freedom. In each direction, the system behaves as a two-mass-spring system.
CONTROL STRATEGY OVERVIEW

Stage 1 and Stage 2 are controlled actively. Each of the twelve degrees of freedom are controlled independently. Fig. 2 shows the feedback control block diagram for a single degree of freedom, where X_n is the degree of freedom under control. The subscript value n can be 1 for Stage 1, or 2 for Stage 2. The stage motion X_n is disturbed by the input motion X_{n-1} through the seismic path called P_s. It is controlled with the force F_x through the force path called P_F.

The components of this block diagram are summarized in Eq. (1) to (4), assuming that the absolute measurement (U_a) and relative measurement (U_r) are calibrated in displacements units. This is done practically using digital filters inverting the instruments frequency response. Equation (1) gives the stage motion as a function of the input motion (disturbance) and the control force. Equation (2) gives the control force as a function of inertial measurement (U_a) and the relative measurement (U_r). Equations (3) and (4) introduce the sensor noise. To simplify the control design, the low-pass and high-pass filters are designed to be complementary [6], as shown in Eq (5). Equation (6) gives the closed loop power spectral density (X_n^2) assuming the input motion and the sensor noises are uncorrelated. The first term shows the contribution of the input stage motion (X_{n-1}). The second term shows the contribution of the absolute (inertial) motion sensor noise (N_a). The third term shows the contribution of the relative motion sensor noise (N_r). Assuming large loop gain in the control bandwidth, the amplitude spectral density can be written as shown in Eq. (7). The input motion contribution is filtered by the low-pass filter L. Therefore, the lower the cutoff frequency the better for the isolation, but the high pass-filter H and low-pass filter L must also be adequately designed to minimize the sensor noise contribution. The optimization consists of designing complementary filters that provide both adequate isolation and filtering of the instrument’s noise.

$$X_n = P_s X_{n-1} + P_F F_x$$ \hspace{1cm} (1)

$$F_x = -C (H U_a + L U_r)$$ \hspace{1cm} (2)
The base of the system (Stage 0), the first suspended stage (Stage 1) and the second suspended stage (Stage 2) are shown in grey shades in the Computer Aided Design (CAD) representation in Fig. 3. The picture shows how Stage 1 and Stage 2 are imbricated to reduce the system's volume.

![FIGURE 3. Two-stage isolator](image)

Stage 1 is suspended from Stage 0 using three sets of blades and flexures. Stage 2 is suspended from Stage 1 using three sets of blades and flexures similar to those used between Stage 0 and Stage 1. The blades are designed to provide the vertical flexibility, and the flexure rods are designed to provide the horizontal flexibility. A cross section of the Stage 0-1 spring assembly is shown in the CAD representation in Fig. 4.

![FIGURE 4. Flexure components](image)

The two stages' mass, inertia properties, and the spring's stiffness are chosen to obtain suitable rigid-body natural frequencies. They must be low enough to provide adequate passive isolation, but the springs must not be too compliant so that the system remains easy to commission and operate. LIGO experience acquired during prototyping of vibration isolation systems showed that rigid-body natural frequencies in the 1 Hz to 7 Hz range provide an excellent compromise.

To reduce the complexity of the control strategy and to facilitate operation, the two-stage system has been engineered to minimize the couplings between the degrees of freedom in the Cartesian basis. The spring components have been designed to obtain in-phase rigid-body modes in the 1 Hz to 2 Hz range (the two masses moving in phase at the resonance), and out-of-phase rigid-body modes in the 5 Hz to 7 Hz range (the two masses moving out of phase at the resonance).

For the active control, six coarse (high force) electromagnetic actuators are used between the base and Stage 1. Six smaller fine (low force) electromagnetic actuators, are used to actuate between Stage 1 and Stage 2. Stage 1 is instrumented with three different sets of sensors:

- 6 MicroSense (formerly ADE technologies) capacitive position sensors between the base and Stage 1, called "coarse". They are used for low frequency relative positioning.

- 3 Trillium T240 seismometers: these 3-axis seismometers provide the low frequency inertial
measurements necessary to provide active seismic isolation.

- 6 Sercel L-4C geophones: these single-axis seismometers provide the high frequency inertial sensing necessary to provide active seismic isolation at higher frequencies.

Stage 2 is instrumented with two different sets of sensors:

- 6 MicroSense capacitive position sensors between Stage 1 and Stage 2, called "fine". They provide the low frequency relative positioning.

- 6 Geotech GS-13 seismometers: these single-axis seismometers provide the inertial sensing needed for active seismic isolation.

The horizontal actuators are positioned with respect to the spring assembly and the stage center of mass to minimize the cross couplings between horizontal and tilt motion. The magnets are positioned in pairs of North-South and South-North dipoles to reduce the magnetic field which escapes the actuator assembly. The actuator has a return yoke to minimize the escaped magnetic field which can interfere with the sensitive equipment surrounding the platform. Relative sensors and actuators are collocated as shown in Fig. 5.

In order to be used in ultra-high vacuum, each seismometer is mounted in a sealed chamber, as shown in Fig. 6. The chamber is custom-made for this application. It is made of Stainless Steel 304. The welded parts are subjected to a thorough leak-check process to validate the fabrication. For this test, the chamber is filled with Helium, and subjected to a RGA scan. For the final assembly, the pod containing the instrument is filled with Neon, which is used as a tracker for leak detection during operations. Additionally, each pod is instrumented with pressure sensors to help identify a faulty pod in case of a leak.

The curves in Fig. 8 show transfer functions from a force (or torque) applied on Stage 1 to the motion of Stage 2. Sensors and actuators are combined to drive and sense the degrees of freedom in the Cartesian basis. Active inertial damping is used damp the rigid-body mode resonances. The transfer functions are normalized by the Stage 0-1 spring stiffness so that the DC response is equal to unity.

The plot shows the responses in the longitudinal and yaw directions. The dashed curve shows...
the transfer function from a torque applied along
the yaw axis, to the rotation motion around the
same axis. The solid curve shows the transfer
function from a force applied along the
longitudinal axis, to the translation motion along
the same axis. These measurements show that
the slope above the natural frequencies is
function of the fourth power of frequency. Both
curves are under -40 dB of magnitude at 10 Hz,
and under -120 dB of magnitude at 100 Hz.
Similar results are obtained for all degrees of
freedom.

The solid curve shows transmissibility from
Stage 0 to Stage 2 in the longitudinal direction.
The low frequency performance achievable in
this direction (and in transversal) is limited by tilt
horizontal coupling. At low frequency (around
100 mHz and below), the signal is dominated by
tilt rather than horizontal motion [7-8]. In this
example, the filters are tuned to provide 55 dB of
attenuation at 1 Hz.

FIGURE 8. Force Driven Transfer Function

Fig. 9 shows transmissibility measurements. All
of the degrees of freedom are under control as
described in the control section. Hydraulic
actuors are used to drive Stage 0 motion.
Geophones mounted on the structure supporting
Stage 0 are combined to estimate the input
motion in the Cartesian basis. The inertial
sensors on Stage 2 are used to estimate the
output motion along the direction of the drive.
Transmissibility measurements are performed in
all directions of translation and rotation. Fig. 9
shows the transmissibility up to 15 Hz. Above
those frequencies the frame supporting Stage 0
deforms. Consequently, the sensors mounted on
this frame do not provide an accurate
measurement of the input motion.

The dashed curve shows transmissibility from
Stage 0 to Stage 2 in the yaw direction. The
controllers are tuned to provide approximately
20 dB of isolation at 1 Hz. Further isolation can
be obtained for this degree of freedom but it is
often not necessary (ground yaw motion is
typically small, and sensor the signal is often
close to sensor noise).

FIGURE 9. Transmissibility

Fig 10 presents the platform's absolute motion
performance. A Streickeisen STS-2 is used to
estimate the translational absolute ground
motion in the longitudinal direction. The inertial
sensors on Stage 2 are used to estimate the
rigid body motion of the platform's output in the
same direction.

The ground motion is shown by the solid line,
the Advanced LIGO requirements are shown by
the dash-dotted line, the inertial sensor
theoretical noise is shown by the dotted line, the
platform's motion measurement is shown in by
the dashed line.

Up to 20 Hz, the platform motion is at or below
the requirements. Above 20 Hz, the platform
motion is very close to requirements. The small
mismatch with requirements is inconsequential
since seismic motion will not dominate the
interferometer noise at those frequencies (the
initial requirements included sufficient margin for
such mismatch).

In the mid-band frequency [0.5 Hz to 10 Hz], the
measurement is at or under the sensor noise.
The portion of the curve under the sensor noise
over-estimates the actual performance since
those sensors are in loop. An out of loop witness
sensor would be necessary to evaluate
accurately the absolute motion in the frequency band. In-loop measurements under the theoretical sensor noise, however, indicate that there is room to sustain larger input motion and still maintain similar isolation performance. In this measurement done during the summer time at Hanford, the input motion was near \(10^{-9} \text{ m/} \sqrt{\text{Hz}}\) at 1 Hz. Measurements show that the motion at Livingston during the winter time can be more than 10 times larger. For such input, the output motion would still be near or slightly above the sensor noise. These results indicate that the two-stage system should operate at or near requirements at most times.

FIGURE 10. Absolute Motion Measurements

CONCLUSION

An extensive engineering effort has been led during the past several years to develop the final version of the two-stage vibration isolation system for the Advanced LIGO observatories. The goal was to engineer a system not only to meet very high performance criteria, but also suitable for timely production, assembly, testing and commissioning for a series of 15 units. This paper gave an overview of the system’s design, control strategy and isolation results.

During the past two years, 13 units have been assembled and tested. The last two units are under construction and will be completed by the end of 2014. All the units tested show extremely reproducible results and characteristics. Five units are currently in use at each of the LIGO observatories and performing at the very high level of isolation required for Advanced LIGO. Detailed information regarding the design, prototyping, and production of these platforms can be found in [4-5].

ACKNOWLEDGMENTS

LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the National Science Foundation and operates under cooperative agreement PHY-0107417. This document has been assigned LIGO Laboratory document number LIGO-P1400137.

REFERENCES

INTRODUCTION
A Coriolis mass flow meter (CMFM) for small mass flows, as presented by Mehendale [1,2], is limited from measuring more accurately due to vibration disturbances introduced through the device's frame as shown by Van de Ridder [3]. Considerable improvement in measurement performance is expected from the application of passive and active vibration isolation strategies. Using feedback control, an attenuation of 42 dB of translational disturbances is expected [4]. Where the field quantity definition of dB used, i.e. \(\text{value}_{\text{dB}} = 20 \log_{10}(\text{ratio}) \)). The component of the CMFM that needs to be isolated from disturbances is the tube window (see figure 1).

This fluid-conveying tube is actuated in oscillation around the actuation-axis. A fluid flow in this oscillatory rotating tube results in a Coriolis force induced motion around the Coriolis-axis in the order of sub nanometres for the lowest flow range. A mixed signal of the actuation- and Coriolis-deflection is measured at the sensing locations, where the phase difference of both sensor measurements is linearly dependent on the mass flow, as derived by Mehendale [1].

This work extends the mentioned research with the design, modelling and validation of an active vibration isolation system that serves as a proof of principle for multiple vibration isolation strategies. The designed system is experimentally validated and active vibration isolation by means of a feedback control scheme is tested. In this paper, the design of the system is discussed, followed by the properties obtained from a dynamic model. An attenuation of the main source of disturbance by 50 dB is expected theoretically. With implementation of the same feedback scheme, an attenuation of 48 dB is obtained experimentally. The work concludes with a discussion of the presented system and results.

CONCEPT DESIGN
Disturbances introduced through the device’s frame can cause a measurement error. This occurs when the tube experiences motion similar to the Coriolis-deflection at the sensor locations. When this motion is around the measurement frequency of 170 Hz it will be indistinguishable from fluid flow and result in a measurement error. The two main contributors to this error are a translation perpendicular to the tube plane (z-direction) and a rotation around any axis parallel to the Coriolis-axis (x-axis) (see figure 1) as derived by Van de Ridder [5]. So the active vibration isolation system should isolate the tube window and its actuation and sensing components, together called the measurement stage, in both these directions from frame disturbances. Furthermore, the setup will be used to test if the tube window can be actuated by rotation of the tube’s socket about the actuation-axis (y-axis),

Isolation from frame disturbances by means of feedback control is achieved in two steps. First, the measurement stage is suspended. The suspension provides passive vibration isolation above its resonance frequency (called suspension frequency in the following). The term suspension is used for a support with a designed stiffness significant to the involved dynamics. A suspension frequency of 30 Hz was determined by internal research as a lower...
bound for sufficient mechanical properties when the device is unpowered and the control is deactivated. Second, a controller is designed in conjunction with sensors and actuators to close a feedback loop, providing active vibration isolation. This loop has the advantage that the suspension frequency can be lowered virtually, without compromising the low frequency behaviour of the system. Acceleration feedback is used with proportional and integral (PI) control action to add virtual mass and skyhook damping, respectively, to the system [6]. This concept is illustrated for a single dimension in figure 2, where the spring with stiffness k forms the suspension. The measurement stage is represented by the mass, m. Its acceleration, a_1, is measured and used by a feedback controller, C, to produce an actuation force, F, that reduces the influence of the frame disturbance acceleration, a_0, on the measurement stage.

The designed vibration isolation system is shown in figure 3. It consists of the measurement stage components (with all but the tube window omitted for clarity) mounted on a measurement frame. This measurement frame is mounted on a three degrees of freedom suspension (see figure 4), constraining three dimensions, while the other three dimensions are controlled by three voice coil actuators and three acceleration sensors. A degree of freedom (DOF) is an independent absolute or relative motion within the system describing relevant system motion. The three DOF not constraint by the suspension are the z-direction translation and rotations around the x- and y-axes. These are the first three eigenmodes of the suspension. All suspension frequencies are designed close to 30 Hz to keep the suspension design symmetric. The three actuators and sensors are used to close the feedback loops in the z-translation and x-axis rotation to provide active vibration isolation. The third DOF (the y-axis rotation) is used for the aforementioned measurement actuation.

With this setup it is also possible to investigate if it is sufficient to suspend and actively isolate only one direction, resulting in a more efficient solution. By attaching one or both optional constraints at the sides of the setup (see figure 3), the measurement frame can be constraint in its rotation about either or both the x- and y-axis in the suspension plane, reducing the system's number of DOF. The optimum configuration being a research objective. It might be possible that one of the frame disturbances, a translation in y-direction, can cause significant unwanted motion in the tube window. Therefore an interchangeable four DOF suspension (see figure 4) is created to convert the setup into a three DOF active isolation setup with one passively suspended DOF.

![Figure 2](image1.png)

FIGURE 2. Dynamic model of suspended measurement stage (right block) with active feedback vibration isolation (left block).

![Figure 3](image2.png)

FIGURE 3. Solidworks® model of the active vibration isolation setup with optional constraints and simplified measurement stage.

![Figure 4](image3.png)

FIGURE 4. Solidworks® models of the 3 DOF suspension (left) and alternative 4 DOF suspension (right).
MODELING
The entire setup has been modelled using the non-linear finite element flexible multibody software package SPACAR [7]. This model (see figure 5) is used to obtain equations of motion for suspension design and transfer functions for control synthesis.

MODEL RESULTS
The three DOF have a suspension frequency between 30 and 33 Hz. The alternative four DOF suspension has an additional DOF in the y-direction, which is left passively suspended with a frequency of 34 Hz. The optional constraints are omitted in the rest of this work and will be used for future research.

Of primary interest is the transfer function from six (three orthogonal translations and three orthogonal rotations) frame acceleration disturbances to the tube window Coriolis-displacement at the sensing locations. This is called the transmissibility and it has six inputs and one output, thus it is a multiple-input single-output (MISO) system. As mentioned, the tube window displacement is mainly influenced by two measurement stage directions. Without taking the tube dynamics into account, the transmissibility of interest is thus the multiple-input multiple-output (MIMO) transfer function from the same six inputs to two stage acceleration measurements. These are the acceleration signal of the top sensor, a1,1 and the mean of the bottom sensors, a1,II, (see figure 5). These signals are a combination of the z-translation and x-axis rotation. From the new transmissibility only three frame accelerations appear to be significant due to symmetry, being a translational disturbance in z-direction, a translation in y-direction and a rotation around the x-axis. The other directions already have an influence below -100 dB. So only the three main transmissibility directions are considered when evaluating the performance of the setup.

For control synthesis the transfer function from actuator forces to measurement stage accelerations is required. This is called the plant and this transfer function has three inputs and three outputs. This transfer function has non-zero off-diagonal elements and thus coupling of every input to every output, where for control purpose it is desirable to have a diagonal matrix.

The plant transfer function can be decoupled by using the eigenvectors obtained from an eigendecomposition according to Owens [8]. This results in a predominantly diagonal transfer function matrix where influence of the off-diagonal elements is about 30 to 40 dB lower across the frequency region of interest. Three independent SISO plants remain for which three SISO controllers can be designed. The third decoupled plant direction is the transfer function from actuator input to sensor output that corresponds to the third DOF of the suspension, a rotation about the y-axis. In this direction no feedback loop will be closed as this DOF was only included to test tube window actuation. On the other two directions acceleration feedback will be applied. The applied SISO controllers consist of the aforementioned PI control together with three loop shaping filters. These add to the performance and stability of the feedback system. The additional filters used are a second order high-pass filter to limit actuator saturation, a second order low-pass filter to increase attenuation at the actuation frequency of 170 Hz and an zero at the crossover frequency of 300 Hz to increase stability. The parameters of the PI controller are calculated from performance requirements (lowering of the suspension frequency and adding damping) and the respective SISO plant transfer functions.

The three main transmissibility directions are shown in figure 6 for the reference, passive and active systems. The reference system is an unsuspended measurement stage, in which a y-translation has no influence on z-translation or x-axis rotation of the measurement stage. It can be seen that the attenuation at the measurement...
EXPERIMENTAL RESULTS
The experimental setup consists of the suspended measurement stage, resembling the modelled setup of figure 3 when the optional constraints are omitted and the measurement stage components are added. This is mounted on a six DOF shaker platform used to supply external vibrations. An identification of the dynamics of this setup is performed over the frequency region between 5 and 2000 Hz by a modal analysis based on the method outlined by Tjepkema [9]. This results in three estimated decoupled SISO plants (shown in figure 7), similar to the plant obtained from the model and decoupling strategy. The main resonance frequencies in these transfer functions correspond to the three suspension frequencies, realized in the region between 25 and 34 Hz. An additional real pole is identified in each transfer function, originating from the (unmodelled) actuator induction. An internal mechanical mode is estimated at 282 Hz in one of the decoupled directions and in another directions an internal mode at 845 Hz is identified. Finally phase lag resulting from accelerometer signal filtering and digitization can be observed.

Based on the identified SISO plants the PI parameters are adjusted. The actuator induction poles are compensated by adding an extra zero and an additional notch filter is added at 845 Hz to stabilize the identified high frequency dynamics of the system.

FIGURE 6. Bode magnitude plot of the main transmissibility directions (z-translation a_0z, θ-axis rotation $a_0\theta_z$ and y-translation, a_0y) to two measurement stage accelerations a_{1I} (solid) and a_{1II} (dashed).

FIGURE 7. Identified plant (from actuator forces to three stage accelerations) with estimated complex pole pairs, $+$, and real poles, o.
As an initial validation only a disturbance in z-direction (the main disturbance direction as seen from figure 6) is introduced to the system. Both feedback loops are closed and performance is measured by evaluation of the power spectral density (PSD) plot of the measured stage acceleration signals (see figure 8). This PSD plot should resemble the modelled main transmissibility direction in the frequency region between 5 and 500 Hz as the input disturbance frequency content is uniform in this region.

The reference data is obtained by using the voice coil actuators to present a disturbance with an amplitude of 1×10^{-4} (m/s2)/Hz to the measurement stage. In the PSD of this signal the suspension frequency is seen and the identified internal mode is present at the expected frequency of 285 Hz. The passive and active accelerations show the expected behaviour within the frequency region of interest and the attenuation of frame vibrations in z-direction for the passive and active systems is 35 and 48 dB in the relevant frequency region around the actuation frequency, respectively.

When the influence on mass flow measurement is evaluated, a time domain signal, as shown in figure 9 is obtained. No real mass flow is provided to the device, so the measurement is a flow error due to the vibration disturbance, scaled to arbitrary units. The attenuation of the flow error obtained for the active system is lower than the expected 48 dB, due to an unexpected high measurement sensor noise. Larger disturbance amplitudes are provided to improve the signal to noise ratio, as seen from table 1, but the attenuation of 48 dB can still not be validated because the highest amplitude of 4×10^4 (m/s2)/Hz is the upper limit of the used test setup.

FIGURE 8. PSD of the two measurement stage accelerations for a translational disturbance (z-direction).

FIGURE 9. Time domain flow error with z-translation disturbance. Reference (0-50 s), passive (50-100 s), active (100-150 s).
TABLE 1. Experimental RMS flow error in arbitrary units and the attenuation relative to the reference.

<table>
<thead>
<tr>
<th>Disturbance</th>
<th>Reference</th>
<th>Passive suspension</th>
<th>Active feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m/s)^2/Hz</td>
<td>units</td>
<td>dB</td>
<td>dB</td>
</tr>
<tr>
<td>1e-5</td>
<td>0.0551</td>
<td>0</td>
<td>-18.53</td>
</tr>
<tr>
<td>1e-4</td>
<td>0.1741</td>
<td>0</td>
<td>-26.28</td>
</tr>
<tr>
<td>4e-4</td>
<td>0.3515</td>
<td>0</td>
<td>-24.41</td>
</tr>
</tbody>
</table>

DISCUSSION

To further identify the performance of this feedback system the influence of more disturbance directions (ultimately all six directions) will be tested. Also the optimal configuration of additionally constraint, passively suspended and actively isolated directions can be determined. The identification shows an internal mode at 282 Hz currently not seen in the dynamic model. Its origin should be identified, possibly modelled and its influence on control stability and performance should be further investigated. Furthermore robustification of the control for higher order dynamics of the setup should be investigated, for stability issues are encountered at higher specifications. The mentioned phase lag introduced by the digitization of the acceleration sensor signals has a negative influence on the system’s stability and performance. It should be quantified and accounted for when determining obtainable specifications. Finally, in order to validate the attenuation of the influence of vibrations on the mass flow measurement a lower noise of the optical sensors used to measure tube displacement and thus mass flow is desired. The validation is currently limited to this noise level for low amplitude disturbances.

CONCLUSION

A valid conceptual design for the suspension and active vibration isolation of the Coriolis mass flow measurement stage in z-direction translation and x-axis rotation is created and three main disturbance directions are identified, being a translation in z- and y-direction and a rotation around the x-axis.

With a dynamic model of the presented setup design it has been shown that the theoretical attenuation of frame disturbances in the main directions is 50 dB.

Experimental validation of the active vibration isolation with feedback control shows an attenuation of about 48 dB when a disturbance is provided in the largest of the main disturbance directions, the z-direction translation.

ACKNOWLEDGEMENTS

This research was financed by the “Pieken in de Delta” Programme of the Dutch Ministry of Economic Affairs. The authors would like to thank the industrial partner Bronkhorst High-Tech for their contributions.

REFERENCES

VIBRATION EFFECTS ON AN ENVIRONMENTALLY TOLERANT
SCANNING WHITE LIGHT INTERFEROMETER

John R. Troutman, Chris J. Evans, and Tony L. Schmitz
Department of Mechanical Engineering and Engineering Science
University of North Carolina at Charlotte
Charlotte, NC, USA

ABSTRACT
Surface metrology instruments such as the scanning white light interferometer (SWLI) normally require thermal and vibration isolation and are therefore often located in appropriately controlled environments. A commercially-available “environmentally tolerant” SWLI suggests the possibility of shop-floor metrology, offering cost and process time savings. This paper describes a method for evaluating the vibration tolerance of such an instrument.

INTRODUCTION
To enable surface metrology in manufacturing environments, optical profilometry may not be the traditional choice due to inherent sensitivity to vibration [1]. Due to this limitation, such instruments are typically located in environmentally- and thermally-controlled environments. The effect of random vibration on optical measurements using phase-shifting interferometry is treated analytically in [2] and numerically in [3] for several common phase-shifting interferometry (PSI) algorithms. The 3, 4, 5, and 7-bucket PSI algorithms, all of which utilize \(\pi/2 \) spacing, exhibit similar frequency response to vibration along the optical axis; for a given disturbance amplitude, measurement error is a function of vibrational frequency, with local error maxima shown to be at odd multiples of half the instrument’s detector frequency. Such error often appears as a ripple superimposed on the measured topography, occurring at twice the spatial frequency of the interference fringes. As the number of integrating buckets increases, sensitivity to vibration declines with increasing frequency. PSI algorithms using \(\pi/3 \) or other spacing also exhibit the twice fringe frequency ripple, but the frequency dependence differs from that of the \(\pi/2 \) algorithms.

Designed to enable metrology in uncontrolled environments, the Zygo ZeGage, shown in Fig. 1, is an environmentally-tolerant scanning white light interferometer (SWLI). SWLI algorithms have not been analyzed in the same detail as PSI algorithms in the literature. They differ from PSI algorithms, but some laboratory instruments exhibit similar response to environmental disturbances. If the environmentally-tolerant instrument operates on the same principle as its laboratory counterparts, similar response characteristics can be expected. An analysis of this instrument’s response to single-frequency vibration is presented, which follows a methodology applicable to any such instrument, regardless of manufacturer.

FIGURE 1. Zygo ZeGage SWLI
Measurements of sinusoidal and random-profile reference specimens using the ZeGage were shown in [4] to correlate well with stylus profilometer measurements. In [5], the instrument was placed on a laboratory cart and excited using an electrohydraulic shaker mounted rigidly to the cart base. When excited at frequencies near a structural resonance, RMS measurement error (the difference between measurements during
static and excited conditions) was demonstrated to increase due to relative motion between the specimen and the instrument objective. Figure 2, from [5], shows the frequency dependence of specimen-objective motion when the instrument as shown in Fig. 1 is excited with the base-mounted shaker.

FIGURE 2. Relative specimen-objective motion in \(\mu m \) per \(\mu m \) of input vibration at cart base.

EXPERIMENTAL TECHNIQUE

From the results shown in [5], a correlation between frequency and amplitude of relative specimen-objective motion was suggested. Such an analysis should be similar in form to the experimental validation in [2]. The structural dynamics of the instrument prevent the generation of single frequency uniaxial vibration using a remotely-mounted shaker. Aside from this limitation, such shakers are generally inappropriate for generating vibration amplitudes at or below the order of one fringe. To overcome this limitation, flexure-based specimen shakers are described that oscillate the sample directly beneath the objective along (shown in Fig. 3) and perpendicular to the instrument's optical axis (shown in Fig. 4). These specimen shakers are actuated by water-cooled preloaded PZT stacks and are designed to facilitate rigid attachment to the instrument's specimen stage. When driven with a function generator through a 20 dB attenuator, motion amplitudes from 10 nm to 300 nm are achievable over a wide frequency range.

A polished mirror specimen was oscillated along (vertically) and normal to the optical axis (horizontally) at amplitudes from 12 nm to 125 nm, corresponding to approximately one-half fringe at a nominal 500 nm wavelength, at frequencies from 10 Hz to 300 Hz. At each increment of 2 Hz and 6 nm, the sample was measured six times using a 50x objective.

FIGURE 3. Specimen shaker for oscillation along instrument optical axis.

FIGURE 4. Specimen shaker for oscillation normal to instrument optical axis.

Figures 5-6 show the interference fringe orientation for the static condition with no forced vibration and the measured topography under 125 nm sinusoidal vibration at 250 Hz. The twice fringe frequency ripple discussed by de Groot [2] is clearly evident; 3 interference fringes are visible in Fig 5, corresponding to 6 peaks in the ripple pattern seen in Fig 6.

Power spectral density (PSD) analysis was performed for each amplitude and frequency combination; the difference in quadrature between the bandwidth-limited spatial frequency content of the measured surface and a reference measurement at static condition yields an RMS measurement error. The results of this test are shown as a surface plot in Fig 7. A similar set of experiments was performed using the polished
mirror specimen and the horizontal specimen shaker; results are shown in Fig. 9.

Examination of Fig. 7 suggests a general increase in RMS error with increasing vibration amplitude; as predicted in [2], local error maxima occur at odd half-multiples of the detector frequency, 100 Hz for this instrument (maxima occur at 50 Hz, 150 Hz, 250 Hz). As vibration amplitude increases, the spread of the error about these maxima broadens substantially.

This behavior is consistent with that of an instrument using the three-bucket PSI algorithm described in [2]. Under horizontal vibration (Fig. 9), error magnitudes (attributable to image blurring) are negligible compared to the vertical case, with no significant dependence upon vibrational frequency or amplitude.

The experiments were repeated using an electroformed nickel sinusoidal reference specimen (Rubert 528, 50μm wavelength, 1μm peak-valley height). Similar results to those with the polished mirror specimen are shown in Figures 8 and 10. Similar error magnitudes occur for the case of vertical oscillation, suggesting an instrument response independent of surface measured. Higher error magnitudes are evident for the case of horizontal oscillation; they are attributed to the presence of this specimen's more complex surface features.
For single-frequency vibration of a specimen along the instrument’s optical axis, local error maxima exist at odd half-multiples of the instrument’s camera frequency, as predicted by de Groot in [2]. Error magnitudes, as well as the width of the error envelope, increase with vibration amplitude. For vibration normal to the optical axis, errors are primarily due to blurring; no dependence upon frequency or amplitude is suggested. Specimens with more complex surface form exhibit higher errors than those nearly void of form.

Operating environments for metrology instruments are often specified in reference to standardized Vibration Criterion (VC) environments, as described in [6]. Zygo recommends that the ZeGage be installed in an environment conforming to VC-C or better, corresponding to a maximum vibration velocity of 12.5 μm/s for all frequencies between 8 Hz and 80 Hz. Following Fig. 2, for the instrument and cart setup in Fig 1, such an environment would cause maximum specimen-objective motion of 0.04 nm amplitude at 25 Hz. As specimens with more complex surface form are found more prone to measurement error, following Fig 9, for RMS measurement errors to remain negligible, specimen-objective motion amplitude should be kept well below the lowest tested level. A somewhat arbitrary choice of 5 nm maximum specimen-objective motion would correspond to a permissible broadband level of 1275 μm/s, well above the manufacturer-specified VC-C level as well as the ISO-specified ‘workshop’ level indicated in [6]. Environments described by this ‘workshop’ level or better are likely suitable for desirable operation of the ZeGage instrument.

Although this evaluation was performed on a specific instrument, the technique is applicable to any surface metrology instrument. Further investigation of instrument response to broadband disturbances more typical to an industrial environment would also be beneficial in specifying such an operating environment.

REFERENCES
INTRODUCTION

Abbe-compliant machine tool concept with linear encoders

The machining accuracy in machine tools is mostly determined by the positioning accuracy of the tool with respect to the workpiece. The largest positioning errors are due to two error sources: (1) thermo-mechanical errors, such as thermal deformation and expansion of the structural frames, and (2) geometric errors, which arise predominantly by Abbe errors caused by angular error motions of the slides together with offsets between the position measurements and the point of interest, in this case the tool. In state-of-the-art machine tools, thermo-mechanical errors are reduced by extremely stable temperature control of the surroundings and/or thermal modeling and compensation. Lowering of the geometrical errors on the other hand is achieved by the application of air bearings or hydrostatic bearings and volumetric calibration of the machine tool axes.

At KU Leuven, a new concept to further increase machining accuracy in machine tools has been proposed. In this concept, the structural loop and the metrology loop are functionally separated [1] and the position of the workpiece is measured with linear encoders according to the Abbe principle in multiple degrees-of-freedom [2]. Figure 1 shows the conceptual layout of such a machine tool with the so-called ‘moving-scales’. A tool metrology frame (TMF) is kinematically connected to the tool spindle, while workpiece metrology frames (WMF) surround the workpiece. A master metrology frame (MMF) holds short stroke sensors that monitor the movement of the TMF due to thermo-mechanical errors or deflection of the structural frame. It also contains the reading heads of the linear encoders that track the movement of the WMF. This configuration ensures that no forces enter the metrology loop and allows for independent optimization of the structural frames and the metrology frames. Tracking of the WMF movement by the moving-scales is performed by locating a short stroke sensor, such as a capacitive sensor, at the tip of and in-line with the scale. The short stroke sensor detects the movement of the WMF target surface and a linear motor drives the carrier holding the scale and the sensor to keep the short stroke sensor within its measurement range. The WMF position measurement then consists of the addition of the short stroke sensor measurement and the linear scale measurement. This configuration hence allows the scales to always be pointed to the tool center and, theoretically, the Abbe errors can be reduced to zero, which drastically improves the motion accuracy of the machine tool.

FIGURE 1. Machine tool concept with functional separation of the structural and the metrology loop and Abbe-compliant linear encoder configuration.

1-DOF moving-scale measurement system

A 1-DOF prototype of a moving-scale system with a measurement length of 120 mm is depicted in Figure 2. The capacitive sensor is mounted on a stainless steel interface with the same coefficient of thermal expansion as the sensor, which is in turn kinematically connected
to the scale carrier. The Zerodur® scale (Heidenhain LIP 281) is kinematically constraint to the scale carrier and the sensor interface by using the thermal centre principle in such a way that expansion of the sensor or the scale carrier causes no displacement of the scale w.r.t. the sensor tip [3]. The scale carrier is connected to a moving base frame that holds a linear recirculating ball bearing and a linear motor. The reading head of the linear encoder, which is not shown in this figure, is connected to the metrology frame.

FIGURE 2. Layout of the 1-DOF moving-sacle prototype. The reading head is not shown.

All components contributing to the measurement uncertainty have been determined and are summarized in Table 1. The uncertainty budget can be split up into three parts. The first part consists of the error components that are caused by changes of the environmental conditions, such as temperature, relative humidity and air pressure, and amounts to 14 nm for ±0.5 °C temperature changes and ±5% humidity changes. The second part involves more rapidly changing errors such as non-repeatable angular error motions of the guides that cause Abbe-errors and dynamic errors due to movement of the components and sensor noise. The last part of the budget contains the length uncertainty of the scale after calibration and the calibration uncertainty of the capacitive sensor. The scale will be calibrated by a laser interferometer; then, the capacitive sensor is calibrated on the machine using the linear scale measurements to also account for non-linearity effects induced by non-parallelism of the sensor w.r.t. the target surface. The total measurement uncertainty for the 120-mm moving-scale system is 21 nm (k=2).

REPRODUCIBILITY OF MOVING-SCALE MEASUREMENT SYSTEM

System layout and uncertainty budget
In order to verify the reproducibility and the repeatability of the moving scale system under changing environmental conditions, the measured displacements should be compared to the measurements of a stable reference that is placed in line with the moving scale system. For example, the reference could be a moving

<table>
<thead>
<tr>
<th>Component</th>
<th>(U_{(k=2)}) [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affecting reproducibility (for changing environment (\Delta T=\pm 0.5^\circ) C and (\Delta RH=\pm 5%))</td>
<td>14</td>
</tr>
<tr>
<td>Scale expansion (CTE Zerodur® = ±0.1 ppm)</td>
<td>12</td>
</tr>
<tr>
<td>Reading head thermal drift</td>
<td>3</td>
</tr>
<tr>
<td>Scale carrier assembly thermal drift</td>
<td>4</td>
</tr>
<tr>
<td>Capacitive sensor temperature and humidity drift after compensation</td>
<td>2</td>
</tr>
<tr>
<td>Other errors due to changes in environmental conditions</td>
<td>5</td>
</tr>
<tr>
<td>Repeatability</td>
<td>8</td>
</tr>
<tr>
<td>Non-repeatable Abbe errors</td>
<td>1</td>
</tr>
<tr>
<td>Dynamic errors</td>
<td>5</td>
</tr>
<tr>
<td>Sensor noise</td>
<td>5</td>
</tr>
<tr>
<td>Calibration and alignment uncertainty</td>
<td>13</td>
</tr>
<tr>
<td>Abbe errors</td>
<td>4</td>
</tr>
<tr>
<td>Cosine error</td>
<td>2</td>
</tr>
<tr>
<td>Linear scale calibration</td>
<td>12</td>
</tr>
<tr>
<td>Capacitive sensor non-linearity calibration</td>
<td>2</td>
</tr>
<tr>
<td>Combined measurement uncertainty</td>
<td>21</td>
</tr>
</tbody>
</table>
mirror, where the moving-scale is placed on one side of the mirror and a laser interferometer on the other side of the mirror. However, the laser beam path should then reside in a separate stable enclosure in order to reduce the influence of the changing environment in which the moving-scale system is operating. It is very difficult and expensive to create an enclosure for an interferometer which is stable within less than 20 nm over a measurement length of 120 mm while the surrounding environment exhibits relatively large (±0.5 °C) temperature variations. Nevertheless, to determine reproducibility, it is not important to trace the measurements back to the length standard. Therefore, the use of a second stable reference scale and elimination of any systematic errors due to grating errors of the scale and repeatable Abbe and cosine errors from the measurements are allowed.

For this reason, a comparison of the moving-scale measurements to the measurements of a similar system, called ‘reference-scale’, was opted for. The reference-scale is a mirrored copy of the moving-scale system, except that the capacitive sensor and its interface are replaced by a target surface. The system is shown in Figure 3 and has been discussed in [3]. The reading heads of the encoders are kinematically connected to an aluminum metrology frame that is in turn constrained to the base frame in a kinematic way using ball-in-V grooves. The reference-scale’s position is monitored by two reading heads. Because the expansion of the Zerodur® scale is assumed to be invariant to temperature changes, the difference in readout of the two reading heads equals the expansion of the metrology frame over the distance L_2 (55 mm). If one assumes a uniform expansion of the metrology frame, which is a reasonable assumption for aluminum because of its high thermal diffusivity, the expansion between the reading heads of the moving-scale and the reference-scale over the length L_1 (230 mm) can easily be calculated.

The measurement error, of which the variance determines the reproducibility and the repeatability of the setup, is defined as

$$e = M_{MS} - M_{Rep}$$ \hspace{1cm} (1)

with

$$M_{MS} = M_{RH1} - M_C$$ \hspace{1cm} (2)

and in which M_{RH1}, M_{RH2} and M_{RH3} are the readouts of the reading head of the moving-scale and the two reading heads of the reference-scale respectively, M_C is the read-out of the capacitive sensor and L_1 and L_2 are the distances between the reading heads as indicated in Figure 3. M_{RH1-3} are positive when the system is moving in the positive x-direction. M_C is defined positive if the moving-scale and reference-scale are approaching one another.

![Figure 3](image_url) \hspace{1cm} FIGURE 3. Setup for determining the reproducibility of the 1-DOF moving-scale measurement system in the movable configuration.

To eliminate the measurement uncertainty of the reference scale and to reduce the uncertainty associated with the metrology frame expansion compensation, the reproducibility setup can also be configured in such a way that the moving-scale measures a stationary target attached to the metrology frame. The two reading heads of the reference scale are still used for compensation of the thermal expansion, but the length of the metrology frame that requires compensation is now the shorter distance between the moving-scale reading head and the stationary target surface, which is L_3 (123.5 mm). Eq. (3) then reduces to

$$M_{Rep} = \frac{L_3}{L_2} (M_{RH2} - M_{RH3})$$ \hspace{1cm} (4)

The uncertainty budget of the reproducibility of the setup in both configurations is shown in Table 2. While in the movable configuration, the uncertainty is dominated by the uncertainty of the expansion L_1 compensation, this value is significantly reduced in the stationary target.
TABLE 2. Uncertainty budget of the setup for determining the reproducibility of the 1-DOF moving-scale for temperature changes of ±0.5 °C and relative humidity changes of ±5%.

<table>
<thead>
<tr>
<th>Component</th>
<th>U_{movable} (k=2) [nm]</th>
<th>$U_{\text{stationary}}$ (k=2) [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{MS} Moving-scale reproducibility U_{MS}</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Reference-scale reproducibility: U_{RS}</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>Reading head stability: U_{RH}</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Scale expansion over L_2: U_{SC}</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>M_{Rep} Expansion L_2: $U_{L_2} = \sqrt{2 \cdot U_{\text{RH}}^2 + U_{\text{SC}}^2}$</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Expansion $L_{1/3}$: $U_{L_{1/3}} = L_{1/3} \cdot U_{L_2}$</td>
<td>29 (L_1)</td>
<td>15 (L_3)</td>
</tr>
<tr>
<td>Uncertainty of reference position U_{Rep}</td>
<td>34</td>
<td>15</td>
</tr>
<tr>
<td>Combined uncertainty: $U_{\text{tot}} = \sqrt{U_{\text{MS}}^2 + U_{\text{Rep}}^2}$</td>
<td>37</td>
<td>21</td>
</tr>
</tbody>
</table>

![Graph 4](image1.png)
![Graph 5](image2.png)

FIGURE 4. Temperature, relative humidity and measurement error (Eq. (1)) for the setup in the movable configuration.

FIGURE 5. Temperature, relative humidity and measurement error (Eq. (1)) for the setup in the stationary configuration.

configuration. However, the movable configuration will still be used to determine the expansion of the scale due to its mounting and to determine the repeatability of the system during movement.

Experimental verification

The setup of Figure 3 has been placed in a temperature controlled environment of 20±0.5 °C. Air flow from the vents of the room’s air conditioning system could cause a thermal gradient in the metrology frame. Therefore, an additional aluminum shielding with a thickness of 5 mm has been placed over the metrology frame. Next, a PVC enclosure of dimensions 650 mm × 650 mm × 500 mm has been placed over the entire setup to filter fast temperature fluctuations in the room. Temperature and humidity have been monitored and the measurement error has been determined using Eq. (1) to (4).

Figure 4 shows measurement graphs for the setup in the movable configuration. The slides have been locked in position in this experiment in order to eliminate additional dynamic errors, which will be described in the next section. Figure 5 gives the same data for the stationary configuration with a stationary target attached to the metrology frame. The temperature and humidity dependence have been determined by a linear least squares estimate on the data from which slow non-linear drift and high-order effects were filtered out (Table 3). The table indicates...
that for the temperature sensitivity, measurements are fairly corresponding to what has been predicted in Table 2. Further experiments should identify the temperature sensitivity of each component in the setup. On the other hand, the humidity sensitivity is larger than expected. The only component that up till now has been assumed to drift with humidity changes is the capacitive sensor, but this humidity drift has been compensated by using a second capacitive sensor as a weather station [4]. It has been shown that by doing so, the humidity drift could be almost completely eliminated. Further research should identify the source of the humidity drift and attempt to reduce it in order to attain the envisioned measurement uncertainty.

TABLE 3. Temperature and humidity sensitivity of the reproducibility setup. Between brackets the resulting expanded uncertainty is indicated.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Movable</td>
<td>62 (U(k=2) = 36)</td>
<td>-18 (U(k=2) = 10)</td>
</tr>
<tr>
<td>Stationary</td>
<td>47 (U(k=2) = 27)</td>
<td>-19 (U(k=2) = 11)</td>
</tr>
</tbody>
</table>

DYNAMIC STABILITY

As explained before, the moving-scale system tracks the movement of the target surface by controlling the linear motor in such a way that the gap measured by the capacitive sensor stays within its measurement range. To design an optimal controller, first the transfer function of the moving-scale from linear motor current to capacitive sensor output has been determined. Due to the range limit of 50 µm of the capacitive sensor, the linear scale was used as the output in the identification process. The frequency response function (FRF) and the least-squares estimate (LSE) of this transfer function are shown in Figure 6. The first resonance frequency varies from 189 Hz to 242 Hz, depending on the position of the moving scale, which is due to the changing moment of inertia. This low eigenfrequency and the pole-zero characteristic of the system that makes the phase drop below 180° after the first resonance, limits the bandwidth of the control loop. This control loop was designed with a PI velocity control on the output of the linear encoder and a PI2 position control on the output of the capacitive sensor. Additionally, a notch filter has been inserted around the first eigenfrequency. The bandwidth of the control loop is 60 Hz. The largest disturbance force the system has to overcome is the friction in the guides (<6 N). Nevertheless, Figure 7 shows that this simple control strategy is feasible to keep the capacitive sensor gap within ±25 µm while tracking the reference-scale.

![Figure 6. Frequency response function (FRF) and least-squares estimate (LSE) of the transfer function from motor current to moving-scale position.](image)

![Figure 7. Position of moving-scale, capacitive sensor gap measurement and measurement error (Eq. (1)).](image)

Figure 7 also shows that while the system is moving, the measurement error amounts to 50 nm. This error consists of high frequency components and static reversal errors. The latter
is due to the limited stiffness of the guides and the fact that the setup has not been aligned to reduce the Abbe offset and the non-perpendicularity of the capacitive sensor w.r.t. the target surface. [5] proposes a method for alignment of the moving-scale system.

For the high-frequency components, the errors were found to be caused by high-frequency accelerations caused by a pitching and yawing motion of the guides due to stick-slip. The kinematic connection between the capacitive sensor holder and the scale has a limited stiffness and although the first eigenfrequencies of the scale carrier assembly are above 1600 Hz, a finite element analysis revealed that an acceleration of 1 m/s² causes the distance between the scale and the probe to reduce with 20 nm by compliance of the Hertzian contacts. This value has been experimentally verified by making the moving-scale oscillate at 40 Hz and calculate the sensitivity of the measurement error to the moving-scale accelerations (Figure 8). The calculated value of 19 nm corresponds very well with the one resulting from the model. Next, experiments with the moving-scale and reference-scale connected to each other and both moving at constant speed have been performed, from which the same value for the acceleration dependence could be deduced. It can therefore be concluded that the relative displacement of the capacitive sensor w.r.t. the scale due to high-frequency accelerations results in the high-frequency measurement error. To reduce these errors, the recirculating ball bearings of the current system will be replaced with roller bearings that have very low friction and a much higher angular stiffness.

CONCLUSION
The performance of an Abbe-compliant linear encoder-based measurement system for machine tools called 'moving-scale' has been presented. A dedicated setup to determine the reproducibility and the repeatability has been built and experiments have been conducted. The measured temperature sensitivity showed good agreement with the predicted values, but the source of significant humidity drift should still be identified. Initial experiments on the dynamic performance made clear that stick-slip behavior in the guides, together with limited stiffness of the kinematic connections between the sensor and scale gave rise to large measurement errors. In the future, these errors can be reduced by installing low friction linear roller bearings.

![Figure 8](image-url)

FIGURE 8. Acceleration of the moving-scale by a 40-Hz oscillation with 9 μm amplitude and corresponding measurement error (Eq. (1)). The measurement error w.r.t. acceleration is estimated to be 19 nm/(m/s²).

ACKNOWLEDGEMENTS
This work is supported by a PhD grant from the Institute for the Promotion of Innovation through Science and Technology in Flanders IWT/101447, and the EC FP7 FoF collaborative project - “HI-MICRO” (Grant agreement no. 134055) (http://www.hi-micro.eu).

REFERENCES
INTRODUCTION
Large heavy duty milling and boring machines are commonly used in demanding sectors such as oil & gas, wind energy, aeronautics, etc. Heavy duty operations lead to high heat dissipation within the machine, and this combines with the ever increasing accuracy requirements in these high added value applications. Therefore, machine builders need to implement smart thermal management strategies to be able to meet customer demands. The general challenge is described here, and a thermal error compensation system developed for large milling and boring machines is presented next. Finally, experimental results are shown to demonstrate the effectiveness of the system.

THERMAL ERRORS IN MACHINE TOOLS
Temperature variations within the machine cause thermoelastic deformations resulting in geometric inaccuracies in the workpiece, contributing more than 50% of the overall error [1]. Temperature variations are induced by a number of heat sources, both internal and external to the machine: ambient temperature and sun radiation; heat dissipated in the motors, bearings and gears; hot chip and heat in tool and workpiece produced in the cutting process; cooling fluids within structural elements or in the cutting area, etc.

The variety of relevant heat sources require thermal effects be considered at every step of machine tool lifetime, from design to daily operation. SORALUCE’s milling and boring machines (see Figure 1) are designed for heavy duty production of large and complex parts, which typically require a large workspace, very high cutting forces, use of multiple tools, spindle heads and quills, long processing times and large machine workspace. Vertical travels up to 8m and horizontal in tens of meters are common requirements. Heat generation is high considering that spindles can rate up to 88 kW power, and thermal errors are magnified by the large dimensions of the machine.

FIGURE 1. SORALUCE milling-boring machine with automatic spindle/quill changer

In these machines, the heat generated by the spindle rotation, in bearings, gears and motor itself, is the largest contributor to thermal errors, but other effects such as ambient temperature, motors in linear axes, workpiece temperature or the hot chip possibly falling against the machine can be relevant in some circumstances and may require specific developments.

Thermal Error Management
Three main strategies can be distinguished for thermal error reduction:

Machine Temperature Control
Limiting temperature variations is the most straightforward way to reduce thermal errors. Cooling circuits embedded in critical machine locations are used to remove heat from the machine to reduce temperature variations that induce errors.

Temperature control is necessary and effective, but it faces strong limitations due to the high generated heat in machines like the ones studied here, limitations to access critical points (e.g. rotating elements), etc, and thus relevant temperature variations must be expected in
heavy duty operations. The goal of the cooling system is thus not to keep the machine at 20ºC (which is not possible), but to keep the temperature within a reasonable range and with slow variations.

Design for Thermal Error Reduction
A second approach is to minimize the deformations generated by the temperature variations. Machine design concepts such as symmetry can reduce the thermal errors induced by temperature gradients within the machine.

However, thermal design principles cannot always be applied to their full extent, being in conflict with others leading to high stiffness for high productivity or cost reduction, for example. A reasonable trade-off is to focus on optimizing the design to avoid angular errors, which are more difficult to compensate.

Thermal Error Compensation
Thermal error compensation has been a topic of research for already many years [1]. The main idea is to implement a model that predicts in real time the instantaneous error of the machine, and to compensate the position of the axes of the machine accordingly. A number of strategies have been proposed, with different approaches to machine characterization, modeling and implementation [2].

Machine characterization
The main goal here is to acquire information on the thermoelastic behavior of the machine in a wide range of working conditions, and to use this information for feeding the thermal error model that is used for predicting the model.

The characterization is typically performed by means of experimental tests on the machine, analyzing the influence of the ambient temperature, spindle speed rotation and linear axis motion, etc. The thermal error is measured either with displacement sensors measuring against a tool or other calibration artifacts, or by machining a part and later measuring it on a CMM. Minimization of the machine occupation time is a key aspect to reduce the costs, considering that thermal effects are usually slow.

Other authors propose methods based on virtual models of the machine to avoid the need to test the machine [3]. This approach seems however limited, since heat sources such as friction on bearings, or natural convection in the machine structure seem difficult to model accurately. Virtual thermoelastic models are useful at design stage for minimizing machine deformations, and for selecting the optimal location for temperature measurement. However, testing each machine individually adds limited extra cost and ensures highest accuracy.

Thermal error models
The information gathered during the machine characterization needs to be compiled in a simulation model which can be implemented in the CNC of the machine. Several models have been proposed in the last years to estimate in real time the thermal error of the machine.

A first classification can be made in function of the inputs to the model. Some authors have developed models using process information available at the CNC, such as spindle and axis speed, power, etc [4]. In some cases ambient
temperature data is also used. The alternative is to use information of temperature sensors embedded in the machine.

The second classification can be made according to the mathematical approach used in the model. Multiple linear regression models are used to obtain linear static parametric models that can easily be implemented in the machine control [5–7]. Dynamic models, in form of transfer functions, have been proposed too, in order to account for the observed delays between input variables and errors [8]. More complex mathematical solutions have been proposed too, with Support Vector Machines [9], Artificial Neural Networks [5,10,11], Adaptive Neuro Fuzzy Inference Systems [11], etc.

Implementation
Thermal errors vary continuously with machine operation, and therefore the compensation needs to be calculated in real time in the machine. In past years, with closed control architectures, options were mainly limited to either basic PLC programming, which permitted only simple models, or adding industrial PCs only to calculate the compensation.

In the last years CNC manufacturers are implementing more open architectures that allow more complex functions to be implemented in the control by third parties. This now allows the industrial implementation of most models that can be developed at research level.

NEW THERMAL COMPENSATION SYSTEM
Thermal error compensation offers a comparatively low cost solution for significantly improving machine accuracy, but the development of a reliable model and the practical implementation pose many challenges. A semi-automatic thermal characterization and compensation solution has been developed for SORALUCE milling and boring machines, with accuracy, but also industrial feasibility in mind.

Requirements
The goal of this project was the development of a thermal compensation system that could be applied to the full range SORALUCE milling-boring machines without requiring advanced operator skills. These are the main characteristics of the system:

- Characterization of thermal errors at Tool Center Point (TCP) in XYZ directions, considering their variation with RAM and quill length and head orientation with few temperature sensors embedded in the machine.
- Fast machine characterization and with a simple setup, minimizing machine occupation time, considering that such machines typically have multiple spindles and quills, which need to be compensated separately.
- Automatic model identification from measured data and implementation compatible with four different CNCs (Heidenhain, Siemens, Fanuc and Fagor).
- The compensation should improve the accuracy of the machine, but almost most importantly, it should be robust to improve accuracy in all machine operating conditions.

Thermal Error model
The several alternatives proposed in the literature have been discussed above. For this project, the choice has been based on the following concepts:

Model inputs
Temperatures measured in key structural elements of the machine are considered here as only inputs to the model, since the temperature field is directly correlated to the thermal growth. Other inputs, such as process data and ambient temperature, are considered as heat sources, which can be used for predicting the temperature field with more complex models and higher uncertainty. The approach is thus to use whenever possible only direct temperature readings as input to the model.

Model structure
In an ideal case, a perfect model could be built knowing the full temperature distribution of the machine. This model would have such structure:

\[p(t) = S \cdot T(t) \] (1)

where \(p(t) \) is the position variation at a point of interest, \(T(t) \) is the temperature field in the machine and \(S \) a thermoelastic coupling field.

We propose a reduced order model with the minimum number of temperature inputs \(m \), which would look like this:
\[p(t) = S_m \cdot T_m(t) \] \hspace{1cm} (2)

Where \(T_m \) is a vector with the \(m \) measured temperatures and \(S_m \) is the thermoelastic coupling vector.

This model is static, since it only considers current temperature values. From experience, it has been observed that more accurate predictions can be obtained in some cases when a dynamic model is used, and therefore \(S_m(s) \) is a vector of thermoelastic coupling transfer functions.

\[p(t) = S_m(s) \cdot T_m(t) \] \hspace{1cm} (3)

In general, the thermal error changes within the machine workspace, and therefore the model structure needs to be modified to include a dependence with the machine axis position. A simple and effective way to do this is by a scalar factor \(K \) which depends on the position of axis \(x_1, x_2, \ldots \)

\[p(t) = K(x_1, x_2, \ldots) \cdot S_m(s) \cdot T_m(t) \] \hspace{1cm} (4)

This approach has led to the development of an accurate and robust thermoelastic model. The simplicity of the mathematical approach helps with robustness, while the accuracy mainly relies on the proper selection of the location of the thermal probes and on the characterization test.

Machine Characterization

Given the number of effects that can affect thermal growth, and the long time required to characterize this effect, it is critical to identify the main error sources that need to be compensated, to focus the effort on these.

For the machines analyzed here, the most relevant heat source is the heat generated by the spindle/quill rotation, in bearings, gears and motor mainly. Therefore, characterization tests consist of measuring machine temperatures and growth while the spindle speed follows certain profiles.

Since each spindle needs to be characterized, the goal was set to characterize each of them in a test that could run during the night without operator presence, and thus not interfering with the machine setup process and minimizing the cost.

In cases where highest precision is required and ambient temperature could have a relevant influence on linear scales, longer tests would be required to allow for higher ambient temperature changes.

Implementation

The implementation of the thermal error compensation system requires the following elements:

- Temperature sensors are embedded in the machine in selected key points and read by the CNC. The sensors are typically located in structural elements and near the heat sources to detect variations as soon as possible.
- Data acquisition: An external computer is used to register these temperatures, and therefore a communication between the PC and the CNC needs to be implemented. It typically changes between manufacturers.
- Data processing: A robust algorithm for model parameter identification needs to be implemented that does not require operator intervention.
- Compensation model: The model with the identified parameters needs to be implemented in the CNC. Again, each CNC manufacturer allows for different implementation methods and thus specific solutions are needed.

FIGURE 3. Quill TCP measurement in XYZ
EXPERIMENTAL VALIDATION
The effectiveness of the compensation strategy is illustrated next. First the results of the characterization test are presented, and then the validation test results, where the thermal error reduction during a 14h quill test on a SORALUCE machine is shown.

Characterization test
In order to calibrate the compensation model, a characterization test has been performed on the machine. The quill speed profile and the measured TCP position variations are shown next.

Validation test
Using the information from the calibration test, the compensation model was calculated and implemented in the machine control. A different quill speed profile was used to validate the robustness of the model.

The results show a clear improvement in the TCP accuracy. In X direction, error is reduced to 25% of the machine error, in Y to 40% and in Z to 15%. In absolute displacement, the thermal compensation has reduced the TCP error down to 20% of the original error.
CONCLUSIONS
A thermal error compensation system for large heavy duty milling-boring machines has been presented. The full solution has been developed with industrial feasibility in mind.

The machine characterization tests, thermoelastic modeling and control implementation have been discussed.

The experimental results show a clear improvement in the accuracy of the machine, and thus the validity of the proposed thermal compensation system.

REFERENCES
Development of a System for 3-D Micro Metrology Using an Ultra-Small-Diameter Optical Fiber Probe
- Optical Analysis and Evaluative Experiment Using the 0.4 µm Diameter Stylus Shaft -

Hiroshi Murakami¹, Akio Katsuki², Takao Sajima²
Narumi Tokuoh¹ and Mitsuyoshi Fukuda¹
¹Department of Mechanical Systems Engineering, Faculty of Environmental Engineering
The University of Kitakyushu
Fukuoka, Japan
²Department of Mechanical Engineering, Faculty of Engineering
Kyushu University
Fukuoka, Japan

INTRODUCTION
In recent years, demand has increased for a method that can precisely measure microstructures of mechanical micro parts, micro electro mechanical systems (MEMS), micro molds, optical devices, and micro holes, etc. However, it is very difficult to precisely measure the shape of micro structure with a large length-to-diameter (L/D) ratio because of the difficulty of probe fabrication and sensing method with very small measuring force. Studies have reported micro structure measurement techniques employing a variety of probes such as optical probes, vibroscanning probes, vibrating probes, tunneling effect probes, opto-tactile probes, fiber deflection probes, optical trapping probes, and diaphragm probes [1-9].

This paper presents a system for 3-D micro structure measurement using an optical fiber probe that is available as a kind of displacement measuring probe with low contact force and that has a wide measuring range. The stylus of the optical fiber probe was fabricated using an acid-etch technique. The shaft of the stylus is not necessarily rigid in order to detect the measuring force because its deflection is measured by a non-contact method. In this research, the minimum diameter of the available stylus shaft was about 0.2 µm for a laser diode with a 375 nm wavelength. Also, the stylus shaft with a diameter of 0.4 µm could be manufactured, and the resolution of the measurement system using the stylus shaft with a diameter of 0.4 µm was approximately 5 nm.

MEASUREMENT PRINCIPLE
Figure 1 is a diagram of the optical system. The fiber probe consists of a stylus shaft and a stylus tip. The probing system consists of the fiber stylus, two laser diodes with a 375 nm wavelengths (LDX, LDY), and two dual-element photodiodes (PX, PY) in the X- and Y-directions. The stylus shaft is installed between the laser diodes and the dual-element photodiodes, which are oriented orthogonally. The laser diodes are mounted above the stylus tip, and the focused laser beams are irradiated along the X- and Y-directions onto the stylus shaft. The two dual-

FIGURE 1. Measurement system using optical fiber probe.
element photodiodes are located opposite the laser diodes, beyond the stylus. The laser beams that pass through the stylus shaft are received by these dual-element photodiodes. The beam intensities detected by the photodiodes are converted into voltages and are identified by the symbols I_{PX1}, I_{PX2}, I_{PY1}, and I_{PY2} (V). A charge-coupled device is employed to monitor the positions of the stylus and test piece during the setting up of the equipment and during measurement.

A cross-sectional diagram of the X-Y plane of the optical system shown in Fig. 1 is shown in Fig. 2 to illustrate the measurement principle of the optical fiber probe. Before the stylus tip contacts the measured surface, the light intensity measured by each element of the dual-element photodiode is equal ($I_{PX1} = I_{PX2}$, $I_{PY1} = I_{PY2}$), as shown in Fig. 2(a). When the stylus tip contacts the measured surface in the X-direction, the stylus shaft is displaced, and the light intensity of each element of the dual-element photodiode becomes unequal ($I_{PX1} > I_{PX2}$, $I_{PY1} > I_{PY2}$), as shown in Fig. 2(b). When the stylus shaft is displaced in the +X-direction, the angle of refraction of the laser beam that passes through the stylus shaft in the Y-direction changes due to a shift in the part of the stylus shaft being irradiated. Additionally, when the stylus tip contacts the measured surface in the Y-direction, the light intensity of each element of the dual-element photodiode becomes unequal ($I_{PX1} < I_{PX2}$, $I_{PY1} = I_{PY2}$). As a result, the contact direction and magnitude of the displacement of the stylus tip can be obtained from output signals I_X and I_Y. The noise present in output signals I_X and I_Y is removed by synchronous detection using a lock-in amplifier. The displacement of the stylus is magnified by using it as a rod lens. The surface of the microstructure is measured by recording the coordinates at which the stylus makes contact with the surface being measured and the displacement of the stylus.

The output signal I_X in the X direction using I_{PY1} and I_{PY2} and output signal I_Y in the Y direction using I_{PX1} and I_{PX2} are defined by Equations (1) and (2), respectively.

$$ I_X = I_{PY1} - I_{PY2} $$

$$ I_Y = I_{PX1} - I_{PX2} $$

FABRICATION OF THE STYLUS SHAFT

The stylus shaft was fabricated using an acid etch technique. First, the step index multi-mode optical fibers (core diameter: 100 µm, clad diameter: 125 µm) were stripped of their plastic layers. The tips of the fibers were then immersed in a 25% hydrofluoric acid solution, and hydrofluoric acid etching was carried out at room temperature (23 °C). The diameter of the probe shaft was measured with an optical microscope. Figure 3 shows schematics of the stylus shaft at three different stages of the hydrofluoric acid-etch process. After this process, the stylus shaft was rinsed with water and acetone. Figure 4 shows the experimental results, with the etching time on the horizontal axis and the resultant diameter of the stylus shaft on the vertical axis. Figure 5 shows the photograph of the tip of the stylus shaft. It is confirmed that the diameter of the thinnest part of the stylus shaft is about 0.4 µm. The length of the etching part is about 1500 µm. In future, the fabricated stylus shaft and glass stylus tip of 1 µm diameter will be glued together.

OPTICAL ANALYSIS USING FDTD METHOD

In the case in which the diameter of the stylus shaft is smaller than the diameter of the laser spot, the detection sensitivity decreases because of the reduction in the light intensity that passes through the stylus shaft and the influence of diffraction.
Therefore, the minimum diameter of the available stylus shaft was examined using a finite-difference time-domain (FDTD) method. This method solves Maxwell’s equations in the time domain. In the simulation, the focused laser beams of a Gaussian distribution were irradiated along the Y-direction onto the stylus shaft. Then, the intensities of the transmitted, refracted, and diffracted light detected by the dual-element photodiode were analyzed, and I_x was calculated. The wavelengths of the laser beams used in this simulation were 375 nm and 650 nm. Figure 6 shows the analytical result of the relationship between calculated value of output signal I_x and the diameter of the stylus shaft when the stylus shaft was displaced 0.1 µm in the X-direction. Figure 7 shows the distribution of light intensity around the stylus shaft, generated using the FDTD method.

As described in the following section, the measurement resolution of the stylus shaft with a diameter of 0.4 µm was about 5 nm when a laser diode with a 375 nm wavelength was used. The analytical results show that for a laser diode with a 375 nm wavelength, the output signal of the stylus shaft with a diameter of 0.2 µm was almost equal to that with a diameter of 0.5 µm. Therefore, it was shown that the minimum diameter of the available stylus shaft was about 0.2 µm for this laser diode.

STYLUS CHARACTERISTICS

Figure 8 shows the experimental change in output signal I_x when the stylus shaft with a diameter of 0.4 µm was displaced in the ±X-direction. The horizontal axis shows the displacement of the stylus, and the vertical axis shows the change in output signal I_x. When the stylus shaft is displaced in the X-direction, it can be verified that the fiber probe is available as a displacement sensor because the rate of change in I_x can be approximated as a straight line within a range of ±3 µm in the X-direction.

MEASUREMENT RESOLUTION

An experiment was carried out to evaluate the measurement resolution of the stylus shaft with a diameter of 0.4 µm in the X direction. The change in output signal I_x was investigated.
when the stylus was displaced by 5 and 10 nm/0.1sec steps in the X direction, with the results shown in Fig.9. The horizontal axis shows the measurement time, and the vertical axis shows the change in output signal I_X in the X direction. It is possible to distinguish the 5 nm step, which shows that the resolution of the measurement system using the stylus shaft with a diameter of 0.4 µm is approximately 5 nm.

SUMMARY
This paper has described a system for measuring 3-D micro structures using an optical fiber probe. For this research, the stylus shaft with a diameter of 0.4 µm was fabricated using an acid-etch technique. Further, the minimum diameter of the available stylus shaft was examined using an FDTD method. Finally, the stylus characteristic and the measurement resolution were examined. As a result, it was shown by FDTD simulation that the minimum diameter of the available stylus shaft was about 0.2 µm for a laser diode with a 375 nm wavelength. In addition, the stylus shaft with a diameter of 0.4 µm could be manufactured, and the resolution of the measurement system using this shaft was found to be approximately 5 nm.

ACKNOWLEDGMENT
This study was partly supported by JSPS KAKENHI Grant Number 26420392 and by a research grant from the Mitutoyo Association for Science and Technology.

REFERENCES
A STUDY ON MATERIAL INFLUENCES IN DIMENSIONAL COMPUTED TOMOGRAPHY

Herminso Villarraga¹, ², Edward Morse¹, ³, Robert Hocken¹, ², ³, and Stuart Smith¹, ², ³

¹Center for Precision Metrology
²Department of Physics and Optical Science,
³Department of Mechanical Engineering and Engineering Science,
University of North Carolina at Charlotte
Charlotte, NC, USA

FIGURE 1. Metallic plates with 28 holes drilled through. The large plate is made of aluminum while the small plate is made of steel.

FIGURE 2. 'Styli forest' composed of aluminum oxide (ruby) balls on carbon fiber stems. The balls are numbered in order of increasing 3D distance from the center ball, ball zero.

The main purpose of this study was to determine if there are major additional length measurement errors resulting from additional material surrounding a workpiece when measurements are taken using X-ray computed tomography (CT). This paper presents measurements carried out in January 2014 by the Center for Precision Metrology at the University of North Carolina (UNC) – Charlotte within the ISO TC 213 WG 10 experimental study on material influence in dimensional CT [1, 2]. Two reference objects were used in this study: a hole plate made from aluminum (Al; size 48 mm x 48 mm x 8 mm) and a smaller hole plate made from steel (size 6 mm x 6 mm x 1 mm). Both items were borrowed from Physikalisch-Technische Bundesanstalt (PTB)-Germany and consisted of square plates with 28 holes geometrically distributed as shown in Fig. 1. A third artifact, a ‘styli forest’ composed of aluminum oxide (ruby) balls on carbon fiber stems (see Fig. 2) created by the National Institute of Standards and Technology (NIST) [3], was also tested. Measurements in this study were performed using a Zeiss Metrotom 800, a micro-focus X-ray CT machine [4, 5], following the measurement procedures provided in [1, 2]. Dimensional results were calculated from the tomography data with VG Studio Max 2.2 software using the standard adaptive threshold method for segmentation [6].

FIGURE 3. Aluminum plate orientation used during the CT scan. The arrows show the directions to set the lengths measurements.

MEASUREMENT STRATEGY

Figure 3 shows the orientation of the aluminum plate in the CT machine. In each direction, the uni-directional distances (center-to-center, between the centers of two holes) and bi-directional distances (point-to-point, between the points of the two holes with the largest distance) are measured. For the evaluation of both kinds of lengths, 11 points illustrated in Fig. 4 are defined on each hole in accordance with the instructions
given in [2]. One example of uni-directional length is the distance between the centers of hole 1 and hole 26, computed as the distance between the points \(o-1 \) and \(o-26 \), where \('o-k' \) is the point \('o' \) (see Fig. 4) on the \(k^\text{th} \) hole. On the other hand, an example of bi-directional length is the distance between the hole 1 and hole 26 computed as the distance between the points \(h-1 \) and \(c-26 \), where \('c-k' \) or \('h-k' \) is the point \('c' \) or \('h' \) (see Fig. 4) on the \(k^\text{th} \) hole. Table 1 shows the number associated with each measurand in the uni/bi-length evaluations and the reference points of the holes to be measured.

![Figure 4. Circle of intersection between the mid-plane of the hole plate and a hole with a set of 11 identified points for each hole.](image)

Figure 5 shows the orientation used for scanning the steel hole plate. The nomenclature for the holes and directions along which lengths measurements were taken are identical to the aluminum plate in Fig. 3, despite the change in object’s orientation. Because steel is generally known to be a relatively heavier material than aluminum, with bigger X-ray beam attenuation coefficients (density), it is expected to produce more artifacts (distortions) on the CT reconstructed image than aluminum, so a re-orientation of the part was needed to minimize this effect when placing it closer to the X-ray source. This is the rationale for the re-orientation of the steel plate (see Fig. 5) respect to the aluminum plate orientation from Fig. 3. Because the steel plate is 8 times smaller than the aluminum plate, it was possible to place it closer to the X-ray source inside the cone radiation beam such that a magnification close to 8 times bigger could be used (not exactly 8, to avoid locating the sample so close to the source and interfering with it during its rotational movement). Other specific CT parameters used for scanning each part are specified in the results section.

Table 1. Labels associated for dimensional evaluations. 1 to 35 correspond to uni-directional (center-to-center) lengths, while 36 to 82 are bi-directional (point-to-point) distances. Reference points are based on Fig. 4. The measurands are ordered by ascendant magnitude but separated between uni-/bi-directional distances.

<table>
<thead>
<tr>
<th>#</th>
<th>From</th>
<th>To</th>
<th>#</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>o-14</td>
<td>o-15</td>
<td>42</td>
<td>e-1</td>
<td>j-1</td>
</tr>
<tr>
<td>2</td>
<td>o-4</td>
<td>o-8</td>
<td>43</td>
<td>g-1</td>
<td>b-1</td>
</tr>
<tr>
<td>3</td>
<td>o-1</td>
<td>o-2</td>
<td>44</td>
<td>f-1</td>
<td>a-1</td>
</tr>
<tr>
<td>4</td>
<td>o-1</td>
<td>o-7</td>
<td>45</td>
<td>f-1</td>
<td>a-1</td>
</tr>
<tr>
<td>5</td>
<td>o-6</td>
<td>o-9</td>
<td>46</td>
<td>h-1</td>
<td>c-1</td>
</tr>
<tr>
<td>6</td>
<td>o-26</td>
<td>o-25</td>
<td>47</td>
<td>h-1</td>
<td>c-1</td>
</tr>
<tr>
<td>7</td>
<td>o-28</td>
<td>o-24</td>
<td>48</td>
<td>h-4</td>
<td>c-8</td>
</tr>
<tr>
<td>8</td>
<td>o-1</td>
<td>o-3</td>
<td>49</td>
<td>f-14</td>
<td>a-15</td>
</tr>
<tr>
<td>9</td>
<td>o-4</td>
<td>o-12</td>
<td>50</td>
<td>f-1</td>
<td>a-2</td>
</tr>
<tr>
<td>10</td>
<td>o-14</td>
<td>o-16</td>
<td>51</td>
<td>h-1</td>
<td>c-7</td>
</tr>
<tr>
<td>11</td>
<td>o-1</td>
<td>o-11</td>
<td>52</td>
<td>i-6</td>
<td>d-9</td>
</tr>
<tr>
<td>12</td>
<td>o-6</td>
<td>o-13</td>
<td>53</td>
<td>e-26</td>
<td>j-25</td>
</tr>
<tr>
<td>13</td>
<td>o-26</td>
<td>o-23</td>
<td>54</td>
<td>b-28</td>
<td>g-24</td>
</tr>
<tr>
<td>14</td>
<td>o-28</td>
<td>o-20</td>
<td>55</td>
<td>h-4</td>
<td>c-12</td>
</tr>
<tr>
<td>15</td>
<td>o-1</td>
<td>o-4</td>
<td>56</td>
<td>f-14</td>
<td>a-16</td>
</tr>
<tr>
<td>16</td>
<td>o-4</td>
<td>o-17</td>
<td>57</td>
<td>f-1</td>
<td>a-3</td>
</tr>
<tr>
<td>17</td>
<td>o-14</td>
<td>o-17</td>
<td>58</td>
<td>h-1</td>
<td>c-11</td>
</tr>
<tr>
<td>18</td>
<td>o-1</td>
<td>o-14</td>
<td>59</td>
<td>i-6</td>
<td>d-13</td>
</tr>
<tr>
<td>19</td>
<td>o-6</td>
<td>o-18</td>
<td>60</td>
<td>e-26</td>
<td>j-23</td>
</tr>
<tr>
<td>20</td>
<td>o-26</td>
<td>o-22</td>
<td>61</td>
<td>b-28</td>
<td>g-20</td>
</tr>
<tr>
<td>21</td>
<td>o-28</td>
<td>o-17</td>
<td>62</td>
<td>h-4</td>
<td>c-12</td>
</tr>
<tr>
<td>22</td>
<td>o-6</td>
<td>o-20</td>
<td>63</td>
<td>f-14</td>
<td>a-17</td>
</tr>
<tr>
<td>23</td>
<td>o-26</td>
<td>o-20</td>
<td>64</td>
<td>f-1</td>
<td>a-4</td>
</tr>
<tr>
<td>24</td>
<td>o-14</td>
<td>o-18</td>
<td>65</td>
<td>h-1</td>
<td>c-14</td>
</tr>
<tr>
<td>25</td>
<td>o-4</td>
<td>o-22</td>
<td>66</td>
<td>i-6</td>
<td>d-18</td>
</tr>
<tr>
<td>26</td>
<td>o-1</td>
<td>o-5</td>
<td>67</td>
<td>e-26</td>
<td>j-22</td>
</tr>
<tr>
<td>27</td>
<td>o-1</td>
<td>o-21</td>
<td>68</td>
<td>b-28</td>
<td>g-17</td>
</tr>
<tr>
<td>28</td>
<td>o-14</td>
<td>o-19</td>
<td>69</td>
<td>i-6</td>
<td>d-20</td>
</tr>
<tr>
<td>29</td>
<td>o-4</td>
<td>o-27</td>
<td>70</td>
<td>e-26</td>
<td>j-20</td>
</tr>
<tr>
<td>30</td>
<td>o-1</td>
<td>o-6</td>
<td>71</td>
<td>h-4</td>
<td>c-22</td>
</tr>
<tr>
<td>31</td>
<td>o-1</td>
<td>o-26</td>
<td>72</td>
<td>f-14</td>
<td>a-18</td>
</tr>
<tr>
<td>32</td>
<td>o-28</td>
<td>o-10</td>
<td>73</td>
<td>f-1</td>
<td>a-5</td>
</tr>
<tr>
<td>33</td>
<td>o-6</td>
<td>o-27</td>
<td>74</td>
<td>h-1</td>
<td>c-21</td>
</tr>
<tr>
<td>34</td>
<td>o-26</td>
<td>o-19</td>
<td>75</td>
<td>h-4</td>
<td>c-27</td>
</tr>
<tr>
<td>35</td>
<td>o-28</td>
<td>o-1</td>
<td>76</td>
<td>f-14</td>
<td>a-19</td>
</tr>
<tr>
<td>36</td>
<td>h-4</td>
<td>c-4</td>
<td>77</td>
<td>f-1</td>
<td>a-6</td>
</tr>
<tr>
<td>37</td>
<td>f-14</td>
<td>a-14</td>
<td>78</td>
<td>h-1</td>
<td>c-26</td>
</tr>
<tr>
<td>38</td>
<td>d-6</td>
<td>i-6</td>
<td>79</td>
<td>b-28</td>
<td>g-10</td>
</tr>
<tr>
<td>39</td>
<td>e-26</td>
<td>j-26</td>
<td>80</td>
<td>i-6</td>
<td>d-27</td>
</tr>
<tr>
<td>40</td>
<td>b-28</td>
<td>g-28</td>
<td>81</td>
<td>e-26</td>
<td>j-19</td>
</tr>
<tr>
<td>41</td>
<td>i-1</td>
<td>d-1</td>
<td>82</td>
<td>b-28</td>
<td>g-1</td>
</tr>
</tbody>
</table>

For the third artifact, the ‘styli forest’ from Fig. 2, uni-directional lengths were measured (distances center-to-center between the spheres), but not
point-to-point (bi-directional) distances; measurements of form (sphericities) as well as average diameters sizes for each sphere were taken instead.

FIGURE 5. Steel plate orientation used for the CT scan. The nomenclature for the holes and directions for lengths measurements are identical as in Fig. 3.

FIGURE 6. Length measurement s for the aluminum hole plate as deviations from the nominal values claimed in reference [2]. The measurements labeled with ‘NO’ are taken without covering the plate with a shell during the CT scan, while those labeled with ‘ON’ were obtained by scanning the part inside the indicated aluminum shell. Positioning of the part is the same between ‘NO’ and ‘ON’ configuration when referred to the same shell type. The x-axis (Measurand #) numbers are those identified in Table 1.

To investigate material effects, the reference objects were covered during the CT scans with aluminum shields designed to present the specimen with a varying thickness of aluminum material (see photographs on Fig. 6, 7, and 10). Two shields provided by NIST were designed to be highly irregular with respect to the amount of material they present to the X-ray beam when scanning the aluminum hole plate and the styli forest, and a smaller shield was manufactured at UNC Charlotte to be used with the small steel hole plate. Since the plates are not calibrated, this study is investigating differences between length measurements from two different scans, a scan run of the reference part only (without the shell covers) and the second scan run with the shells added during the CT data collection.

TABLE 2. Machine parameters used during the CT scans for the measurement configurations of Fig. 6.

<table>
<thead>
<tr>
<th>Aluminum Hole Plate</th>
<th>Thread shell</th>
<th>Gear shell</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (kV)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>I (uA)</td>
<td>161</td>
<td>161</td>
</tr>
<tr>
<td>II (s)</td>
<td>267</td>
<td>267</td>
</tr>
<tr>
<td>SOD (mm)</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>SDD (mm)</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Pre-filter</td>
<td>Al 0.5</td>
<td>Cu 1.25</td>
</tr>
<tr>
<td># of IA</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Spot (um)</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Vx (um)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>M</td>
<td>2.56</td>
<td>2.56</td>
</tr>
<tr>
<td>projections</td>
<td>800</td>
<td>800</td>
</tr>
</tbody>
</table>

RESULTS

Figure 6 shows the measurement results for the aluminum plate at three configurations with two aluminum covers indicated by photographs: the ‘Thread’ and the ‘Gear’ shells (left bottom pics in Fig. 6). To establish consistency, each configuration was measured more than once, preferably taking two ‘NO-shell’ condition measurements before the ‘shell-ON’ measurements and two more after. Although the inclination of the part was different between measurements taken with the ‘Thread’ and ‘Gear’, the part stays in the same position in each case while taking ‘NO shell’ conditions measurements at each configuration, this becoming a reference for comparison. During measurement runs with the part covered by a shell, the X-ray’s energy was generally increased to enhance contrast of the CT image and penetrate the barriers interposed by the cover shells. To optimize contrast and minimize overall path length for the X-rays (avoiding beam hardening effects), an inclined position for the part is preferred, but inclinations may vary between different parts and/or shells. The scan parameters used during each run are shown on Table 2, and the nomenclature parameters are as
follows: \(V = \text{voltage} \), \(I = \text{current} \), \(t_t = \text{integration time} \), \(SOD = \text{source-object-distance} \), \(SDD = \text{source-detector-distance} \), \(I_A = \text{image averaging} \), \(V_x = \text{voxel size} \), and \(M = \text{magnification} \). Similar procedures were followed to obtain the CT scans on the small steel plate in the configurations with and without the aluminum shell for the orientation pictured in Fig. 7. Also, the ‘stylis forest’ with the aluminum oxide (ruby) balls was tested in this manner by using the ‘Thread’ and ‘Gear’ shells, see Fig. 8.

FIGURE 7. Length measurements for the steel hole plate as deviations from the nominal values claimed in reference [2]. BHC indicates when beam hardening correction is applied to the CT data. ‘NO’ and ‘ON’ labels follow the same convention stated in Fig. 6. The \(x \)-axis (Measurand #) numbers are referred in Table 1.

From Fig. 6, we see there is not a noticeable deviation between length measurements taken for the aluminum plate in ‘shell-ON’ condition in respect to ‘NO-shell’ configuration, other than a natural dispersion expected from the experiment. This leads to the conclusion that there is not an influence on the dimensional measurements for the aluminum hole plate when it is surrounded by additional material, like the aluminum cover shell. Only by increasing the power of the X-ray tube is it possible for the X-rays to penetrate the interposed aluminum barrier and transmit through the part to hit the detector without altering the dimensional measurements taken on the hole plate or object of study. The data dispersion in Fig. 7 is higher for the bi-directional lengths. This is likely because the distances are being taken between two individual points, rather than the hole centers calculated from many points, making the result more sensitive to measurement deviations. Locating positions using single points from the CT data can bring discrepancies; averaging neighbor locations in the point cloud around the desired position may increase the precision. Also, it is not easy to precisely locate the part (edges) boundaries in the surface determination phase of the CT data analysis. For the case of circular surfaces, boundary location errors generally do not affect the center locations since errors are expected to expand homogeneously in all directions and deviations will average out, and thus the center-to-center distances do not get affected. The resolution and repeatability of surface determination in CT generally depends on the voxel size selected for the scans, which was 50 \(\mu \text{m} \) for the aluminum hole plate. This gives us an expected dispersion more or less between +25 \(\mu \text{m} \) and -25 \(\mu \text{m} \) for dimensional measurements in Fig. 6.

FIGURE 8. Length measurements for the ‘stylis forest’ balls as deviations from data computed with Calypso in ‘NO shell’ condition. ‘NO’ and ‘ON’ labels follow the same convention stated in Fig. 6, but the software used for the analysis is labeled in parenthesis. The \(x \)-axis numbers determine the ball on which the measurand is taken recalling Fig. 2. Uni-directional lengths are measured between the referred ball (number) center and the zeroth sphere’s center.

The previous analysis can be extended for the steel hole plate. However, because steel is a heavier material than aluminum, it was expected to produce more artifacts on the reconstructed volume as a result of hardening effects [8]. Therefore, beam hardening correction (BHC)
algorithms were applied. Both, ‘BHC’ and ‘No BHC’ results are plotted in Fig. 7. Although errors from beam hardening were expected, for our tests there is not much difference between the ‘BHC’ and ‘No BHC’ results. The dispersion for the uni-directional lengths lies between -4 µm and +4 µm, as expected for a machine with a maximum permissible error for circle point location stated as MPE=(4+L/100) µm with L given in mm. Bi-directional measurements show bigger dispersion than for the uni-directional ones, for the same reasons explained in the case of the aluminum plate. The CT data in this case (steel plate) was taken with 8 µm voxel size, and the data dispersion for the bi-directional distances lies mostly between 0 and 16 µm (see Fig. 7), which may lead to conclude the bidirectional deviations are shifted 8 µm above the zero deviation. These results are interesting, but since the hole plates were not calibrated, this cannot be confirmed without measuring the part with a CMM (or other reference instrument) for comparison.

The dimensional measurements reported in Fig. 6 and 7 were computed with VGStudio MAX 2.2. A recalculation with Calypso, a software provided by the manufacturer of the CT equipment used, may produce interesting results for comparison in the future when a complete set of CMM references values for the hole plate measurands becomes available. For now we have computed differences between results calculated with the two softwares for the ruby spheres in the ‘stylus forest’ artifact shown in Fig. 2. The configurations using the aluminum shells is the same as described above, ‘NO-shell’ and ‘shell-ON’, and results are plotted in Fig. 8. No bi-directional (point-to-point) distances were measured, but measurements of form and sphericity, were obtained. As expected, the possible errors resulting from surface determination or imprecise location of edges is reflected in the dispersion of sphericity values (measurement of form). Length deviations between different measurement runs remain more or less within the MPE limits for the CT equipment used. Hence there does not appear to be a significant difference between dimensional measurements computed with the two softwares, VGStudio and Calypso. In future research, a comparison with values from a CMM will be added to this analysis.

CONCLUSIONS

Because dimensional measurements from a measuring machine other than CT are not available yet, it is not possible to assess the length measurement errors. It is possible to compare the difference between measuring the hole plates with extra-material (aluminum shells) compared with CT measurements taken on scans of the hole plate with no shell. From our results, no noticeable differences are observed for the measurements taken with extra-material (aluminum shell ‘ON’) around any of the hole
plates studied. There exists experimental data dispersion as expected from the physical process of measurement. Fig. 9 for example, shows a zoom view of the uni-directional lengths in a linear scale for the case of the steel hole plate, and it is worth noting that the dispersion or deviations between different measurement runs remains within the limits of the maximum permissible error for circle center point location stated by the CT manufacturer (MPE=4+L/100 µm with L given in mm). Similar behavior is repeated by the uni-directional distances in the case of the aluminum hole plate. In contrast, bi-directional measurements display higher dispersion, as can be seen for example in Fig. 10; deviations for the point-to-point measurements on the aluminum hole plate are lying in a region twice wider than the MPE, being MPE in this case the maximum permissible length error, MPE=(8+L/100) µm with L in mm. This is to be expected for a bi-directional strategy of measurement limited by two single points to assess (point-to-point) distances, mainly because of possible errors resulting in the edges (surface) determination. Locating very precisely the boundaries during the CT surface determination phase of the CT data analysis is challenging, but averaging neighbor locations in the point cloud around the claimed position to define the point might increase the precision of the bi-directional measurements. Furthermore, it is also noted that in both comparisons (uni/bi-directional) longer length measurements result in larger deviations from nominal values, which are the result not only of propagation of error with distance but of Feldkamp’s cone-beam CT reconstruction algorithm errors when using circular scanning paths [9, 10, 11]. When the calibration data for the items becomes available, this analysis will be revised to include a comparison of these techniques relative to this reference data. As a last observation, the CT measurements of this study were taken with a METROTOM 800, which is primarily used for scanning injection molding industrial parts (e.g., plastics, composite materials, ceramics, and lighter metals). However, steel parts require higher power levels of the source [12]. Therefore, measurements of the hole plates was performed to see the effects of the enclosures (aluminum shells) on the measurement and not the accuracy of the measurement. Authors are planning to repeat this study using more powerful CT system that would ensure more optimal measurement results.

ACKNOWLEDGMENTS
The authors would like to express their appreciation to Markus Bartscher from PTB (Germany) and Vincent D. Lee from NIST (Gaithersburg, USA) for their cooperation in providing the CT artifacts for this study. Also to Carl Zeiss Industrial Metrology, LLC for providing the CT measuring machine and Calypso software. To Volume Graphics GmbH as well, for providing VGStudio MAX. This study could not have been completed without their collaboration.

REFERENCES
Study on dynamic observation of sub-50 nm sized particles in water using evanescent field with a compact and mobile apparatus

Panart Khajornrungruang1, at 2, Patrick J. Dean2, and S. V. Babu2
1Department of Mechanical Information Science and Technology and the Advanced Die & Mold Technology Center
Kyushu Institute of Technology
Iizuka-shi, Fukuoka, Japan
2Department of Chemical and Biomolecular Engineering and the Center for Advanced Materials Processing
Clarkson University
Potsdam, New York, USA

INTRODUCTION
This study proposes the concept and a state-of-art compact and mobile apparatus for dynamically observing sub 50 nm-sized moving particles by using an evanescent field and applies it for several in-situ investigations.

EVANESCENT FIELD
Total reflection occurs when light irradiates the interface from a high refractive index \(n_1 \) material, into a lower refractive index \(n_2 \) material if the incident angle \(i \) is larger than the critical angle, \(\arcsin\left(\frac{n_1}{n_2}\right) \).

On the reflecting surface in the lower refractive index side, a localized light called an evanescent field that does not propagate in free space is generated and is localized near the surface as shown in Figure 1. The evanescent field intensity decays exponentially with distance from the reflecting surface as shown in the following equation (1). Here \(z \) is the distance from the reflecting surface, \(\lambda \) is the incident laser wavelength and \(I_0 \) is the incident laser intensity [1, 2].

\[
I(z) = I_0 \times \exp\left(-\frac{4\pi^2 \left(\frac{n_1^2 \sin^2 i - n_2^2}{\lambda}\right)}{\lambda}
ight) \quad \ldots(1)
\]

FIGURE 1. Evanescent field at a reflecting surface.

LIGHT SCATTERING FROM A PARTICLE NEAR THE REFERENCE SURFACE
Figure 2 shows how nano-sized particles convert an evanescent field to propagating light which is observable by a microscopy system when the particles enter the localized evanescent field. For an example, a particle moves near to the reference surface from left to right direction in the evanescent field, the propagating light intensity becomes maximum when the particle is nearest to the reference surface.

FIGURE 2. Dynamic observation of nano-sized particles in evanescent field.

By this method, only the particles near the reference surface can be visualized and investigated due to the limited range of the localized evanescent field. Therefore, an observed image of the scattered light from each particle, not an image of the particle, will have high contrast since there is no scattered light.
from particles that are out of the evanescent field.

DEVELOPED MOBILE APPARATUS

The optical system that was employed in this paper is shown in Figure 3. The scattering propagating light is accumulated to an area sensor of a digital camera with an objective lens (numerical aperture: NA = 0.45) and an infinity-corrected tube lens (focal length: f = 200 mm). The tube lens is applied for adjustability of working distance in observation.

![Figure 3. Optical system of the developed apparatus.](image1)

Figure 4 and Table 1 show the developed experimental apparatus with dimensions of W x L x H \(\approx 100 \times 150 \times 350 \) mm\(^3\) and a weight of 15.7 N that could be used for several applications of nano-sized particle in-situ investigations. The pixel resolution of the dynamically observed images was 79 nm/pixel in the following experimentations in this paper. And the \(n_1 \) of the reference surface and the \(n_2 \) of fluid (water) were 1.52 and 1.33, respectively.

![Figure 4. Experimental apparatus.](image2)

TABLE 1. Developed apparatus specifications.

<table>
<thead>
<tr>
<th>Laser Diode</th>
<th>Power (mW)</th>
<th>Wavelength ((\lambda)) (nm)</th>
<th>Incident angle ((i)) (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>532</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CMOS Camera</th>
<th>Pixel size ((\mu m^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optical lens system</th>
<th>Total Magnification</th>
<th>Numerical aperture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70x</td>
<td>0.45</td>
</tr>
</tbody>
</table>

![Figure 5. Observation of a test patterned wafer to approve the resolving power.](image3)

Resolving power of optical microscopy system

An already-known line-space patterned wafer surface was observed to approve the resolving power of the developed optical microscopy system. Figure 5 (a) shows an observed image of a line pattern on the wafer. The light intensity, i.e. grey scale, from the profile A-B in Figure5(a) is shown in Figure5(b). The optical microscopy system was evidently able to distinguish 400 nm separated pattern. This implies the clearly resolving power in the developed apparatus is 400 nm approximately [4].
Background subtraction for enhancing the scattering light from moving particles

In practical, there usually are few contaminants on the reference surface in observation. Therefore, scattering light from motionless contaminants, was assumed as a no-change background, which can be obtained by averaging each image frame that was recorded at each corresponding time \(t_1, t_2, \ldots, t_n \) and so on. Then, the scattering light from only moving particles of each image at \(t_n \) was enhanced by subtracting the no-change background out as shown in Figure 6. The observation images to be shown in the following experimental results were already subtracted the no-change background.

![FIGURE 6. Background subtraction](image)

Comparison between observation by evanescent field and bright field observation on 50 nm silica particles

A 50 nm silica particles observed image in polishing slurry in the evanescent field has considerably high contrast (the standard deviation: SD of grey scale was 2.2), comparatively in the usually-used bright field (the standard deviation: SD of grey scale was 15.1) as shown in Figure 7(a) and (b), respectively.

In the evanescent field, there was no scattering light from the particles that were out of the field, which was in the focal plane of optical system. In contrary, there was a lot of blurred scattering light from the particles that were out of the focal plane.

![FIGURE 7. Difference in 50 nm silica particles of one observed image](image)

STANDARD Au-PARTICLES OBSERVATION

Standard gold nanoparticles (diameter of 15±2, 20±2, 30±2, 50±3 nm; in water with 0.1mM or \(0.1 \times 10^{-3} \) mol/L of phosphate buffered saline; gold component less than 0.1%w/v or 0.1g/100mL) were observed at 100 frame/s. Scanning electron microscopy images of Au-nanoparticles, diameter of 30 nm and 15 nm are shown in Figure 8 (a) and (b), respectively for examples.

Figure 9 shows a typical observation for moving 30 nm particles. As the results, the 30 nm particles were tracked at 100 frames/s using 2000 \(\mu \)s exposure for frame.

Characteristic of Scattering Intensity with Exposure Time

Maximum scattering intensities that can result from particles moving nearest to the reference surface were plotted in Figure 10 for different exposure times. This characteristic maxima in
the scattering light intensity can be used as a calibration to determine particle size by proper exposure time.

Observation of Particles under a 4H-SiC Wafer

The particles near a SiC surface were also dynamically observed with birefringence in the scattering distribution due to the crystalline substance as shown in Figure 11. This method could also be applied for in-situ investigations of particle behavior [3] on a SiC wafer surface.

CONCLUSIONS

By using the developed compact and mobile experimental apparatus, sub 50 nm-sized moving particles can be dynamically observed. The characteristic peak in intensities of scattered light from particles in an evanescent field can be used to determine particle size with proper exposure time. Not only particles under a reference silica surface, but also those under a 4H-SiC wafer could be observed.

FIGURE 9. Tracking 30 nm particles in 1 s at 2000 μs of exposure time in the evanescent field.

FIGURE 10. Maximum intensity values from 500 frames corresponding to exposure time.

FIGURE 11. Scattering light with birefringence from a 50 nm moving particle

ACKNOWLEDGEMENTS

This work has been partially supported by JSPS Japan, KAKENHI Young Scientist Grant Number 25870514 and by the NSF I/U CRC on metamaterials. Authors would also like to thank Christopher Plunkett of Clarkson University for supporting the experiments.
REFERENCES

INSTALLATION OF A VIBRATING CONTACTING PROBE ONTO AN ULTRA PRECISION CMM

James D. Claverley¹, Michiel Baas², Ivo Widdershoven², Richard K. Leach¹ and Henny A. M. Spaan²

¹National Physical Laboratory
Engineering Measurement Division
Teddington, UK

²IBS Precision Engineering
Eindhoven, The Netherlands

© Queen’s Printer and Controller of HMSO, 2014

ABSTRACT
The initial results associated with the installation of the vibrating micro-probe from the National Physical Laboratory (NPL) onto the “Isara 400” 3D coordinate measuring machine (CMM) from IBS Precision Engineering are presented. The mechanical and electrical interface is described. The software used to operate the probing system, and to calculate the deflection and overtravel of the probe, is also described. The probing-point repeatability results are presented, as well as results from measurements of a flat gauging surface.

INTRODUCTION
A micro-CMM probe has been developed at the National Physical Laboratory (NPL), UK [1]. The probe is designed to operate in a vibrating mode to address the effects of the surface interaction forces prevalent at the micrometre scale. These surface interaction forces affect micro-CMM probes through surface adhesion and snap-in to, or, snap-back from, the measurement surface [2]. The vibrating micro-probe consists of a triskelion flexure array, housed in a MEMS device, assembled with a sphere-tipped micro-stylus [3]. The system was designed to vibrate by using six piezoelectric actuators (two on each flexure).

The vibration of the probe is controlled so that the acceleration of the stylus tip is sufficient to counteract the surface interaction forces between the stylus tip and the measurement surface during contact measurement [4] [5].

Interaction with the measurement surface produces a change in vibration characteristics which is determined by two PZT sensors on either end of each flexure.

An image of the NPL vibrating micro-CMM probe is shown in figure 1. The development and laboratory-based verification measurements of the vibrating probe are reported elsewhere [1] [6] [7].

FIGURE 1. The NPL vibrating micro-CMM probe.
Previous work conducted in the area of micro-co-ordinate metrology has concluded that further reduction of the errors associated with measurements taken using micro-CMMs is limited, primarily, by the probing systems [8]. Therefore, it is critical that new systems are developed.

INSTALLATION

Following the successful testing of the vibrating probe in laboratory conditions, the next stage was to install the probe onto a CMM of appropriate precision.

The Isara 400 ultra precision coordinate measuring machine (CMM) from IBS Precision Engineering offers a theoretical measuring uncertainty of approximately 57 nm (k = 2) per individual measuring axis over a measuring volume of 400 mm by 400 mm by 100 mm. The measurement of a flat mirror artefact shows a measurement uncertainty of 11 nm (k = 2) [9]. An image of the Isara 400 CMM is shown in figure 2.

The measuring principle of the Isara 400 CMM conforms to the Abbe principle in full 3D [10]. The axis positions are measured using laser interferometers, which are aligned to the common “Abbe point” [11].

The Isara 400 was chosen as it makes use of laser interferometers on its movement and measurement axes. Therefore, the measurements taken with the vibrating probe while installed on the Isara 400 can be compared with traceable displacements.

To complete installation, three main areas were considered: the physical interface, the electrical interface and the control and sensing software. To complete the physical interface between the vibrating probe and the Isara 400, a prototype CMM head was designed to allow for easy exchange of probes. The CMM head was also required to provide the function of electrical interface between the probe, the CMM and the control and sensing electronics. To realise the electrical connection, a set of suitable sprung-pin electrical connectors were installed into the CMM head. Electrical connection to the external control and sensing electronics (a set of simple low-pass filters, 2 kHz cutoff) was made using shielded, twisted pair connections.

A schema of the interface is shown in figure 3 and an image of the realised CMM head is shown in figure 4.

![FIGURE 2. The Isara 400 from IBS Precision Engineering](image)

![FIGURE 3. Schema of the physical and electrical interface for the vibrating micro-probe.](image)
FIGURE 4. The prototype CMM head

The software for the operation of the probe, developed by NPL using LabVIEW from National Instruments, fulfills two main tasks; the control of the vibration of the probe, and the calculation of the probing signal from the sensor output signals. The vibration of the probe is controlled according to a predefined mechanical model of the probe. The probing signals are calculated through Fourier analysis, and are compared with predetermined calibration information to define overtravel. This process is described in detail elsewhere [7].

Along with the calculation and output of the sensor signals, the operation software also interfaces with the Isara 400 to communicate the current state of the CMM and the probe. This communication includes: distinguishing between the CMM being in motion and stationary with the CMM preparing to probe, probing and an emergency halt signal.

RESULTS
Initial tests involved investigating the probing-point repeatability of the system. To complete this test, a single point was repeatedly contacted approximately one thousand times, and the calculated overtravel of the probe was compared to the reading from the laser interferometer scale on the z-axis of the Isara 400.

The comparison of the signals from the probe and the CMM introduces some error into the measurement as the signals are not synchronous and the CMM is never completely stationary (at the nanometer level). The combination of this asynchronous error, and other errors associated with the calibration and operation of the probe and its interface with the CMM, are all included in the probing-point repeatability. The raw data from this experiment is shown in figure 5.

FIGURE 5. Graph showing the calculated difference between the probe overtravel and laser scale reading for a single point measurement, repeated approximately one thousand times. This experiment ran for approximately three hours. The horizontal lines indicate ±23 nm (one standard deviation).
Results indicate that the repeatability is 23 nm (1σ) over approximately one thousand measurement points. The full range of the deviation of the measured data points is 136 nm. Combined with a calibration uncertainty of the vibrating probe of 14 nm (k = 1) [7], an initial single-axis probing error of 27 nm (k = 1) is estimated.

During completion of the one thousand point repeatability test, the environmental temperature of the laboratory changed by less than 0.05 K. It was, therefore, assumed that this effect on the measurements, especially the finite length of the stylus, was negligible. During completion of the one thousand point repeatability test, the position of the x and y axes were also recorded. These lateral axes experience a servo-error of less than 100 nm, but do experience two abrupt shifts of less than 6 μm, corresponding with the manual reset of the reference signal of the probe – as described later. These abrupt shifts do not correlate with any discernable shifts in the z-axis. Therefore, it is assumed that any servo-errors can be neglected.

Following the completion of the repeatability tests, two simple geometrical measurements were also completed, using the gauging surface of a grade 0 gauge block as a measurement sample [12]. Data sets consisting of one hundred measurement points, evenly spaced over two separate areas of 5 mm by 5 mm, were collected. Graphical representations of these data (leveled through rotation to a least-squares best fit plane) are presented in figure 6.

The presented data shows deviations from perfect flatness of 137 nm and 152 nm (peak-to-valley) respectively. This deviation is larger than the specified flatness deviation for a grade 0 gauge block (100 nm full field, assuming the gauge meets specifications), but comparable to the full range of the deviation of the measured data points due to repeatability. When including the associated estimated single axis probing error, the results become comparable, however, over the relatively small measured area (compared to the full surface area of the gauging face of the grade 0 gauge block) there is still a larger deviation in measured flatness than would be expected.

DISCUSSION
While completing the described tests, several further error sources became apparent. The effect of some of these error sources will now be discussed. The bespoke operating software developed by IBS Precision Engineering for the Isara 400 operates at 10 kHz. However, the amount of data required to adequately calculate probe signal through Fourier transformation results in a reduced output frequency of probe signals. Therefore, the calculation of the probe signals during operation is limited to an output frequency of 10 Hz. This limits the ability of the probe to detect any small (nanometre level) high frequency movements of the Isara 400 during calculation of the measurement point.

High precision probe signal calculations could not be realized due to the electrical characteristics of the probe coupled with the low-pass filters used to condition the sensor.
signals. This resulted in a calibration uncertainty due to sensor noise of up to 25 nm \((k = 1)\) in certain situations. Further investigation into suitable low-noise band-pass filters, including amplification, resulted in a calibration uncertainty due to sensor noise of 8 nm \((k = 1)\). Therefore, further development into suitable signal processing electronics and electrical connections has begun.

Throughout the testing stages, both off and on the CMM, several environmental factors proved detrimental to the operation of the probe. The sensitivity of the piezoelectric sensors and actuators is affected by changes in the relative humidity of the surrounding. It is estimated that slow changes in relative humidity can affect the length measuring capability of the vibrating micro-probe by 5 nm per 1 \%rh.

During the completion of the repeatability measurement, there was a change in the environmental humidity of 2.4 \%rh over 2.5 hours, which could result in a 12 nm change in the length measuring capability of the probe. During both flatness measurement tests, a change of approximately 1 \%rh was observed over twenty-five minutes, which could result in a 5 nm change in the length measuring capability of the probe.

A further environmental factor that proved detrimental to the operation of the probe is the surrounding ambient light intensity. To mitigate this effect, the ambient light intensity was kept constant. Future enhancements to the design of the vibrating micro-probe should, therefore, include an opaque barrier layer on the piezoelectric elements to reduce moisture diffusion and to block any incident light.

The operational strategies of the probe should also be enhanced to account for small and gradual changes in environmental humidity and light intensity. This would involve automatically resetting the reference signal of the probe after every probing point is measured, or at regular intervals. This technique was applied manually during the measurement of the repeatability (four times in one thousand measurements) and flatness measurements (twice in one hundred measurements), suggesting that the humidity and light intensity changes would have a lesser effect on the results than previously described.

FIGURE 7. Newly designed, low mass, CMM head, incorporating low-noise connectors. The main bulk of the head is manufactured from Invar.

Certain geometrical limitations, due to the size and mass of the prototype CMM head (as shown in figure 4), were also apparent during testing. Therefore, a refined CMM head was designed and manufactured, suitable for further testing of the probe. The new CMM head is shown in figure 7.

CONCLUSION AND FUTURE WORK
A vibrating micro-CMM probe has been successfully interfaced with an ultra-precision CMM. The single-axis probing error of the resulting system has been determined, and a simple flatness measurement has been completed.

Future work in this area should initially focus on the verification of the 2D and 3D capability of the probe, according to previously defined procedures [7] [13] [14].

Also, throughout the testing stages, both off and on the CMM, it has become apparent that the ability of the vibrating micro-probe to counteract the surface interaction forces also enables it to detect, and possibly trigger from those same forces [1]. Therefore, the vibrating micro-probe should also be tested when operating in non-contact mode, to further investigate this mode of operation.
The ability of the vibrating micro-probe to operate in a non-contact mode will have far reaching implications, especially as the use of new materials become prevalent in precision manufacturing, for example organic materials, aerogels, novel coatings on optics or medical implants and structured surfaces on 3D objects.

ACKNOWLEDGEMENTS
This work was funded by the NMS Engineering & Flow Metrology Programme 2011 to 2014 and by the European Commission within the project "Minimizing Defects in Micro-Manufacturing Applications (MIDEMMA)" (FP7-2011-NMP-ICT-FoF-285614). The authors would like to thank Mr David Flack and Dr Andrew Lewis from NPL for their review of this paper.

REFERENCES
MACHINED WORKPIECE ERROR PREDICTION

Robert P. Callaghan¹, Thomas Charlton²
¹Independent Quality Labs, Inc.
Ashaway, RI, USA
²Charlton Associates, LLC
North Kingstown, RI, USA

INTRODUCTION
The ability to make detailed, accurate predictions of actual workpiece errors is economically significant in multiple ways, affecting manufacturing costs (planning & set-up time, machine capability and maintenance), quality and time to market. Prediction of workpiece accuracy would allow design and manufacturing engineers to:

- Trade off feature tolerance choices against existing manufacturing process capabilities during design
- Develop machine specifications to meet required capabilities for new designs
- Eliminate non-value-added operations with “first part right” manufacturing process development
- Reduce risk in time-sensitive development and supply chain management
- Diagnose root causes rapidly for manufacturing process and maintenance problems
- Perform contract machining supplier qualification based on virtual capability analysis
- More effectively apply comprehensive virtual manufacturing technology

To be effective such predictions need to be feature-specific and directly related to design tolerances specified by standards such as ASME Y14.5 [1] or ISO 1101 [2]. By this we mean that predictions must be made for individual tolerances (e.g., cylindricity or true position) of individual workpiece features (e.g., a particular bore or slot.)

In the 1970s and ‘80s, two technical threads began that bear directly on the problem of machined workpiece error modeling. The first was the development of error budgeting methods [3] for systematically making estimates of the net effect of all of the errors in a machine or process. The second key development was the kinematic error model. [4]

In parallel, great strides have been made in the characterization and standardization of the parameters contributing to the accuracy of machine tools, measuring machines and other manufacturing equipment over the last 35 years.[4][5][6]

Slightly later, software systems to simulate machining processes using “destructive” solid geometry techniques began to be developed, and now have become available.

Unfortunately, limitations in each of these technologies prevent their simple combination to produce realistic predictions of the detailed geometry and surface form errors of machined workpieces.

OVERVIEW OF PRESENT WORK
To advance the state of the art for improved error prediction, Independent Quality Labs (IQL) and its technology partners began a dual path research program with the support of the US Army ARDEC. We report here on the successful completion of the two tracks of this project.

The first track (DFM) of this project focused on developing an error-budget-based tolerance consumption software tool which is relatively easy to use across a range of users (design, manufacturing, maintenance, quality, procurement) but delivers feature-specific predictions of sufficient accuracy to identify potential and actual manufacturing problems correctly.

The second track (SIM) of the project focused on more precise machining simulation using a significantly enhanced kinematic model of machine error motion to correctly predict global geometry and local surface form errors for all machined features. These model predictions were then used with commercial simulation software to produce realistic virtual part geometry, which was then compared to
measurements of actual machined workpiece geometry.

LOCUS® DFM DEVELOPMENT
The broad development goals for the DFM tool included:

- Tolerance/datum specific results
- Workpiece orientation specific results
- Problem-oriented simplified output
- Limited but extensible information about machine errors
- Computational efficiency
- Reliance on standards

The development of Locus® DFM to meet these goals had three major sub-tasks: a feature-specific error budgeting engine, realistic generic grades of machine tool performance and a relatively simple user interface.

Feature-specific Error Budgeting Engine
IQL previously developed an error budgeting process for analyzing feature-specific tolerance consumption based on an extensive list of measured performance errors identified in machine tool standards [5][6]. This process combines a kinematic error model with non-kinematic errors in an rss summation. The specific nature of the tolerance (type, datum structure, sensitive direction) is taken into account to select and use only those errors that are significant for the feature of interest. [3]

This basic analytic process forms the core technology for a fully automated, callable DFM computation engine in this sub-task. Key elements include the ability to use generic, estimated or measured machine errors, linearization of machine errors to reduce workpiece positioning sensitivity, and a methodology to correctly combine form and location effects in Attribute Feature Pairs (AFPs).

Generic Machine Performance Modeling
IQL has an extensive database of over 500 machine characterizations spanning many kinematic sub-classes and machine performance levels. For the DFM task, data mining in this database allowed development of realistic generic machine performance grades. This simplifies the need for machine performance knowledge by design users, while keeping the option of using all the mathematical structure associated with individual machine errors, if they are actually known.

Five generic machine grades were identified in the data for two demonstration subclasses. Typical constants or error slopes (ppm errors) were assigned for the many individual errors. Those grades are summarized below.

TABLE 1. DFM's five generic grades

<table>
<thead>
<tr>
<th>Performance Grade</th>
<th>Volume Diagonal Error Slope (µm/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td><10</td>
</tr>
<tr>
<td>AA</td>
<td>10-20</td>
</tr>
<tr>
<td>A</td>
<td>20-40</td>
</tr>
<tr>
<td>B</td>
<td>40-65</td>
</tr>
<tr>
<td>C</td>
<td>>65</td>
</tr>
</tbody>
</table>

User Interface
The simplest way to capture the tolerancing details of workpiece features is to work from a CAD annotated solid model. A CAD environment is also typically the place where manufacturability analysis takes place. For these reasons, the Locus® DFM tool was initially implemented as an add-in to a commercial CAD system (SolidWorks®).

The DFM tool extracts all feature tolerances from the model and passes them sequentially to the DFM engine with a particular workpiece orientation on the machine. This process is repeated with all basic workpiece orientations plus specific orientations for hard-to-access features. The DFM engine returns predicted errors for each feature tolerance/orientation combination, and a tolerance consumption percentage is calculated.

The user is then presented with a rank ordered list of feature tolerances based on a user selected constraint (minimum orientation set or minimum error set). The ranking is based on the minimum machine grade required to keep the tolerance consumption below a selected percentage (e.g., 25%). This tolerance consumption limit is set by allocating in a global error budget what percentages of the feature tolerance may be consumed by the machine tool, process, inspection uncertainty and environmental influences.

DFM RESULTS
A typical output table is shown as a screen capture in FIGURE 1 below. Note that the first
item in the listing, “Diameter2” of “SimpleHole1”, requires an AA grade machine to produce it at the 25% tolerance consumption level, while the “CompositePosition1” of the same feature only requires a B grade machine to hold the 25% tolerance consumption. All other features on this workpiece can be successfully produced on a C grade machine.

FIGURE 1. Locus® DFM output in SolidWorks®

LOCUS® SIM DEVELOPMENT

Key developments required to produce a better simulation of machined accuracy are:

- Enhancement of standard kinematic models to incorporate significant non-kinematic effects seen in machine tools
- Methodology to handle tool orientation errors effects on form
- Technique to incorporate machine error effects into simulation software
- Validation of new approach by direct comparison of simulated virtual workpiece geometry with measurements of actual machined workpieces

Limitations of kinematic modeling

Kinematic error models make precise predictions of individual error effects on the trajectory of a tool point, but the collection of these trajectory points is not easily related to final part geometry for comparison to required tolerances. Nor does this modeling method include the effects of the multitude of non-kinematic errors, such as axis reversal errors, commonly seen in machine tools. Finally, this modeling technique does not completely handle the form errors that arise from misalignment of the tool (spindle) orientation with the part coordinate system’s axes.

Enhanced Kinematic Modeling

Locus® SIM enhances a kinematic error model of the machine by directly incorporating several significant non-kinematic errors. The enhanced model modifies the dependence of angular errors on the location of a single axis to allow dependence on a cross-axis location. This handles non-kinematic effects of typically over-constrained machine tool guideways. Also, all kinematic errors are allowed to have motion-direction-dependent zero offsets to account for reversal errors. This enhanced model does not yet include spindle rotational motion errors, servo dynamics, table bending, tool deflection or thermal errors.

LOCUS® eM Machine Data Collection

Three specific enhancements of our machine error data collection process are important to note.

First, data was collected with a project sponsored system, Locus® eM, interfaced with a variety of measurement instruments. The system stored data files in formats consistent with the Draft B5.59 Information Technology for Machine Tools Parts 1 and 2 [7][8].

Second, since local bending of the workpiece mounting surface (i.e., the machine table) is not included in the current model, all machine error data are collected between the machine spindle and components mounted on a rigid sub-table (actually an aluminum spar) mounted quasi-kinematically on three points at the table guideway bearing locations.

Finally, we also address the often overlooked necessity to post-process the measurement data so the Abbe and Bryan errors have a common set of reference axes for internal consistency in the handling of axes’ relative orientation errors, e.g., squarenesses.

Tool Orientation Errors

Proper handling of the tool orientation relative to the workpiece coordinate system is essential to model the workpiece form errors correctly. As stated, the standard kinematic model computes the location of a single tool point location. However, many tools (e.g., long end mills, shell mills, drills) cut simultaneously over a distributed region. Therefore, if the tool is slightly tilted relative to the part, it will make oval holes or inclined vertical faces. This effect is not usually represented by kinematic modeling but is an
important cause of workpiece error on most machine tools.

To handle this effect correctly, the extended kinematic model developed in this project also incorporates the extraction of the local tool orientation angles from the final composite error matrix for use in the model.

Software Integration
The sequence to make a virtual workpiece starts with a CAD nominal solid model generating a G-code program as post-processed output from a CAM system (MasterCAM®). The enhanced kinematic model is incorporated into a post-post-processing module inserted between the CAM post-processor and a commercial machining simulation package (Vericut®).

A critical detail of the post-post-processor is a step we call “gridding.” The nominal G-code program contains the endpoints of machine nominal motions. However, the local form errors in machined features of a workpiece are caused by local motion errors between the start and endpoint. Therefore, nominal motion commands in the CAM produced G-code are subdivided into sequential short move segments. The error modeling computations are applied at each of these intermediate points to produce a realistic tool trajectory.

The post-post-processor output is thus a much larger G-code program with nominal motion replaced by error modified motion. The machining simulation software simply executes this modified G-code, but produces a simulated solid model representing what the machine tool can be expected to actually make. The errors in the simulated solid model were compared to the nominal model using measurement capabilities of the machining simulation software.

Validation
To validate this new simulation approach, a standard circle-diamond-square (CDS) was selected as a test workpiece. Using the original nominal G-code program for the CDS, three copies in aluminum were produced on our Haas VF-2 machining center. (The machine was intentional misadjusted to increase the magnitude of a few angular errors for testing purposes.) After scanning these test parts on a high accuracy CMM, the measured data were directly compared to surface points on the simulated solid model. Agreements between simulated and measured results were within 0.010 mm, and generally smaller. All simulated geometry errors in the CDS are shown in FIGURE 2 with error magnitudes shown in pseudo-color.

FIGURE 2. Simulated surface errors in CDS.

CONCLUSIONS
Locus® DFM and Locus® SIM proof-of-concept implementations demonstrate significant new capabilities for routine analysis of workpiece manufacturability at design time and during manufacturing process development and execution, as well as a significant improvement in the accuracy of virtual machining, showing realistic details of common form errors as well as dimensional geometry errors.

ACKNOWLEDGEMENTS
This material is based upon work supported by the Armament Research, Development and Engineering Center (ARDEC) through US Army Contracting Command - Picatinny under Contract No. W15QKN-10-C-0039.

We also acknowledge significant technical contributions to this work by our colleagues Clay Tornquist of PrizMetric, Steven Lord of Independent Quality Labs, Michael Mariani, now with Hexagon Metrology, and Justin Lebel, now with Renishaw.

REFERENCES
[1] ASME Y14.5-2009 Dimensioning and Tolerancing
[4] Schwenke, H., Geometric error measurement and compensation of

INTRODUCTION
Friction is one of the most important limiting factors for positioning accuracy in servosystems. In measurement applications, movements with velocities smaller than 1 mm/s are typical, acceleration values are equally small. Thus, friction force is the dominating force in these positioning mechanisms and has to be addressed by the control systems.

EXPERIMENTAL SETUP
The setup depicted in Figure 1, based on a linear motor, is used to position small objects like microlens-arrays or wafers containing MEMS relatively to optical sensors for the purpose of quality inspection. It is designed to be integrated into a modified Mahr MFU 100 measuring machine as an additional drive axis\(^1\). The recirculating ball bearing guide induces substantial friction into the system. A linear encoder with 10 nm resolution is used to measure the position of the linear motor.

FRICTION MODEL
The elastoplastic friction model proposed in [1] was used to model and compensate for the friction of the measuring machine’s drives. It is based on the bristle model of surfaces irregularities shown in Fig. 2.

\[\dot{z} = \dot{x} \left(1 - \alpha(z, \dot{x}) \frac{z}{z_{ss}(\dot{x})} \right) \]
\[F_{\text{friction}} = \sigma_0 z + \sigma_1 \dot{z} + \sigma_2 \dot{x}, \quad \sigma_0, \sigma_1, \sigma_2 > 0 \]

The spring rate is denoted by \(\sigma_0\), the damping constant by \(\sigma_1\), the viscous friction typically appearing at large velocities is described by \(\sigma_2\). The average bristle deflection \(z\) is the state variable of this first-order model. In contrast to other friction models, the elastoplastic model permits the modelling of motions in the pre-sliding domain as purely elastic motions without permanent displacement.

The friction force at small displacements, in the purely elastic or pre-sliding domain, is caused by the reaction force of the bristle deflection \(z\). In this domain, the overall motion of the moving mass \(x\) is identical to the bristle deflection, \(x = z\). When the motor force is reduced to zero, this elastic displacement will also disappear. As soon as the maximum purely elastic bristle deflec-
tion, the break-away deflection \(z_{ba} \), is exceeded, sliding between the bristles occurs and the sliding domain is reached. The sliding motion \(w \) is a plastic displacement which will not disappear when the motor force is deactivated. The transition from the pre-sliding to the sliding domain is parametrized by the function \(\alpha(z, \dot{x}) \). As proposed in [2] and [1], \(\alpha(z, \dot{x}) \) is parametrized by (2).

The bristle deflection increases in the sliding domain with increasing travel distance. It is asymptotically limited by the velocity-dependent maximum steady-state bristle deflection \(z_{ss}(\dot{x}) \) with \(0 < z_{ba} \leq z_{ss}(\dot{x}), \forall \dot{x} \in \mathbb{R} \).

The velocity-dependence of \(z_{ss}(\dot{x}) \) describes the velocity-dependence of the friction force \(F_{\text{friction}} \) according to the Stribeck-Curve [3]. The Stribeck-Curve can be parametrized by (3) as described in [2].

\[
\begin{align*}
\alpha(z, \dot{x}) = & \begin{cases}
0 & \text{for } |z| \leq z_{ba} \land \text{sgn}(\dot{x}) = \text{sgn}(z), \text{ pre-sliding domain} \\
\alpha_m(z, z_{ss}(\dot{x})) = \frac{1}{2} \sin \left(\pi \frac{z - \frac{1}{2}(z_{ss}(\dot{x}) + z_{ba})}{z_{ss}(\dot{x}) - z_{ba}} \right) + \frac{1}{2} & \text{for } z_{ba} < |z| < z_{ss}(\dot{x}) \land \text{sgn}(\dot{x}) = \text{sgn}(z), \text{ transition} \\
1 & \text{for } |z| = z_{ss}(\dot{x}) \land \text{sgn}(\dot{x}) = \text{sgn}(z), \text{ sliding domain} \\
1 & \text{for } |z| > z_{ss}(\dot{x}) \land \text{sgn}(\dot{x}) = \text{sgn}(z), \text{ Stribeck-Effect} \\
0 & \text{for } \text{sgn}(\dot{x}) \neq \text{sgn}(z), \text{ motion reversal, purely elastic}
\end{cases}
\end{align*}
\]

A typical Stribeck-Curve is depicted in Fig. 3, \(F_C \) denotes the Coulomb-Friction and \(F_S \) denotes stiction. The Stribeck-Velocity \(v_s \) is a form factor of the curve. Note that viscous friction is not included in the chosen representation of the Stribeck-Curve because it is already included in (1) by the term \(\sigma_2 \dot{x} \).

FRICION PARAMETER IDENTIFICATION

The microscopic friction parameters, the bristle parameters \(\sigma_0, \sigma_1, z_{ba} \) and \(z_{ss}(\dot{x} = 0) \), are identified using trapezoidal motor force trajectories. The Stribeck-diagram is recorded using velocity trajectories. When the viscous friction coefficient \(\sigma_2 \) is determined, the remaining portion of the Stribeck-diagram (as shown in Fig. 3) can be fitted to the parametrization (3) with the parameters \(F_C, F_S \) and \(v_s \). A detailed description is given in the following.

\[
z_{ss}(\dot{x}) = \frac{\text{sgn}(z)}{\sigma_0} \left(F_C + (F_S - F_C) e^{-\left(\frac{\dot{x}}{v_s}\right)^2} \right)
\]

\((3)\)

The reversal points are placed further away from \(x_i \) for increasing velocities, in order to ensure that all acceleration transients have decayed when the motor enters \(x_i \). Thus, the control effort inside \(x_i \) is only required to overcome the friction. (4) can be used to calculate the actual friction force \(F_{\text{friction}} \) from the control effort (motor force) \(F_{\text{motor}} \).

\[
F_{\text{friction}} = F_{\text{motor}} - m \ddot{x}
\]

\((4)\)
The term $m\ddot{x}$ (including the motor inertia m) is included to correct for any velocity deviations, although experience shows that their contribution to the motor force can be neglected.

Each time the motor passes through x_i, one sample of the Striebeck-curve is taken by calculating (4) and averaging the determined friction force over x_i. The data points for velocities from 0.01 mm/s to 100 mm/s, plotted over the positive (or negative) velocity of the motor, result in the Striebeck-curve depicted in Figure 5. The parameters σ_2, F_C, F_S and v_S of the parametrization (3) can be determined by fitting this curve to the samples using least-squares. The parametrization is also included in Figure 5 and the parameters can be found in Table 1.

TABLE 1. Parameters of the Striebeck-curve (3).

<table>
<thead>
<tr>
<th>$\dot{x} < 0$</th>
<th>$\dot{x} > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>parameter</td>
<td>value</td>
</tr>
<tr>
<td>F_C</td>
<td>-0.298 N</td>
</tr>
<tr>
<td>F_S</td>
<td>-0.352 N</td>
</tr>
<tr>
<td>σ_2</td>
<td>0.141 N/mm2</td>
</tr>
<tr>
<td>v_S</td>
<td>-0.011 m/s</td>
</tr>
</tbody>
</table>

Parameters of the Bristle Model

The bristle parameters, $\sigma_0, \sigma_1, z_{ba}$ and $z_{ss}(\dot{x} = 0)$, are identified by applying the force trajectories with increasing maximum values shown in Figure 6 to the motor in open loop operation. The measured motor position x is again composed of the elastic portion z which is equivalent to the bristle deflection and the plastic portion w, $x = z + w$. Since there is no measurement for z available, it has to be reconstructed based on the following consideration:

If the force slope is chosen small, the portion of the motor force caused by the motor’s inertia can be neglected, thus the motor force is approximately equal to the friction force, $F_{\text{friction}} \approx F_{\text{motor}}$. Furthermore, the microscopic and the macroscopic damping, represented by σ_1 and σ_2, can be neglected. The spring force of the bristles, the Striebeck-effect and the slip (for $z > z_{ba}$) remain. As can be seen in Figure 6, the elastic displacement z can be calculated after each motion cycle as the difference of maximum displacement x_{max} and the plastic displacement $x_{\text{end}} = w$, $z = x_{\text{max}} - w$. The bristle parameters can thus be identified from the relaxation of the elastic displacement at the end of each motion cycle.

As long as the motion is within the purely elastic regime $x_{\text{max}} \leq z_{ba}$, there will be no displacement after the end of the motion cycle, $w = 0$. The diagram in Figure 7 shows z_{max} plotted against x_{max}. For small displacements, the diagram is a straight line since $z_{\text{max}} = x_{\text{max}}$. The end of this straight line indicates the end of the purely elastic regime z_{ba}, which can thus be identified from this plot.

For larger motion amplitudes $x_{\text{max}} \gg z$, the elastic displacement z converges against the maximum bristle deformation z_{ss} which can thus also be identified from Figure 8.

Figure 9 shows z_{max} plotted against F_{max} for the purely elastic regime. The linear spring-like behaviour of the bristles is obvious and the
FIGURE 6. Force trajectories used to identify the bristle parameters.

FIGURE 7. z_{max} plotted against x_{max} with z_{ba} indicated.

spring rate σ_0 can be derived from this plot as $\sigma_0 = \Delta F / \Delta z$.

In a final step, the bristle damping constant σ_1 can be derived from considerations on the overall system damping ratio ζ, (5).

$$\zeta = \frac{d}{2 \sqrt{km}} = \frac{\sigma_1 + \sigma_2}{2 \sqrt{km}}$$

(5)

Since mechanical systems with a large influence of friction exhibit a highly damped system response, it is a good assumption that the damping ratio ζ is large, so $\zeta = 1$ is chosen. σ_1 is thus calculated from (6).

$$\sigma_1 = 2 \zeta \sqrt{\sigma_0 m} - \sigma_2$$

(6)

An overview of the identified system parameters is given in Table 2. Direction-dependent parameters are represented by their mean values in this table.

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_{ba}</td>
<td>0.4 μm</td>
</tr>
<tr>
<td>z_{ss}</td>
<td>1.927 μm</td>
</tr>
<tr>
<td>σ_0</td>
<td>65922 N/m</td>
</tr>
<tr>
<td>σ_1</td>
<td>479.36 N/m</td>
</tr>
<tr>
<td>m</td>
<td>0.843 kg</td>
</tr>
</tbody>
</table>

TABLE 2. Dynamic parameters of the linear drive.

FRICITION COMPENSATION

The goal was to implement a position control system allowing for high-accuracy movements in both the pre-sliding and the sliding domain with one single controller, avoiding switching between separate controllers for the two domains.

To achieve this goal, the elastoplastic friction model is used in a feedforward control scheme, in which the estimated friction force F_{friction} is ap-
plied to the motor in order to compensate for the friction [2]. An estimator for the unknown initial state of the friction model, the initial bristle deflection z, is established by using the feedback controller’s control effort, which is equivalent to the difference between the estimated motor force and the actual motor force as feedback for the estimator loop. Since transitions between the pre-sliding and the sliding domain are included in the elasto-plastic friction model, they are also included in the estimation and feedforward compensation. In addition to the mentioned observer for microscopic motions, a second observer for macroscopic motions is included into the friction estimator to adapt the Stribeck-diagram to any position-dependent variations along the linear bearing and wear. The feedback control effort is also used as feedback for this estimator, however the estimation is only active at large velocities.

Assuming that friction forces are sufficiently compensated for by this feedforward controller, the feedback controller can simply be designed for the remaining linear “free mass” plant. However, the linear portion of the friction force, the viscous friction $\sigma_2 x$, is also included in the linear plant to obtain a more accurate design model for the feedback controller.

A PID feedback controller, combined with a linear flatness-based feedforward controller for improved trajectory tracking, is used for this purpose. The control effort for the linear plant is thus calculated from (7). The overall control system is shown in Figure 10.

$$u = k_1 \int e \, dt + k_p e + k_d \dot{e} + \underbrace{\sigma_2 \dot{r} + m \ddot{r}}_{\text{linear feedforward}}$$

EXPERIMENTAL RESULTS
The motion of the drive axis at a slow measuring speed of 200 μm/s is regarded to demonstrate the effectiveness of friction compensation and motion control. The position trajectory, generated with the point-to-point trajectory generator, and the measured position is shown in Figure 11. The control error during this motion with a maximum value of 0.5 μm is depicted in Fig. 12. The control error of more than 2 μm without feedforward friction compensation depicted in Figure 13 is four times as large.
is dominated by the friction feedforward compensator and that the feedback controller only has to compensate for small model uncertainties and disturbances. This shows that the friction in the bearings and guides is estimated and thus compensated for well by the friction estimator. It also emphasizes that friction is the dominating force in motions with low speed as required to scan a surface with optical sensors, for example.

ACKNOWLEDGEMENTS

This work was financed by the Baden-Württemberg Stiftung gGmbH within the project AMuPrüf. We would like to thank our partners from the Institute of Applied Optics (ITO) for their good cooperation in this project.

REFERENCES

DATA-DRIVEN CONTROL STRATEGY FOR A RETICLE STAGE IN A LITHOGRAPHIC TOOL

Yi Jiang, Kaiming Yang, Yu Zhu and Chuxiong Hu
1State Key Laboratory of Tribology, Department of Mechanical Engineering
Tsinghua University
Beijing, China

INTRODUCTION
High-performance motion systems, such as lithographic wafer-scanners, usually require ultra-precision multi degrees-of-freedom (DOFs) motion control. In contrast to model-based control, data-driven control is widely used to address the practical difficulty on obtaining accurate system models. The rationale of data-driven control is that the controller is parameterized and the parameter vector is directly generated by fully using of the IO collection data, without the need of dynamics modeling. Most data-driven methods, such as IFT [1], CbT [2] and FDT [3], solve the controller design problem by iteratively minimizing an \(H_2 \) performance criterion, and the iterative law can be expressed as [1]

\[
p^{k+1} = p^k - \gamma^k R^{-1} \nabla J|_{p^k},
\]

where \(p \) is the controller parameter, \(\nabla J \) is the gradient of the performance criterion \(J \) with regard to the parameter vector \(p \), \(k \) is the number of iteration, \(R \) is a positive definite matrix and \(\gamma \) is the step size.

In this paper, a simplicity and accuracy oriented data-driven control strategy is proposed to synthetically build the control system of a 6-DOF ultra-precision dual-stroke stage. The stage, namely reticle stage which is used in a lithographic tool to manufacture integrated circuits (ICs), moves the pattern at nanometer accuracy in synchronization with the wafer [4].

DESIGN AND CONTROL CONCEPT
The developed dual-stroke reticle stage, consisting of a 6-DOF short-stroke (SS) stage for fine motion and two 1-DOF long-stroke (LS) stage for coarse motion, is used to achieve high-velocity and high-precision motion performance.

Figure 1 shows the structural configuration of the dual-stroke stage. SS stage is driven by ten voice coil motors (VCMs) to achieve contactless 6-DOF movement. Considering the heat dissipation, four magnetic gravity compensators (MGCs) are mounted in the center of the four vertical VCMs to counteract the gravity. The displacement is measured by multi-axis laser interferometers with 0.6 nm resolution.

Two friction-free LS stages are symmetrically distributed on the two sides of SS stage. Each LS stage is driven by an ironless linear motor and the measurement system includes eddy sensors and linear encoders.

Figure 2 shows the concept of the control system. SS stage is measured by laser interferometers and is controlled in the absolute coordinate system. The LS loop is synchronized with SS stage, which has two control modes: one is to keep a constant relative displacement with SS stage, and the other is to track the same trajectory of SS stage. LS stage is measured by eddy sensors under the first mode, and is measured by linear encoders under the second mode.

The underlying performance with the used control configuration is mainly determined by three parts: 1) the static input dynamic decoupling matrix \(\Psi \) for achieving closed-loop diagonal dominance; 2) multi-SISO feedback controller \(C \) for...
fine robust stability and quick response; 3) MIMO feedforward controller \(F \) for improving tracking performance.

THE SYNTHETICAL DATA-DRIVEN ITERATIVE CONTROL STRATEGY

Figure 3 shows the horizontal dynamics of SS stage, and the other three DOFs have the similar dynamic characteristics. As the dynamics present the high-order and uncertainty characteristics which are adverse to employ model-based approach, a data-driven control strategy is proposed with an integrated design for \(\Psi_s, C_s \) and \(F_s \). For simplicity, SS stage is considered in this paper.

![Figure 3. Horizontal dynamics of SS stage](image)

In this paper, considering the mismatch between the achieved and the desired output is the crucial performance index, the \(H_2 \) performance criterion is chosen as

\[
J(p) = \frac{1}{N} \sum_{n=0}^{N-1} \|\hat{y}(n,p)\|^2 = \frac{1}{N} \sum_{n=0}^{N-1} \|y(n)-y_d(n)\|^2
\]

where \(y \) and \(y_d \) denote the achieved and the desired output, respectively. The gradient can be derived as

\[
\nabla J(p) = \frac{2}{N} \sum_{n=0}^{N-1} \left[\hat{y}(n,p) \nabla y(n,p) \right]
\]

Generally, \(R \) in (1) is chosen as the Hessian matrix and the Gauss-Newton direction [5] is a common choice as follow

\[
R(p) = \frac{2}{N} \sum_{n=0}^{N-1} \left[\nabla y(n,p) \nabla y(n,p) \right]
\]

As \(y(n) \) can be directly collected from the system, the approximation of \(\nabla y \) is crucial for the control performance. The following subsections will present the proposed design method of the \(\Psi_s, C_s \) and \(F_s \), and the corresponding approximation principle of the gradient, respectively.

Static Input Decoupling Matrix \(\Psi_s \)

Consider the plant with linear assumption

\[
M \ddot{x} + C \dot{x} + Kx = F_s
\]

where \(M, C \) and \(K \) denote the inertial, damping and stiffness matrix, respectively. The state vector \(x \) is defined as \([x, y, z, \theta_x, \theta_y, \theta_z]^T \), and the global force \(F_s \) is defined as \([F_{x\text{ad}}, F_{y\text{ad}}, F_{z\text{ad}}, T_{x\text{ad}}, T_{y\text{ad}}, T_{z\text{ad}}]^T \). Using the Moore-Penrose inverse that obtains the minimum power commutation, the global force \(F_s \), the local force \(f \) and the control force \(u_s \) satisfy

\[
F_s = (\Psi_s^*)^T f_s = (\Psi_s^*)^T \Psi_s u_s
\]

where \(f_s = [f_{x1}, f_{x2}, f_{y1}, f_{y2}, f_{z1}, f_{z2}, f_{z3}, f_{z4}]^T \), \(u_s = [u_{x1}, u_{y1}, u_{y2}, u_{y3}, u_{y4}, u_{z1}, u_{z2}, u_{z3}, u_{z4}] \) and \(\Psi_s^* \) is the optimal value of the static input decoupling matrix \(\Psi_s \). \(\Psi_s \) can be defined as

\[
\Psi_s = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
-l_{xv} & -l_{xv} & 0 & 0 & 0 & 0 & -l_{xv} \\
l_{xv} & l_{xv} & 0 & 0 & 0 & 0 & l_{xv} \\
l_{xv} & -l_{xv} & 0 & 0 & 0 & 0 & l_{xv} \\
l_{xv} & l_{xv} & 0 & 0 & 0 & 0 & l_{xv} & l_{xv}
\end{bmatrix}
\]

where \(l_i \) denotes the arm of force. In general, \(\Psi_s \) is determined by the computer-aided model in practical system. However, due to the inevitable modeling error, the offset \(p_{ad} = [p_x, p_y, p_z] \) between the actual and theoretical center of mass (COM) will render additional torque \(T_{ad} = [T_{x\text{ad}}, T_{y\text{ad}}, T_{z\text{ad}}] \), as shown in Figure 4. To achieve diagonal dominance, a data-driven method is proposed to reduce the coupling. As the servo error \(e_{s} \) directly reflects the torque coupling, the desired output \(y_d \) in (2) is chosen as the reference profile \(r_s \). With the rotational DOFs keep positioning, the rotation error can be approximated as

\[
\begin{bmatrix}
e_{s_{\text{ad} x}} \\
e_{s_{\text{ad} y}} \\
e_{s_{\text{ad} z}}
\end{bmatrix} = -\text{diag}
\begin{bmatrix}
P_{x_{ad}} & P_{y_{ad}} & P_{z_{ad}} \\
1 + P_{x_{ad}} C_{x_{ad}} & 1 + P_{y_{ad}} C_{y_{ad}} & 1 + P_{z_{ad}} C_{z_{ad}} \\
\end{bmatrix}
\begin{bmatrix}
T_{x\text{ad}} \\
T_{y\text{ad}} \\
T_{z\text{ad}}
\end{bmatrix}
\]

![Figure 4. Force acted on the SS stage](image)
where T_{yp} is the process sensitivity transfer function matrix. The additional torque matrix is

$$
\begin{bmatrix}
T^a_x \\
T^a_y \\
T^a_z \\
\end{bmatrix} =
\begin{bmatrix}
0 & -u_z & u_y \\
u_z & 0 & -u_y \\
-u_y & u_x & 0 \\
\end{bmatrix}
\begin{bmatrix}
p_x \\
p_y \\
p_z \\
\end{bmatrix}
$$

(9)

The gradient of the error e_s can be deduced as

$$
\nabla e_s \approx -T_{yp} \Theta_{yu}
$$

(10)

The force matrix Θ_{yu} can be directly acquired from system data. Nevertheless, as the transfer function T_{yp} includes the information of the plant model, it cannot be directly obtained from system data. In this paper, a data-driven approximation based on the Toeplitz matrix is proposed to estimate T_{yp}, and the principle of the Toeplitz matrix is presented in the appendix. Considering the existing high-order dynamics and inherent model uncertainty, T_{yp} is obtained by the data-driven approach. Specifically, as the Toeplitz matrix $T_{yp}(ii)$ is the map between the i-direction process input u_i and the i-direction output y_i, the Markov parameters of $T_{yp}(ii)$ can be acquired by recording the corresponding output time-series of the 3-DOF $(\hat{\theta}_x, \hat{\theta}_y, \hat{\theta}_z)$ when a unit impulse is injected at the process input point. With the force matrix Θ_{yu} and the Toeplitz matrix T_{yp}, the gradient ∇e_s can be approximated. Therefore, combined with the Gauss-Newton direction, the iteration will conduct the theoretical COM converging to the actual COM.

Multi-SISO Feedback Controller C_s

In this subsection, the proposed tuning strategy of the feedback controller C_s is presented. With diagonal dominance achieved by Ψ_s, the system of each DOF can be simply expressed as

$$
y_s(n) = P_s(z)u_s(n) + v_s(n)
$$

(11)

where $u_s(n)$, $y_s(n)$ and $v_s(n)$ are the input signal, the output signal and the exogenous quasi-stationary disturbance, respectively.

In this paper, C_s is assumed to be linear and is defined as

$$
C_s(z, p_c) = p_c^e \Gamma_c(z)
$$

(12)

where p_c is the parameter vector and $\Gamma_c(z)$ is the fixed basis function of $C_s(z, p_c)$.

Generally, most practical feedback controllers adopt the linear structure, such as PID. Besides, with Taylor expansion theory, any stable controller can be approximated by the linear structure. Therefore, without loss of generality, we employ the linear structure as C_s.

Thus, the mismatch between the achieved and the desired output can be deduced as

$$
\hat{y}(p_c) = y - y_d = \frac{PC_s}{1+PC_s}r - \frac{PC_{ad}}{1+PC_{ad}}r
\n = T_c(p_c)r - T_{cd}r
$$

(13)

where C_{ad} denotes the ideal controller that minimizes $J_c(p_c)$. Therefore, the gradient of the output $\nabla y(p_c)$ is derived as

$$
\nabla y(p_c) = \frac{P}{1+PC_s}\frac{1}{1+PC_{ad}}T_c^r = T_{cp}S_cG_c^r
$$

(14)

In this paper, we assume C_{ad} also possesses the same linear structure of C_s in (12), which guarantees the existence of the optimal parameter vector p_{cd}. Therefore, the gradient of the performance criterion can be expressed as

$$
\nabla J_c = \frac{2}{N}(\nabla y)^\top \hat{y} = \frac{2}{N}(T_{cp}S_cG_c^r)^\top T_{cp}S_{cd}G_{cd}^r(p_c - p_{cd})
\n = M_c(p_c - p_{cd})
$$

(15)

where the optimal sensitivity $S_{cd} = 1/(1+PC_{ad})$.

Based on (15), we propose a novel iterative law which aims at directly achieving the desired performance with several iterations. The iterative law is designed as

$$
p_c^{k+1} = p_c^k - \gamma M_c^{-1} \nabla J_c|_{p_c^k}
$$

(16)

The iterative law has similar form with Gauss-Newton algorithm. However, Gauss-Newton algorithm, based on the second order Taylor expansion which ignores the high order terms, relies on the initial condition. Theoretically, the proposed iterative method can directly obtain the optimal parameter p_{cd} with one-shot execution, without the restriction of the initial condition.

Besides y_s, the iterative law (16) needs to obtain T_{cp} and S_c which determine M_c and ∇y_s. In this paper, we employ the Toeplitz matrix that has been introduced to approximate the variables.

MIMO Feedforward Controller F_s

To further improve the underlying tracking performance after tuning the feedback loop with Ψ_s and C_s, the feedforward controller F_s is of importance. In this paper, a data-driven decoupling feedback control is proposed. The criterion is
chosen as the quadratic of the servo error e_s by choosing y_d as r_s in (2), since e_s is the evaluation index of the tracking performance. The feedforward controller is defined as

$$F_s = \begin{bmatrix} F_{s_{x}} & F_{s_{y}} \\ F_{s_{y}} & F_{s_{y}} \end{bmatrix}, i, j \in \{x, y, \ldots, \theta_z\}, i \neq j \quad (17)$$

To make the optimal problem convex, the controller structure consists of finite impulse response (FIR) filters, and is developed as

$$F_{s_{y}} (\rho_{y}) = p_{y}^T \Gamma_f = p_{y}^T + p_{y}^T z^{-1} + \cdots + p_{y}^T z^{-r} \quad (18)$$

There are several issues considered for choosing the controller. Firstly, FIR filter is a polynomial which is able to approximate the inverse model. Secondly, linear characteristic of the controller makes the overall servo error as an affine model. Thirdly, the structure has a benefit to obtain the gradient. Once the term $\nabla e(\rho_{y})$ is obtained, the whole gradient $\nabla e(\rho_{y})$ can be calculated immediately since the term $\nabla e(\rho_{y})$ is equal to the term $\nabla e(\rho_{y})$ by a delay of n sampling times, which $\nabla e(\rho_{y}) = \nabla e(\rho_{y}) z^n$. This feature simplifies the practical implementation of the algorithm.

For the 6-DOF reticle stage control system, the servo error e_s can be described as

$$e_s (\rho_i) = S_i \left(r - v \right) - T_{fp} u_{s_{f}} (\rho_i) \quad (19)$$

where

$$S_i = \begin{bmatrix} S_{xx} & \cdots & S_{x_{y_{1}}} \\ \vdots & \ddots & \vdots \\ S_{y_{i} x} & \cdots & S_{y_{i} y_{i}} \end{bmatrix}, T_{fp} = \begin{bmatrix} T_{xx} & \cdots & T_{xx} \\ \vdots & \ddots & \vdots \\ T_{y_{i} x} & \cdots & T_{y_{i} y_{i}} \end{bmatrix} \quad (20)$$

and

$$u_{s_{f}} (\rho_i) = \begin{bmatrix} F_{xx} & \cdots & F_{x_{y_{1}}} \\ \vdots & \ddots & \vdots \\ F_{y_{i} x} & \cdots & F_{y_{i} y_{i}} \end{bmatrix} r_{x_{1}} \quad (21)$$

Meanwhile, the i-direction of $u_{s_{f}}(\rho_i)$ can be further derived as

$$u'_{s_{f}} (\rho_{yi}) = \sum_{k=x}^{\theta_z} F_{a_{ki}} (\rho_{ik}) r_{k} = \Pi_{r} \rho_{ii}$$

$$= \begin{bmatrix} r_{s} \cdots r_{s} z' \cdots r_{\theta_{z}} \cdots r_{\theta_{z}} z' \end{bmatrix} \begin{bmatrix} p_{fix} \\ \vdots \\ p_{fix} \end{bmatrix} \quad (22)$$

Thus, the gradient of the servo error e_s derived from equation (19) can be then expressed as

$$\nabla e_s (\rho_i) = -T_{fp} \hat{\Pi}_{r}$$

where

$$\hat{\Pi}_{r} = \begin{bmatrix} \Pi_{r} & 0 \\ 0 & \Pi_{r,J6N-36(r-1)} \end{bmatrix} \quad (24)$$

In this paper, the proposed control strategy employs the Toeplitz matrix to estimate T_{fp}, which is approximated by the data-driven approach. Besides, $\hat{\Pi}_{r}$ is only based on the reference profile and the structure of the feedforward controller. Thus, the gradient of the servo error $e_s (\rho_i)$ can be easily obtained.

EXPERIMENTAL ASSESSMENTS

In this section, the performance of the proposed data-driven iterative control strategy is evaluated on the developed reticle stage. The Versa Module Eurocard (VME) bus is used as a communication backbone among components. The VME PC (MPC7455) is used as the kernel to conduct the overall control system. The digital signal processor (DSP) (TMS320C6713B) acts as the task performer to process the digital data. The digital control system is harmonized with a sampling period of $T_{s}=200$ us.

The validity of the data-driven strategy including the tuning of Ψ_s, C_s and F_s has been verified by three experiments, respectively. The three important parts of the applied motion control system are tuned synthetically to improve the underlying servo performance.

Optimization of Ψ_s

The proposed data-driven tuning strategy for Ψ_s is employed to attenuate additional torque that caused by the mismatch between the theoretical COM and the actual COM. To embody the coupling caused by the additional torque, the 1000nm step responses of the translational DOFs are conducted simultaneously. Figure5 shows the performance of the proposed tuning method. It indicates that the coupling is obviously reduced after one-shot iteration, demonstrating its effectiveness. However, the coupling cannot be compensated completely due to the structure of Ψ_s is unable to deal the high-order dynamic characteristics.
Optimization of C_s

In this paper, only the optimization performance of the x-direction is presented due to the space limitations. The x-direction of the stage is controlled by a standard PID controller as

$$C_s(p_c) = \begin{bmatrix} k_p & k_i & k_d \end{bmatrix} \begin{bmatrix} z & z^{-1} & z^{-1} \\ z & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The proposed method and the comparison [6] are conducted, as shown in Figure 6. Starting with the same initial condition, the proposed method is closer to the desired output after several iteration trials. Figure 7 presents the evolution of the value of $J_c(p_c)$. After only one iteration trial, the value of $J_c(p_c)$ with the proposed method reduces to 11, almost 35 times smaller than the initial value, indicating the favorable convergent performance of the proposed method.

Optimization of F_s

As y-direction of the stage is the working direction, y-DOF tracks the trajectory and other DOFs keep positioning in the experiment. Considering the number of the main resonance peaks, the order $r+1=6$ of the FIR feedforward controller offers a good compromise.

Figure 8 shows the tracking error before and after optimization. It can be observed that the...
error of each DOF is attenuated obviously, especially in y-direction. The value of the criterion $J(p_0)$ before and after optimization is 4.3×10^{-10} and 0.87×10^{-10}, which validates the improvement of the tracking performance. Additionally, due to the nonlinear characteristics, the servo error in the interval of acceleration and deceleration is not symmetrical. To further improve the tracking performance, the adaptive algorithm can be employed to the tuning strategy.

CONCLUSIONS
In this paper, a simplicity and accuracy oriented data-driven control strategy is proposed to improve the servo performance of the developed 6-DOF reticle stage. Compared with model-based control, data-driven approach without the need of dynamics modeling is definitely suitable in terms of the developed reticle stage that possesses high-order and uncertainty dynamics. The design strategy for the three important parts of Ψ_s, C_s and F_s has been discussed in this paper. Furthermore, a data-driven gradient approximation based on the Toeplitz matrix is then developed for updating the parameter vector. Finally, three experiments have been sequentially conducted to establish the overall control system. The comparative results indicate that the performance of the reticle stage has been remarkably enhanced, which validate the effectiveness of the proposed data-driven strategy.

APPENDIX
The definition of the Toeplitz matrix and the method of identifying the matrix are presented here. A discrete time-invariant system can be described in state-space as

\[
\begin{align*}
\dot{x}(j+1) = & \quad Ax(j) + Bu(j) \\
y(j) = & \quad Cx(j) + Du(j)
\end{align*}
\]

where $x(j)$, $u(j)$ and $y(j)$ denote the state variable, the system input and output, respectively. And A, B, C and D correspond to state-, control-, output state- and output control-coefficient matrix, respectively. The output $y(j)$ with zero initial state can be defined as

\[
\begin{bmatrix}
y(0) \\
y(1) \\
\vdots \\
y(n-1)
\end{bmatrix} =
\begin{bmatrix}
D & 0 & \cdots & 0 \\
CB & D & \cdots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
CA^{n-2}B & \cdots & CB & D
\end{bmatrix}
\begin{bmatrix}
u(0) \\
u(1) \\
\vdots \\
u(n-1)
\end{bmatrix}
\]

where the term Ω represents the Toeplizt matrix, and the Markov parameter $\Omega_{j,1}$ represents the system output at the j-th sample time when a unit impulse is injected.

Generally, both model-based and data-driven approaches are enabling methods to obtain the Toeplitz matrix. Specifically, model-based approach requires the state-space dynamic model to estimate the Toeplitz matrix, which needs to identify the model by identification. Data-driven approach obtains the Toeplitz matrix through the impulse response experiment, while the output time-series of the system correspond to the Markov parameters.

ACKNOWLEDGEMENTS
This work was supported by the National Nature Science Foundation of China under Grant 51105226.

REFERENCES
INTRODUCTION
The Attitude and Orbit Control System (AOCS) plays an essential role in the flight control of a spacecraft. This system usually contains a minimum of three reaction wheels (often 4-5 wheels are used for optimization and redundancy [1]). By accelerating the appropriate wheels, the system can produce a zero-mean reaction torque about any axis to the spacecraft, which enables the spacecraft to maneuver on orbit. Meanwhile, the momentum generated by acceleration can be stored in the wheels.[2].

As an alternative to the reaction wheels, the idea of using a single magnetically levitated reaction sphere for satellite attitude control was proposed [3]. In this alternate version, the sphere can be accelerated about any axis by a spherical motor, making the attitude of the spacecraft in all axes controllable by a single device. Due to its symmetry, a sphere can always give the same inertia, independent of its rotational axis. As a result, using a reaction sphere may allow smaller size and mass. In addition, when assisted by magnetic suspension, the mechanical friction can be eliminated, and thus low steady-state power consumption may be possible. This also enables the device to work without lubrication and achieve greater operational lifetime.

The idea of reaction sphere was proposed as early as 1986 [3], however to our knowledge, the current technology is still far from a ready-to-commercialize state. One recent reaction sphere design presents a permanent magnet motor based reaction sphere designed by ESA [4]. This design uses tiled magnets on the rotor surface, which enables simpler angular position sensing and control. However, its complexity of the rotor structure may prevent it from being suitable for small satellites application, and the strength of the rotor limits its maximum rotational speed, which may limit the performance of the actuator.

Among many motor driving principles, the hysteresis motor is well known for its simple structure, vibration-free operation, self-starting ability, and constant torque production. Another distinct feature of this motor is that its rotor can be made out of a single piece of hard steel, which allows the rotor to stand large stresses and thus makes this motor attractive for high-speed applications. However, to the best of our knowledge, the hysteresis motor has not yet been used in reaction wheels.

Aiming at the dual goal of exploring the design for a magnetically suspended reaction sphere and evaluating the performance of hysteresis motors for reaction wheels application, we focused this project on the development of a magnetically suspended reaction sphere with one-axis hysteresis drive (1D-MSRS). The hardware of the 1D-MSRS demonstrates a solid steel sphere magnetically suspended in all translation directions, and driven by a hysteresis motor about one axis. Figure 1 shows a diagram of the design concept of the 1D-MSRS.

This paper presents the design characteristics and test results of the 1D-MSRS system. For more detailed analysis of the design, modeling, and control of the system see [5].

HARDWARE DESIGN AND INTEGRATION
The 1D-MSRS has a magnetically levitated spherical rotor that can rotate and store momentum about the vertical axis. Figure 2 shows the pho-
In the 1D-MSRS system, the rotor is a 54 mm diameter sphere of hardened D2 steel. Four inductive sensors are placed around the rotor to measure the sphere’s position in translational degrees of freedom. The rotor sphere is magnetically levitated in the vertical direction by a reluctance actuator placed at its north pole. A stator is arranged around the sphere’s line. It serves both for levitating the sphere in the horizontal plane and for torque generation simultaneously via a bearingless motor configuration. A reflective optical tachometer is used for speed detection of the reaction sphere.

The 1D-MSRS consists of several subsystems. They are: a single degree-of-freedom magnetic suspension system for the sphere’s vertical suspension, a lateral suspension system for the sphere by mean of the bearingless motor, and a hysteresis motor for driving the sphere about the vertical axis. In the analysis of the 1D-MSRS, these subsystems are considered to be decoupled, that is, the interaction between the subsystems are considered to be negligible. In the following these subsystems are introduced.

VERTICAL SUSPENSION

The spherical rotor in the 1D-MSRS is magnetically suspended in the vertical direction by an electromagnet arranged at the north pole of the sphere.

In order to reduce the DC current in the actuator coil for the sphere’s weight compensation, a thin-disk shape permanent magnet is placed in the magnetic path of the suspension actuation system to add a bias DC flux. Figure 3 depicts the system for the sphere’s vertical suspension.

LATERAL SUSPENSION

In the design of the 1D-MSRS, a bearingless motor is used to achieve a compact design. This motor uses two sets of three-phase windings on a single stator (for 1D-MSRS 4-pole and 2-pole). By correctly configuring and controlling the currents in these motor windings, the machine can generate a torque for spinning as well as radial forces for suspension using a single stator. In the 1D-MSRS system, the 4-pole winding is the motor winding, and the 2-pole winding is used for lateral suspension control.

A dynamic model is built to study the lateral suspension characteristics of the bearingless motor in 1D-MSRS. Here we only present the high level
result, that is, the transfer function from the suspension winding current i_{2a} to the rotor's radial displacement $x(t)$ is:

$$\frac{X(s)}{I_{2a}(s)} = \frac{K_i}{ms^2 - K_s}. \quad (1)$$

Here m is the mass of the sphere, and the value of K_s and K_i are the negative stiffness [N/m] and the force constant [N/A] of the lateral suspension system respectively. They can be calculated by:

$$K_s = \frac{2}{\pi} R l \mu_0 N_1^2 \left(\frac{\sqrt{3}}{\sqrt{2}} I_m\right)^2 [N/m] \quad (2a)$$

$$K_i = \frac{\sqrt{3}}{\sqrt{2}} \frac{2l \mu_0 R l N_2 N_4}{\pi g_0^2} \left(\frac{\sqrt{3}}{\sqrt{2}} I_m\right) [N/A]. \quad (2b)$$

Here the value I_m is the zero-to-peak current amplitude of the 3-phase current in the 4-pole motor windings. The meaning of the nomenclatures and the detailed derivations of these results are presented in [5].

Equation 2 shows that the both K_s and K_i in the bearingless motor system are varying with the motor winding current amplitude I_m. This result can be verified by measuring the frequency response of the lateral suspension system of the 1D-MSRS under different excitation current amplitudes. The measured Bode plots are depicted in Figure 4. This measurement was taken while under closed-loop control of the lateral suspension.

Since the motor excitation amplitude of the reaction sphere/wheel needs to vary according to the torque requirements, the lateral suspension controller needs to be able to stabilize the control loop under all excitation conditions. The detailed controller design for the lateral suspension in 1D-MSRS is presented in [5]. With the controller design, the lateral suspension loop of the reaction sphere kept a constant phase margin of 40°, while the cross-over frequency varies with the motor excitation amplitude.

HYSTERESIS MOTOR

One goal of this project is to evaluate the performance of hysteresis motor for reaction wheels application. A hysteresis motor operates by the magnetic hysteresis effect of its rotor material. Because the magnetization produced in the ferromagnetic material lags behind the magnetizing force, a torque is generated due to the rotor and stator field interaction. Although materials with better hysteresis properties exists, we selected D2 steel for the rotor of 1D-MSRS for the proof of our design.

Experimental data

The start up speed curve of 1D-MSRS is measured under different excitation conditions. Figure 5 presents the acceleration curves of the 1D-MSRS under different amplitudes of excitation current. Data shows that with 0.7 A exciting current, the sphere can reach the synchronous speed of 1,800 rpm within 6 seconds. Also, a starting torque of 8.15 mNm is demonstrated under 0.7 A exciting current.

The maximum synchronous rotational speed that the 1D-MSRS can reach is 200 Hz (12,000 rpm) in our lab. We believe that when running in vacuum the motor has the potential to reach higher speed.
FIGURE 6. A comparison of experimental open-loop speed data and the closed-loop speed data of the 1D-MSRS during starting up.

Speed control of 1D-MSRS
In the speed plot shown in Figure 5, a speed fluctuation slightly above and below the reference speed can be observed when the motor speed first reaches the synchronous speed. This motor dynamics is known as hunting. It is undesirable when a hysteresis motor is used for the development of a reaction wheel or a reaction sphere, as it will introduce vibrations into the spacecraft.

To suppress the motor hunting, a feedback loop on the sphere’s rotational speed is designed and implemented in the 1D-MSRS. In this control system, the sphere’s speed is measured by an optical tachometer, and the control effort is the current amplitude that we supply to the motor windings. The controller design is introduced in [5] in detail.

Figure 6 shows the measured step response of the reaction sphere’s rotational speed under open-loop and closed-loop operations, respectively. Note the hunting speed ripple in the open-loop speed data (blue). Data shows that the designed speed control scheme can effectively suppress the motor hunting and also enables faster acceleration.

CONCLUSIONS AND FUTURE WORK
The design and development of a hysteresis motor driven magnetically suspended one-axis reaction sphere is presented in this paper. Magnetic suspension, bearingless drive and hysteresis motor principles are used in the design for 1D-MSRS. An equivalent circuit model for hysteresis motor is used to analyze the dynamic behavior of the 1D-MSRS, and a speed control loop is built for the system to suppress hunting. The 1D-MSRS can run up to 200 Hz (12,000 rpm) with the existence of air drag, and a starting torque of 8.15 mNm is generated with 0.7 A excitation current amplitude.

Future work should consider the design and development of a three-axis magnetically suspended reaction sphere (3D-MSRS). A brief discussion of the possible motor concepts and magnetic pole configurations for a 3D-MSRS is presented in [5]. The performance of the 1D-MSRS demonstrates that hysteresis motor has the potential for the circumstances where quiet operation and high speed are needed. We believe that this motor concept is promising for high speed, low vibration reaction wheel applications.

ACKNOWLEDGEMENTS
This work is supported by MIT Lincoln Laboratory via Advanced Concept Committee. We thank National Instruments for contributing the real-time controller. We also thank Frederick Knight and Andrew Stimac of Lincoln Laboratory for their assistance with this project.

REFERENCES
INTRODUCTION
High precision planar motion systems are widely used in modern industrial and scientific applications, such as semiconductor manufacturing, precision machining, etc. Many of these applications require sub-micron to nanometer positioning resolution and accuracy as well as a large range of motion. Conventional multi-degrees-of-freedom (multi-DOF) stages are constructed by stacking multiple single-DOF stages together, which are relatively easy to construct and control. However, such stages are typically too bulky for fast motion response. They are also prone to errors due to error accumulation and misalignment between motion axes.

To overcome the above drawbacks of conventional multi-DOF stages, various planar motion systems have been developed, including electromagnetic planar motors [1], ultrasonic planar motors [2], stick-clamping planar motion stages [3], and stick-slip planar motion stages [4]. These planar motion systems use a single mover and control the multi-DOF motion directly. Therefore, they do not have the drawbacks of the conventional systems. However, they also have their own shortcomings. Electromagnetic planar motors require complex dynamic motion control. Ultrasonic planar motors require complex dynamic analysis of the resonator and are still immature for real applications. Stages based on the stick-clamping method using piezo actuation have a limited velocity because the clamping action in each step stops the stage. Stages based on the stick-slip effect have a limited frictional driving force and suffer from severe wear due to the existence of slip.

To overcome some of the drawbacks of the planar motion systems described above, a novel large-stroke piezo-actuated planar motor is proposed, which has the following features:
- 3-DOF (XYθ) positioning control
- Large stroke (only limited by the base size)
- Large rotation angle (up to 360°)
- Nanometer level positioning resolution
- Multiple positioning modes (high resolution or high speed)
- Omni-directional mobility
- 6-DOF final position adjustment
- High static stiffness and good stability

The following sections describe the design, operation modes, and control of the proposed planar motor and present some preliminary experimental results to show its feasibility.

DESIGN OVERVIEW
Figure 1 shows the proposed planar motor, which has four piezo legs located at each corner. The size of the planar motor is 120×120 mm. A vacuum-preloaded air bearing is positioned in the center, which provides supporting and clamping forces for the planar motor. Two 3-DOF piezo legs, each providing XYZ motion control at the tip of the leg, are mounted at two diagonally opposite corners. Two 1-DOF piezo legs providing Z motion control are mounted at the other two corners. The planar motor has...
three DOFs (XYθz) and omni-directional motility with four piezo legs operating cooperatively under different operation modes [5]. Figure 2 shows some photos of the planar motor.

OPERATION MODES

With the four piezo legs working cooperatively, the planar motor can operate under three different operation modes: the skiing mode, the stepping mode, and the tilting mode (Figure 3). In the skiing mode, the two 3-DOF legs move like ski sticks in high frequency to drive the planar motor while the two 1-DOF legs are retracted and not used. Due to the frictionless condition provided by the air bearing, the planar motor can move in high speed under this mode. In the stepping mode, the 3-DOF legs move step by step in a low frequency. The 1-DOF legs extend to clamp on the base when the 3-DOF legs are retracted in between the steps. Due to this clamping effect, the stepping mode provides more accurate position control compared to the skiing mode. In the tilting mode, all four legs clamp on the base. Fine position adjustment of the mover in 6-DOF is achieved through the tilting of the motion head of the 3-DOF legs and extension/contraction of the 1-DOF legs. This operation mode provides the most stable and highest resolution position control. The above three operation modes can also be combined to achieve both speed and accuracy in position control.

FIGURE 2. Photos of the planar motor. (a) Top view. (b) Bottom view. (c) 1-DOF piezo leg. (d) 3-DOF piezo leg.

FIGURE 3. Three operation modes. (a) Skiing mode. (b) Stepping mode. (c) Tilting mode.

FIGURE 4. Definition of the coordinate systems

MOTION CONTROL

This section describes the control algorithms of the four piezo legs under three operation modes. Four coordinate systems 0b, O1, O2 are defined on the base, mover, 1st, and 2nd 3-DOF legs respectively as shown in Figure 4. Assume that the desired velocity of the mover with respect to the base coordinate system 0b is

\[\mathbf{V}_s^{b} = [x_s^b y_s^b \dot{\theta}_z]^T. \]

(1)

Then the desired velocity of the ith 3-DOF leg with respect to its own coordinate system is

\[\mathbf{V}_i^l = J_i(\theta_z)\mathbf{V}_s^{b}, \]

(2)

where the Jacobian is

\[J_i(\theta_z) = \begin{bmatrix} \cos \theta_z & \sin \theta_z & -y_i^l \\ -\sin \theta_z & \cos \theta_z & x_i^l \end{bmatrix}. \]

(3)

3-DOF Leg Control

The motion head in each 3-DOF leg is controlled by three piezo actuators to provide 3-DOF motions in a spherical coordinate system (δ, Φ, and Z), as illustrated in Figure 5. The angle δ defines the motion plane of the 3-DOF leg, in which the motion head moves. Angle δ can be dynamically controlled to provide omni-directional mobility of the mover. It can be calculated using the velocity vector \(\mathbf{V}_i^l \) in Eq. (2). Rotation angle Φ and linear displacement Z define the position of the tip of the motion head in the
FIGURE 5. Definition of parameters and coordinate systems of the 3-DOF piezo leg motion plane. The displacement of the \(i \)-th piezo actuator \(d_{j,3DOF} \) in the 3-DOF piezo leg can be obtained as

\[
d_{j,3DOF} = -Z - r \cos(120^\circ(j - 1) + \delta) \Phi, \tag{4}
\]

where \(r \) is the radius of a circle along which the three piezo actuators are evenly positioned.

Control Algorithm for the Skiing Mode

In the skiing mode, the tip of each 3-DOF piezo leg moves along an ellipsoidal trajectory repetitively in high frequency to drive the mover in high speed, as shown in Figure 5. This ellipsoidal motion can be generated by controlling \(Z \) and \(\Phi \) as follows:

\[
Z = A_z \cos(2\pi f t + \pi/2), \tag{5}
\]

\[
\Phi = A_\phi \cos(2\pi f t), \tag{6}
\]

wherer \(A_z \) and \(A_\phi \) are the height and span of each motion step respectively. There is a phase difference of \(\pi/2 \) between \(Z \) and \(\Phi \), which is needed in order to generate the ellipsoidal motion trajectory. The motion frequency \(f \) can be used to adjust the motion speed. Substitute Eqs. (5) and (6) into Eq. (4), we can derive the motion of each piezo actuator as

\[
d_{j,3DOF} = A_j \cdot \cos(2\pi f t + \theta_j), \tag{7}
\]

where \(A_j \) and \(\theta_j \) have the following forms

\[
A_j = \sqrt{r^2 \cos^2(120^\circ(j - 1) + \delta)A_\phi^2 + A_z^2}, \tag{8}
\]

\[
\theta_j = \arctan2(-A_z, -r \cos(120^\circ(j - 1) + \delta)A_\phi). \tag{9}
\]

Control Algorithm for the Stepping Mode

In the stepping mode, all four piezo legs work cooperatively to drive the mover step by step. The control of the 3-DOF legs is the same as that in the skiing mode but with a relatively low driving frequency (less than 50 Hz). The motion of the 1-DOF legs has a phase difference of \(\pi \) compared to the \(Z \) motion of the 3-DOF legs, which means that the 1-DOF legs can extend to clamp the mover when the 3-DOF legs are lifted up. The motion equation of the 1-DOF legs is

\[
d_{\text{l,1DOF}} = A_i \cdot \cos(2\pi f t - \pi/2). \tag{10}
\]

Control Algorithm for the Tilting Mode

In the tilting mode, the 3-DOF and 1-DOF legs tilt, extend, or contract to fine adjust the position of the planar motor in 6-DOF. Given the desired position adjustment vectors \(\Delta P^b_{1s} \) and \(\Delta P^b_{2s} \), the displacement of the \(j \)-th piezo actuator in \(i \)-th 1-DOF leg and \(j \)-th 3-DOF leg can be derived as

\[
d_{\text{l,1DOF}} = [1 \quad \text{Y}_{\text{l,1DOF}}^s - x_{\text{l,1DOF}}^s] \Delta P^b_{2s}, \tag{11}
\]

\[
d_{j,3DOF} = -Z_i - r \cos(120^\circ(j - 1) + \delta_i) \Delta \Phi_i, \tag{12}
\]

where

\[
\Delta P^b_{1s} = [\Delta x^b_{1s} \quad \Delta y^b_{1s} \quad \Delta \theta^b_{1s}]^T, \tag{13}
\]

\[
\Delta P^b_{2s} = [\Delta x^b_{2s} \quad \Delta y^b_{2s} \quad \Delta \theta^b_{2s}]^T, \tag{14}
\]

\[
\delta_i = \arctan2(J_i(\theta_i)\Delta P^b_{1s}), \tag{15}
\]

\[
\Delta \Phi_i = -[J_i(\theta_i) \Delta P^b_{1s}]/D_i, \tag{16}
\]

\[
Z_i = [1 \quad \text{Y}_{\text{i,3DOF}}^s - x_{\text{i,3DOF}}^s] \Delta P^b_{2s}. \tag{17}
\]

EXPERIMENTAL SETUPS

For closed-loop motion control of a planar motor, a multi-DOF position sensor is necessary to provide position feedback. In this research, two novel active planar encoders were developed, one with a high resolution but a small measurement range [6] and the other with a lower resolution but a large measurement range.

Figure 6 shows the experimental setup with the high-resolution active planar encoder, which is used to evaluate the position control resolution of the planar motor. A mover supported by an air bearing is placed on a granite base. An iPhone 4S with a uniform white image on the screen is mounted on top of the mover. A camera with a
50x objective lens is used to capture images of the screen pixels (see Figure 7). A phase correlation algorithm is used to calculate the position information from the images with a resolution of 6 nm. Even though this encoder has a high linear displacement measurement resolution, it has a small measurement range. Besides, it does not measure rotation angles and its measurement speed is limited to 12 Hz due to the large exposure time necessary for capturing good quality images.

Figure 8 shows the experimental setup with a large-range active planar encoder, which is used to evaluate the position control performance of the planar motor in a large range of motion. This encoder uses two cameras, each with a compact low-distortion 1x lens. The iPhone 4S mounted on top of the mover is programmed to display two perpendicular sinusoidal fringe patterns with a pitch of 0.78 mm. Each camera captures a sinusoidal fringe image from the iPhone screen. Three sinusoidal signals X_1, X_2, and Y_1 are obtained from three scanning areas of the two captured images, as shown in Figures 8(b) and 8(c). The phase of each sinusoidal signal is calculated using a novel phase estimation algorithm, which will be discussed in a future publication. The phase of the sinusoidal signal change periodically when the planar motor moves. Therefore, a phase unwrapping algorithm is needed to convert the phase information into its corresponding position signal. The phases of X_1 and X_2 are used to calculate position X and angle θ_z and the phase of Y_1 is used to calculate the position Y of the mover.

The linear measurement range of this encoder depends only on the display size. The rotation measurement range is up to ±45°, but can be extended to ±180° if the two fringe patterns on the screen is switched dynamically. The linear measurement resolutions along X- and Y-axis are 50 nm and 500 nm respectively and the measurement accuracy in a range of 40 mm is ±0.6 μm. The angular measurement resolution of θ_z is 2.2 arcsec. The angular measurement accuracy of the encoder will be evaluated in the future. Since a shorter camera exposure time can be used with this setup, a higher measurement speed of 100 Hz can be achieved. Besides, the absolute positions of the mover can also be measured with a coding method.
EXPERIMENTAL RESULTS
The experimental setup with a high-resolution active planar encoder is used to test the static stiffness and positioning resolution of the planar motor. The experimental setup with a large-range active planar encoder is used to evaluate the performance of the planar motor under the stepping mode and skiing mode. The closed-loop position control of the mover is done with a PID controller.

Static stiffness test
The static stiffness of the planar motor under the tilting mode is tested using a tension meter, as shown in Figure 9(a). The result shows that the planar motor has a static stiffness of 1.33 N/μm. Figure 9(b) shows the mover clamped to the erected base without falling down, which demonstrates that the planar motor has a large static clamping force.

Figure 9. Static stiffness and clamping force tests. (a) Stiffness test. (b) Clamping force test.

Tilting mode test
A step test along the X-axis has been conducted using the experimental setup with a high-resolution active planar encoder. The operation mode is the tilting mode and the step size is 100 nm. Figure 10 shows the result. The standard deviation of the step test result is approximately 6 nm, which is the resolution limit of the encoder. This means that the positioning resolution of the planar motor is currently limited by the encoder used. In the future, a laser interferometer will be used to test the ultimate positioning resolution of the planar motor. A circular tracking test with a diameter of 10 μm was also conducted and the result is shown in Figure 11. This result demonstrates the capability of the planar motor in simultaneous XY position control at the nanometer level.

Stepping mode test
The experimental setup with a large-range active planar encoder is used to evaluate the position control performance of the planar motor in a large range. The planar motor is controlled to follow a special motion trajectory with the linear position of the mover following a circle and the angular position θ_z following a sinusoidal curve with an amplitude of 5°. The result of this tracking test is shown in Figure 12. The peak-to-peak deviation of the circular motion is approximately ±1 μm, which is comparable to the noise level of the planar encoder. The peak-to-peak deviation of the rotational motion is approximately ±20 arcsec.

Skiing mode test
The speed of the planar motor can be adjusted by changing the driving frequency and the step size of the 3-DOF piezo legs. Figure 13 shows the relationship between the driving frequency and the planar motor speed for different step sizes. Obviously, the larger the step size and the higher the driving frequency is, the higher the speed of the planar motor is.

CONCLUSION
In this research, a novel large-stroke planar motor driven by four piezo legs was developed
FIGURE 12. Large range motion performance

FIGURE 13. Planar motor speed vs. driving frequency under the skiing mode with different step sizes.

for nano-positioning applications. Its linear range of motion is limited only by the size of the base or the measurement range of the encoder for a closed-loop system and its angular range of motion is up to 360°. There are three possible operation modes: the skiing mode, the stepping mode, and the tilting mode. The skiing mode provides the highest positioning speed with a relatively low resolution. The stepping mode provides a high resolution, but a relatively slow speed. The tilting mode offers the finest position control in 6-DOF. The above operation modes can also be combined to achieve both speed and accuracy in position control. For position feedback, novel active planar encoders were developed and integrated with the planar motor for closed-loop position control. Experimental results demonstrated that the proposed planar motor could simultaneously achieve nanometer level positioning resolution and large ranges of linear and angular motions.

Currently, the performance of the planar motor is limited by the performance of the encoder used. As a future work, we plan to further improve the measurement resolution and speed of the active planar encoder to explore the true potential of this unique planar motor for nano-positioning applications.

ACKNOWLEDGEMENT
The authors thank the National Science Foundation of China (NSFC) for the financial support of this work under grant No. 51375310.

REFERENCES
INTRODUCTION
In precision industrial machines, for example, machine tools and measuring machines, their motion characteristics greatly influence the machine performances. High tracking accuracy and high responsiveness are important motion characteristics for the machines. These characteristics essentially depend on those of linear drive mechanisms. The acceleration and the velocity are often used as important indicator of the responsiveness and their required levels are becoming strict increasingly [1].

For the requirements, linear motors are widely used in recent years. They are direct-drive and have the advantages of small driven inertia, no speed limitation by the mechanical structure, ease to control. Particularly the linear motors are generally used for the acceleration higher than 19.8m/s^2 (=2G) and the velocity higher than 2m/s. In the market, there are linear motors of which maximum acceleration is about 40G [2].

The purpose of this research is to realize precision and high speed motion with an ultrahigh speed linear drive mechanism which can move at the acceleration higher than 70G and the velocity higher than 10m/s. For this purpose, the ultrahigh-acceleration and high-velocity linear drive mechanism has been designed and the driving performances of the prototypes have been examined [3]. The prototypes have shown the acceleration higher than 70G and the velocity higher than 10m/s. However the tracking error at high speed was too large for high precision industrial machines. This paper describes precision and high speed tracking control of the ultrahigh-acceleration and high-velocity linear drive mechanism.

ULTRAHIGH-ACCELERATION AND HIGH-VELOCITY LINEAR DRIVE MECHANISM

Construction of the Prototype
Figure 1 shows a prototype of ultrahigh-acceleration and high-velocity linear drive mechanism. This linear drive mechanism includes a moving type permanent magnet linear synchronous motor (MPM LSM). The MPM LSM has a stator comprising two electromagnet (EM) lines and a mover including permanent magnets (PMs). The length of stator is 2.03m. The EM lines are located on both sides of the mover.

Figure 2 shows the prototype mover. The length and weight of the mover are 440mm, 4.63kg respectively. The mover is supported by linear ball guide including two guide rails and four carriages. The displacement of the mover is...
measured using a laser position transducer (ZLM series from JENAer Meßtechnik GmbH. Resolution: 79.1 nm). The maximum applied current to the EMs is 20A and the maximum voltage is 280V.

Driving Characteristic

The prototype MPM LSM is driven by four current commands which have rectangular waveforms. The waveforms are shown in Fig.3. The current commands are inputted to pulse width modulation (PWM) amplifiers for driving the mover. The phases of the commands depend on the position of the mover. In the control system described later, the controller calculates the suitable amplitude of the waveforms.

The prototype can move at the acceleration higher than 779m/s² (=79.4G) and at the velocity higher than 11.1m/s when the applied signals of which amplitudes are 20 A are inputted. The acceleration and velocity are much higher than those of conventional high speed linear drive mechanisms.

The MPM LSM has many nonlinear elements and shows significant nonlinear characteristics.

As shown in [4], the coil current responses in the EMs show that the electrical characteristics of the MPM LSM are nonlinear. The relationship between the applied current to the coils and the generated thrust force is also nonlinear. It is influenced by the current actions of neighboring coils, the magnetic saturation and magnetic leakages. The static thrust characteristic is shown in Fig.4. The thrust characteristic is influenced by the mover position because of the combination of PM and cored EM. Figure 5 shows an example of the relationship between mover position and thrust. In the figure, the signal amplitude was 10 A. Friction force is caused in the linear guides.

CONTROL SYSTEM DESIGN

Previous Control System and its Problem

The MPM LSM has distinct nonlinear characteristics as described in the previous section. The characteristics make it difficult to...
construct an exact dynamic model for the control system design. Although the dynamic model of the MPM LSM in [4] can be used for simulating the macroscopic motion, it is unsuitable for the detailed controller design.

In the previous study, the controller for precision motion of the MPM LSM has a two-degree-of-freedom (2DOF) compensator which consists of a nonlinear PID element and a feedforward (FF) element determined from simplified inverse model. In addition, control elements such as FF elements for compensating the cogging force and the friction force, a disturbance observer were used to suppress the bad effect of the nonlinear characteristics and unknown error factors. The observer was designed based on the simplified dynamic model of the MPM LSM. The controller provided the low tracking errors on the low frequency responses. However the error increased with an increase of the frequency. Figure 6 shows the tracking error of the prototype MPM LSM with the sinusoidal input of which the amplitude and the frequency are 10mm and 20Hz. The maximum tracking error was larger than 5μm.

Improvement of Controller

It is well-known that the use of the detailed inverse model as a FF element is effective to improve the system performance at high frequency motion. However, as described above, it is unpractical to use a detailed dynamic model of the MPM LSM in controller design.

In contrast, a learning control method does not request the exact dynamic model in the design and it is easy to use for mechanisms which have significant nonlinear characteristics.

Figure 7 shows the improved control system with the MPM LSM for high frequency motion. In the control system, the learning control is used as a FF element [5, 6]. The learning control element is modified using the output signal of the feedback compensator. The basic algorithm for the learning control is as follows:

\[u^j_F(kh) = u^{j-1}_F(kh) + \gamma v^{j-1}(kh) \]

where \(j \) denotes the \(j \)th repetitive operation, \(h \) is the sampling period, \(k \) is the time index, \(u^j_F(kh) \) is the output of the learning control element at the time of \(kh \), \(\gamma \) is the learning gain, and \(v^{j-1}(kh) \) is a value calculated from the used learning algorithm.

The output of the feedback compensator is filtered by the function called the “basis function,” and \(v^{j}(kh) \) is calculated. Figure 8 illustrates the basis function used in the learning control. One basis function has one triangular part in a certain period, and the function in the other period equals zero. There are plural basis functions in each movement period. Two triangular parts of the basis functions having adjacent numbers overlap each other. The learning control parameters such as the period of one triangular
part in a basis function and the learning gain is adjusted to suppress the tracking errors. The improved control system is almost similar to the combination of the previous control system and the learning control element. However, the improved control system does not include the integral element and the disturbance observer since their elements degrade the performance of the system including the learning control element.

EXPERIMENTAL RESULTS
Using the controller shown in Fig.7, the sinusoidal response of the prototype MPM LSM was measured. Figure 9 shows the tracking error of the prototype MPM LSM with the sinusoidal input of which the amplitude and the frequency are 10mm and 20Hz, respectively. The tracking error with the learning control element is smaller than 2μm. The tracking error of the control system with the learning control element was about one third of the error without the learning control. In the figure, the tracking error of the control system with the disturbance observer is shown. The comparison result suggests that the use of the disturbance observer deteriorates the learning control effect on the suppression of the tracking error.

CONCLUSION
In this paper, the control system for precision and high response tracking control of the ultrahigh-acceleration and high-velocity linear drive mechanism and its tracking performance was introduced. For the mechanism, the controller comprising the 2DOF compensator, the FF compensator for cogging and friction force, and the learning control element was designed and implemented to the prototype MPM LSM. The experimental result shows that the learning control element is effective to reduce the tracking errors and that the controller makes the tracking error on the sinusoidal response of which the amplitude and the frequency are 10mm and 20Hz was 1.62μm.

REFERENCES
THE DESIGN AND DEVELOPMENT OF A NOVEL ‘TWIN TURRET’ MACHINING PLATFORM.

Mark Stocker.
Cranfield Precision,
Division of Cinetic Landis Ltd, UK

INTRODUCTION
Cranfield Precision has developed a new concept for high precision machining. The classical orthogonal machine tool platform is capable of supporting traditional material removal processes. More recently, ideas such as the Hexapod and the Tetraform [1] have demonstrated benefits for some processes and in the case of the Hexapod style machines, even to find applications outside metal removal in low inertia, high speed metrology [3]. The concept described here leverages capabilities intrinsic to modern control systems to coordinate two rotary axes and a short linear axis in a ‘Twin Turret’ design which provides a common platform for multiple machine configurations.

MACHINE DESIGN CONCEPT
Cranfield Precision was challenged to find a radical machine configuration that could deliver a highly stiff, thermally stable foundation for a wide range of machine systems, particularly the optics industry for grinding spheric, aspheric and free-form surfaces. Cranfield Precision’s experience in the optic industry over many years shows that ductile regime grinding [3] delivers considerable process advantages over conventional glass grinding. This mode of operation is difficult to support unless the machine system is of the highest quality.

The machine uses a unique combination of rotary and linear axes to produce relative motion (both position and angle) between tool and workpiece over a swept working area.

The potential benefits of using rotary bearings rather than linear bearings to provide the primary motion between tool and component has been well known. There have been test machines developed that use only rotary axes [4]. It is however, the addition of the linear infeed axis on the Twin Turret machine that differentiates it from previous machines and has been enabled the production of very high quality ground surfaces in commercially viable cycle times.

The two rotary axes are rigidly mounted a fixed center distance apart from each other. In order to traverse the tool across components of up to 400mm diameter, the rotary axes need only to rotate by around 20° each and it is possible to align the ‘best’ segment of the rotary encoders to the critical 20° of motion. It has thus been demonstrated that by using rotary encoders specified with 1 arc sec accuracy over 360° it is possible to reduce the effective error over the 20° working range to 0.1 – 0.2 arc sec, resulting in an uncorrected traverse position error between tool and component of around 0.6µm.

The linear axis is used to control the depth of cut and profile shape of the component being machined. It is a simple procedure during machine build to error correct the linear infeed axis such that the correct profile is followed. It is only necessary to carry out the error correction in one location between the two rotary axes (see fig 2). This is because the center distance between the turrets is fixed and the linear axis is always perpendicular to the ‘virtual’ linear axis being corrected.
The correction data is thus valid for any position of the linear axis. Fig 2 shows how a Zerodur straight edge can be used to error correct the interpolated straight line motion between tool (here the probe) and component (here the straight edge). The intrinsic error before correction was in this case 200 µm and increases as the two rotary axes move towards the opposite extremes of their 20° travel range. After error correction, the straight line motion error was reduced to 0.3 µm.

Figure 2: Proof of concept test machine straightness calibration set up.

Figure 3: Proof of concept machine straightness, before and after error correction.

Thermal stability

This is a major problem for all machine tools. Conventional grinding machines have large, variable thermal loops that can produce significant movement between wheel and component.

The time taken to grind optical quality surfaces rises exponentially as the specifications for form error, surface finish and sub-surface damage become more challenging and increase part processing time. Larger parts can take days to finish. Such demands dictate a total focus on the maintenance of thermal stability in the presence of coolant, process and ambient thermal influences.

The traditional machine design suffers from a constantly changing coolant return path as the grinding wheel carriage moves along the linear axis. The heat from the grinding process is transferred to different sections of the machine bed, resulting in constantly variable machine distortions. The Twin Turret design enables a simple non-contacting labyrinth seal, making the machine base almost immune to such distortions.
In conventional machines using stacked linear axes, the bearing interfaces are more compliant than the machine’s base material. The target was to use the minimum number of bearing interfaces in the machining loop, thus minimizing compliance. In the optics industry, a common requirement is to achieve ‘tool normal’ operation of the grinding wheel. A point is selected in the wheel tip which is considered to be a datum that is locked to the cutting point on the workpiece. This method ensures surface texture consistency and reducing the impact of grinding wheel form errors.

Achieving tool normal operation is conventionally achieved by mounting the wheel spindles upon rotary axes that in turn are mounted upon stacked linear axes. Each interface reduces the stiffness of the machine which is counter to the necessity for extremely high stiffness that is needed to support ductile regime grinding. High machine stiffness is essential to maintain consistent and high quality surface finish and to minimize wheel wear.

The new machine base is effectively two highly stiff (>10,000 N/µm radial and axial) rotary hydrostatic bearings. Conventional machines use linear axes to provide the primary motion between tool and component, the machine base has to resist machining forces in bending. The Twin Turret machine’s turrets are bolted together via a solid base plate resisting the machining forces in tension rather than in bending.
It is these rotary axes that provide the primary motion control for the machine, replacing conventional linear axes. They are extremely stiff, axisymmetrically.

Peripheral wheels are mounted with the grinding wheel aligned to the turret axis, thus wheel imbalance and process forces are directly resisted by the bearing stiffness, not the axis servo. For cup wheel grinding the grinding wheel to component interface is maintained at tool normal, thus any imbalance force induced axis oscillation produces only a 2nd order motion between wheel and component.

GRINDING RESULTS

The grinding results presented here are for both cup and peripheral wheel grinding.

Traverse ground aspheric surface

These results are for 'tool normal' grinding of an aspheric surface ground on a fused silica component. The traverse grind time using a metal bond wheel, Ø60mm, 6µm grit was 90 minutes. The form error of the ground surface is 280 nm P-V. This plot shows the result after a corrective run (using measurement data from Form Talysurf to provide the correction) and is thus effectively a measurement of the machine’s repeatability, including thermal stability and process variability over 90 minutes.
Plunge ground spherical surfaces

The machine has been used to test the ability to manufacture spherical surfaces by plunge grinding (cup wheel mode shown in Fig 9). The images below show the results of a plunge grind using 14 µm diamond abrasive in a resin bond wheel.

Plunge ground spherical surfaces

The machine has been used to test the ability to manufacture spherical surfaces by plunge grinding (cup wheel mode shown in Fig 9). The images below show the results of a plunge grind using 14 µm diamond abrasive in a resin bond wheel.

FIGURE 13: Image through a concave/convex lens plunge ground on TTOG machine.

FIGURE 14: Surface texture measurement of plunge ground surface (shown in Fig 15)

Ra = 2.517 nm, Sa = 3.191 nm

Off Axis ground freeform surface

By interpolating the motion between the two main turret axes, the linear infeed axis and the rotary workhead axis, it is possible to maintain tool normal grinding of complex freeform surfaces. The grinding tool traverse paths can be spiral or raster scan. The test part was a double saddle, (concave and convex) inclined such that there is no line of symmetry on the surface.

FIGURE 15: Ground off-axis freeform surface using a tool normal, interpolated raster scan motion path.

FIGURE 16: Rough ground surface (D42 metal bond wheel).
FIGURE 17: Rough ground surface shows raster scan path taken by grinding wheel.

Conclusions
A novel machining platform has designed and developed compatible with a wide range of machining processes. Grinding results demonstrate that the design objectives of ultra-high stiffness and thermal stability have been achieved.

REFERENCES
In this paper, we present a new hot embossing process that enables high-resolution patterning of micro- and nano-structures on both flat and nonplanar substrates. In this process, a flexible elastomer stamp, i.e. PDMS, is used as a mold that performs hot embossing procedures on substrates of arbitrary curvatures. The new process was optimized through the development of an automated vacuum thermal imprinting system that allows precise control of all process parameters, e.g. temperature, pressure, and time. The new hot embossing process can be used to produce high quality 3-dimensional structures of various geometries. As a demonstration, we fabricated (1) hexagonal micro-lens arrays on a convex PMMA substrate and (2) 1.6 µm pitch optical gratings on a concave PMMA substrate. Surface quality and optical properties of the fabricated components were characterized quantitatively, i.e. RMS ~ λ/30, and proved to be comparable with high cost conventional precision processes such as laser lithographic fabrication.

HARD MOLD VS. SOFT MOLD

Hot embossing was first proposed by Chou in 1995 for patterning high resolution structures on thermoplastic materials [1]. The process utilizes a hard mold containing nanoscale features. When in operation, the mold and the substrate are heated to the glass transition temperature (T_g) and brought into contact to pattern polymers, e.g. PMMA, PS, PC, and PE, generating nanoscale features of 25 nm with good throughput [1]. However, using a hard mold may have the following drawbacks: (1) small features in the mold can be easily polluted and difficult to clean due to polymer adhesion, and (2) pressure distribution during molding is non-uniform, which limits the accuracy and area of replication and may even damage the mold. (Substrates are never flat at nanoscale.)

Compared with the conventional hot embossing process, a soft elastomer mold has the following advantages: (1) elastomeric molds are low cost and can be easily replicated from a master; (2) the flexible mold enables conformal contact and uniform pressure distribution during molding; (3) elastomer molds, e.g. polydimethylsiloxane (PDMS), are chemically inert and anti-adhesive to polymers and can be easily demolded without cracking when compared with the hard mold.

SOFT MOLD PREPARATION

PDMS was chosen as the material for the soft mold in our new process because PDMS is thermally stable up to 200°C with low surface energy. Figure 1 illustrates the fabrication process of a PDMS mold. First, a master with hexagonal micro-lens array patterns was fabricated by a photolithography process and subsequently followed by a thermal reflow process. Then, a PDMS precursor mixture (10:1) was spin-cast on the master. After curing, the PDMS forms a soft mold of desired thickness.

FIGURE 1. Illustration and images of the preparation of the micro-lens array master and PDMS mold

PATTERNING ON CURVED SUBSTRATES

Patterning micro- and nano-structures on nonplanar substrates has been technically challenging and prohibitively expensive via conventional processes, e.g. direct laser writing, where a substrate is fixed to a multi-axis positioner. Accordingly, new low-cost precision fabrication technologies can generate significant impact and enable a wide range of applications. A PDMS-based soft-mold is both flexible and highly stretchable. Thus, with a properly designed machine, it has the potential to pattern micro-/nano-structures on nonplanar substrates.
In this work, we use the soft-mold based embossing approach to fabricate two types of optical components on curved PMMA substrates: (1) micro-lens array and (2) blazed gratings.

Precise patterning of micro-lens arrays on a convex substrate can form artificial compound eyes, i.e. a kind of micro-optics structure inspired by insect eyes, where thousands of micro-lenses are patterned on a convex surface with compact arrangement, pointing to slightly different directions. This device offers unique optical characteristics including ultra-wide field of view and high sensitivity [2]. The first low-cost compound eye structure was fabricated by Lee in 2006 using the polymer replication process; compound eyes were formed by filling the UV-curable resins to a deformed PDMS membrane with micro-lens patterns [3]. Another approach is to apply the thermal extrusion process, where a flat PMMA substrate containing micro-lens array is bent and extruded to form the compound eye structure [4]. However, none of these low-cost methods can produce uniform high-quality micro-lens arrays over a large area on substrates of arbitrary curvatures.

Concave gratings are blazed gratings patterned on a concave lens. A concave grating allows a grating to serve both as a dispersive element and a focusing element, integrating two optical components into a single, compact one. It is also possible to design aberration-corrected concave gratings which enable compact optical configurations to be developed for imaging and spectroscopic applications [5]. Conventionally, concave gratings are fabricated by mechanical ruling [6] or laser direct writing [7]. These techniques are slow, expensive, and cannot produce gratings of different blaze angles.

VACUUM THERMAL IMPRINTER DESIGN

To scale up and execute the new hot embossing process with precision, a vacuum thermal imprinting system was conceptualized and developed based on the vacuum imprinting system reported in [8]. Figure 2 shows the schematics of the imprinting system, where the PDMS mold is installed in the middle of the chamber, separating the room into two independent chambers (A and B). The substrate is placed in the bottom chamber. Independent air valves and pressure sensors are used to control the pressure difference between the top (A) and bottom (B) chambers. An infrared lamp is installed in chamber A to provide heat for hot embossing. In addition, a load cell is integrated with the substrate holder in chamber B to monitor the printing force in real time. A thermocouple is installed in chamber B to measure and control the temperature.

Figure 3 illustrates the thermal imprinting procedure. Step 1: Both chambers are vacuumed and the IR lamp heats up the substrate to the molding temperature; step 2: Chamber A is pressurized to deform the flexible mold to perform a hot embossing process; step 3: The substrate is cooled down to the demolding temperature with controlled imprinting force; step 4: Demolding is performed by pressurizing chamber B.

The vacuum thermal imprinter presents a few distinct advantages for the soft-mold hot embossing process: (1) the vacuum process provides a particle-free environment and ensures air will not be trapped in small pockets of the mold during the embossing process, (2)
the controlled top chamber pressure ensures
uniform embossing force and minimizes minor
defects on the mold, (3) the molding parameters
including embossing temperature, force and
time can be precisely controlled, (4) precision
prints can be performed on both planar and
curved substrates.

PROCESS OPTIMIZATION

During the embossing process, undesired
properties are mainly attributed to the
uncontrolled flow behavior of the polymer
(PMMA). A set of experiments was devised to
study how various processing parameters,
including temperature, pressure and hold time,
can influence the forming of micro-/nano-
structures. In these experiments, the embossing
temperature varied from 120 °C to 260 °C, the
imprint pressure varied from 0.5 psi to 4 psi, and
the hold time varied from 30 to 240 seconds.

From the experiments, we learned that to ensure
faithful replication of small features (<5 micron),
especially high aspect ratio structures, the
optimal embossing temperature is 180 °C,
approximately 75 °C above the T_g of PMMA. The
experimental results also indicate that the proper
embossing pressure is between 2 and 3 psi. Low
embossing pressure often leads to
incomplete mold-filling as sufficient forces are
needed to overcome the viscous force between
the mold and PMMA. When the pressure is too
high (> 3 psi), the soft mold can be distorted or
collapsed, resulting in inaccurate pattern
dimension. The optimal hold time is around 120
- 180 seconds, which ensures the complete
filtration of the polymer in the soft mold. Note
that excessive amount of hold time usually
results in cracks in PMMA substrates due to
internal stress. The results of the embossing
parameter experiments are summarized in
Figure 4.

FABRICATION AND CHARACTERIZATION

We first fabricated the hexagonal micro-lens
array on a convex PMMA substrate. Figure 5
presents the experimental data for the thermal
embossing process illustrated in Figure 3: Both
chambers were first pumped down to 4 psi as
the temperature was raised and maintained at
180 °C. During the embossing stage, the
pressure in chamber A was increased and
decreased in a cyclic fashion to remove the
trapped air and improve overall embossing
quality [8]; during the cooling stage, the
temperature was lowered to 80 °C.

Figure 6 shows an optical image of the hot-
embossed micro-lens array on a convex PMMA
substrate, which forms an artificial compound
eye with no visible defects. An SEM image of a
mantis’s eye is shown next to the artificial
compound eye as a comparison.
FIGURE 6. An SEM image of a mantis’s compound eye (left) and an optical image of the artificial compound eye (right)

To examine the fabricated compound eye, a surface profiler (Tencor Instruments, Alpha-Step 500) was used to characterize the lens surface. Figure 7 shows the profiles of a micro-lens array pattern on the convex substrate and a randomly selected micro-lens. The measured diameter (D) of the micro-lens is 187 µm and the sag height (h) at the lens vertex is 13.29 µm. (Micro-lens on the master: D=185 µm, h=15 µm)

We also measure the surface roughness using a Michelson interferometer (µPhase 2® from FISBA OPTIK). Figure 8 shows the roughness analysis of a micro-lens from the fabricated compound eye. The observed deviation of the root-mean-square surface roughness (RMS) of the micro-lenses is 19.06 nm, which is less than \(\lambda/30 \). The results show the hot-embossed optical components possess outstanding optical quality.

The optical properties of the micro-lenses are determined by the radius of curvature (R), the focal length (f), the numerical aperture (NA) and the acceptance angle (\(\Delta \phi \)), which can be calculated using the following equations based on theories of geometric optics [9]:

\[
R = \frac{D^2 + 4h^2}{8h}, \quad f = \frac{R}{n - 1}, \quad NA = \frac{D}{2f}, \quad \Delta \phi = \frac{D}{f}
\]

where the refractive index n of PMMA is 1.49. The calculated radius of curvature, the focal length, the numerical aperture and the acceptance angle of the micro-lens are 335.55 µm, 684.79 µm, 0.14 and 34.06° respectively.

In the second experiment, we fabricated a 1.6 µm pitch blazed grating on a precision plano-concave PMMA lens (Diameter: 25.4mm; focal length: 50mm; center/edge thickness: 3.5mm/6.8mm). Figure 9 shows an image of the PDMS membrane containing a negative replica
of the blazed grating, where the blaze angle is 8°38’. Figure 10 shows an optical image as well as AFM characterization results of the concave grating fabricated by the thermal imprinter. The AFM results suggested grating patterns have been faithfully transferred to the concave lens and the soft-mold hot-embossing method has nanoscale resolution.

CONCLUSION
We have developed a new hot embossing process using soft PDMS molds that enable batch fabrication of high aspect-ratio precision micro- and nano-structures on nonplanar substrates at low cost. A vacuum thermal imprinting machine was constructed to precisely control the operating parameters. Experiments were devised to obtain the optimal embossing parameters (temperature: 180 °C, pressure: 2 psi, hold time: 120 seconds). For demonstration, we successfully fabricated and characterized (1) micro-lens arrays on a convex PMMA substrate which forms an artificial compound eye and (2) 1600 nm pitch blazed grating on a 1” PMMA plano-concave lens which forms a concave grating.

ACKNOWLEDGEMENT
This work is supported by the HKSAR Innovation and Technology Commission (ITC) Innovation and Technology Fund (ITF), ITS/251/11: Precision Microcontact Printing for Roll to Roll Fabrication of Flexible Photonic Devices

REFERENCES
INTRODUCTION
Structured surfaces found in nature have been the subject of research efforts to develop advanced surface coatings that can exhibit antireflective (AR), superhydrophobic or superhydrophilic properties. AR surfaces, which mimic the sub-micrometer surface features found on a moth’s eye, are periodic structures that create a gradual index of refraction profile which increase the transmittance of a surface [1]. This technology is of interest for increasing the performance of devices such as optical lenses, solar cells and photosensitive detectors [2]. Existing techniques used to create sub-micrometer AR features, including lithographic techniques, etching, and bio-templating, are often costly and time-consuming on a large scale [3-5].

Nanocoining is a mechanical approach to rapidly create surface structures using a small diamond die (20 x 20 μm) containing an array of 1600 nanofeatures machined with a focused ion beam (FIB). This die is pressed into a diamond-turned surface, leaving a field of sub-micrometer features (FIGURE 1).

To create a continuous area of features, the individual die indents must be tiled together. One way this is done is by indenting the surface of a rotating drum on a diamond turning machine (DTM) as shown in FIGURE 2(a). The die must be held by an actuator that pushes it into the surface to replicate the die features while moving tangentially at a speed that matches the surface of the drum during contact to avoid smearing of the individual features. The drum surface speed is controlled by the spindle motor rpm and the radius of the drum. In addition to matching the drum speed during impact, the die must land one die width ahead of its position on the last cycle. This defines an “upfeed” distance that sets the relationship between the frequency of the die motion, its size and the surface speed of the drum. The “crossfeed” motion of the linear axis holding the die must advance along the drum at one die-width per revolution. Once the drum is uniformly covered with the desired structures, it is used as a mold in a roll-to-roll process to rapidly generate features on a pliable medium (FIGURE 2(b)).

FIGURE 1. A prefabricated diamond die is pressed into a diamond turned surface to create desired features.

FIGURE 2. Nanocoining of sub-micrometer surface features on a cylindrical workpiece (a) and roll-to-roll replication using indented roller.

Since the die is small (20 x 20 μm), indents must occur quickly (40 kHz) to cover 1 m² in reasonable amounts of time (14-18 hours). Generating tiled arrays of indents on the mold at 40 kHz requires the surface to move at a velocity such that it travels the length of the die (20 μm) during every period of the actuator oscillation (25 μsec). The work surface is moved a constant rate based on the actuator frequency and die size and the result will be a succession of indents precisely following the previously formed features. When indenting into a translating workpiece, the die must match the tangential velocity of the drum while the die is in contact with the surface. If this condition is not
achieved, the shape of the die features will be distorted or smeared.

To minimize the distortion caused by a velocity mismatch, the die must be moved in a 2D path that allows the die to be pressed normal into the surface while simultaneously matching the tangential speed of the workpiece. This goal can be achieved by moving the die in an elliptical path as shown in FIGURE 3. If the workpiece is moving at a constant speed, the die actuator motion can be designed to match that speed at the bottom of the elliptical path in FIGURE 3. However, there has to be some small indentation distance so the die and workpiece will contact over some finite time. This means that an elliptical path cannot achieve a pure indentation motion. However, if the ellipse is taller than it is wide and the indentation distance is on the order of 100 nm, the smearing of individual die features will be less than 10 nm.

ACTUATOR DESIGN
To achieve the desired elliptical motion at 40 kHz, a combined-mode resonant actuator has developed. The concept is to design the geometry of a free-free beam-type actuator such that it is resonant in two orthogonal modes at the same frequency, resulting in elliptical vibration (FIGURE 4). This concept has been demonstrated in devices developed for machining processes such as elliptical vibration-assisted machining (EVAM) and ultrasonic welding that utilize resonant, 2-D vibrational motion [6-8].

FIGURE 3. Vertical and horizontal dimensions of elliptical indenting path.

FIGURE 4. Combining longitudinal and bending motion to produce elliptical vibration path.

Geometry
The overall dimensions of the actuator are determined based on analytical solutions for a free-free uniform beam and are a function of the desired vibration modes and operating frequency. To increase the amplitude of the tool tip at resonance as compared to a uniform beam design, the geometry of the beam is reshaped to act as an ultrasonic concentrator. Ultrasonic concentrators reduce the cross-sectional area of the actuator and act as a strain amplifier. For simplicity, a stepped horn design was utilized to maximize vibrational amplitude in the longitudinal and transverse directions. The cross-sectional area was reduced at the tool tip as shown in FIGURE 5, where $h_1 > h_2 > h_3$ and $w_1 > w_2$.

FIGURE 5. Beam geometry with concentrating horn design.

This geometry selection is also influenced by factors such as 1) the mounting points, and 2) the vibration mode frequencies. An iterative design method is used to optimize for these factors using finite element modeling.

Mounting Points
The actuator must be mounted in a manner that is axially stiff to prevent deflections during the indentation process. Additionally, the locations of the mounting points must not interfere with the resonant vibration of either the longitudinal or bending modes. Since the goal is to generate two directions of motion simultaneously, the selected mounting points must be located at vibration nodes that are mutual to the two desired mode shapes.
In FIGURE 6, the only two nodes for the longitudinal mode are separated by distance L_1, whereas the two 'matching' nodes in the bending modes are separated by distance L_2. Since L_1 does not equal L_2, if the two mounting points were to be located at the nodes for the longitudinal modes, then the bending motion would be restricted by the mount contacts. Likewise, if the nodes were chosen for the bending mode (separated by L_2) the longitudinal mode would be restricted. To address this issue, the parameters h_2, h_3, l_2, l_3, and w_2 shown in FIGURE 5 are chosen iteratively using finite element modeling to align the desired nodes for mounting. Modal analyses can be performed on the unconstrained model to measure where the theoretical nodes are located. By adjusting the tip dimensions, two node locations on the bending and longitudinal modes can be made to converge such that they are suitable mounting points for both modes. An illustration of the final geometry with the nodes aligned is given in FIGURE 7.

Finite element simulations were used to investigate the sensitivity of the mount positions to the resonant frequency and amplitude of each operating mode by incrementally varying the mount position and simulating the actuator response. Shown in FIGURE 8, $L_{s,1}$ and $L_{s,2}$ are the distances from the back of the actuator to the two mounting points.

For this study, only the front node position ($L_{s,2}$) was varied where a positive increase in the x-direction means moving the mount closer to the tip of the actuator, while a negative increase in the x-direction means moving the mount closer to the rear of the actuator. The simulation results are presented in FIGURE 9, where the $x=0$ position is the original mounting position for $L_{s,2}$. The change in the resonant frequencies is given as a deviation from the original model results.

The results in FIGURE 9(a) show the deviation of the longitudinal and bending frequency from the original model, where $\delta Hz = 0$ and $x = 0$. The results show that the bending mode is quite sensitive relative to the longitudinal mode to changes in the mount position. Increasing x by 5 mm results in shift in the resonant frequencies between the two modes of almost 3 kHz.

These simulations demonstrate that the mount positions must be positioned correctly during the assembly of the actuator for the desired resonant behavior to occur. While the amplitude response shows little consequences for an error in the position, the mode frequencies appear to vary significantly with mount position. Based on the simulations, the mount locations must be
within 500 μm to keep the longitudinal and bending modes within 100 Hz of each other.

Tuning Techniques

Uncertainties such as stiffness of the epoxy connections, dynamic changes of that connection, node locations, and mount contact stiffness affect the resonant frequencies and are not easily captured in a the finite element model. Several methods have been developed for tuning these resonant frequencies such that both of the active vibration modes can be adjusted to occur at the same frequency despite model/fabrication differences.

When a difference in the two desired resonances is measured, a systematic method of moving the mode frequencies relative to each other has been developed. Methods such as selectively modifying the geometry of the actuator after assembly and strategically adding mass to the system can be used to tune the resonant frequencies. However, this can also change the location of the nodes which will result in a large decrease in amplitude.

FIGURE 10. Configurations for altering the resonant behavior of the actuator.

FIGURE 10 illustrates various methods investigated to tune the resonant response of the system. **FIGURE 10 (a), (b), and (c)** involve removing material at the rear of the actuator to change the effective length and mass distribution of the system. **FIGURE 10(d) and (e)** illustrate methods of adding mass at specific locations.

FIGURE 11. ANSYS results for frequency-tuning modifications where the bending mode is increased relative to the longitudinal mode.

FIGURE 11 illustrates these results for both changes in frequency and amplitude. The plots in **FIGURE 11(a) and (b)** are the relative change in resonant frequency between the longitudinal and bending modes from the changes shown in **FIGURE 10(a) and (c)**, respectively, where ΔFrequency is the difference between the longitudinal and bending mode frequency. **FIGURE 11(c) and (d)** are the change in output amplitude of the actuator for the longitudinal and bending mode. Modeling the amplitude response is important to ensure that the tuning modifications do not adversely interfere with the behavior of the actuator. It should be noted that these methods increase the bending mode relative the longitudinal mode, so for instances where the initial response shows the longitudinal mode lower than the bending mode another strategy is needed.

FIGURE 12. Untuned amplitude response (a) and tuned amplitude response (b).

The technique demonstrated in **FIGURE 10(e)** was used to modify the combined response of the two vibration modes in **FIGURE 12**. **FIGURE 12(a)** shows a difference of 270 Hz in the frequency of the two desired modes. This was changed by iteratively adding mass to lower
the transverse resonant mode and create the response shown in FIGURE 12(b). With the desired modes aligned, this configuration was used in indentation experiments.

ACTUATOR CONTROL
During extended operation, the resonant frequency of the system can drift due to piezo self-heating effects and other environmental influences. To maintain a consistent elliptical vibration path, a form of resonance-tracking control is needed to continuously update the drive frequency to the actuator. This is performed by measuring the phase between the current and voltage across the piezo inputs. Due to the interconnection of the piezoelectric actuators and beam, the electrical phase reflects the mechanical response of the beam. This concept is often referred to as minimum impedance tracking because mechanical resonance corresponds to minimum electrical impedance.

A lock-in amplifier was used to automatically synchronize the drive signal frequency and the measured current signal. The output frequency is modulated to maintain a specified current-voltage phase that corresponds to system resonance. A GUI is used to condition the drive signal to power the two piezo elements out-of-phase (FIGURE 13).

EXPERIMENTAL RESULTS
Since the indents must be held consistently at a depth of about 500 nm and positioned to less than 1 μm relative to each other, a high-precision diamond turning machines are required to orchestrate the workpiece and actuator position. A cylindrical workpiece was mounted on the spindle of the DTM and cut with a single point diamond tool to produce an optical quality finish (Ra < 10 nm). The actuator is mounted on the y-axis and aligned such that the die is square with the periphery of the workpiece. While the spindle is rotating the workpiece, the vibrating actuator is brought into contact with the workpiece using the x-axis, and crossed in the z-direction to imprint the die pattern around the periphery of the workpiece (FIGURE 14).

The nanocoin setup uses a Rank Pneumo Nanoform 600 with a Moore Nanotechnology Systems y-axis, resulting in a 3-axis (+ spindle) DTM shown. The workpiece is mounted on the spindle which moves in the x-direction while the actuator is mounted on the y-z axis.

Elliptical Path
A two channel MTI-2100 photonic sensor and a Tektronix MSO2014B oscilloscope are used to monitor the actuator motion in real-time. The actuator was driven with a two, 200V AC signals that are 100° degrees out-of-phase to excite both modes simultaneously. The actuator frequency was set to a frequency around 39,500 Hz; however, the actual drive frequency can be varied to change the relative motion between the two modes (i.e. emphasize one mode more than the other). The photonic sensors are positioned normal to the front and top face to capture both the longitudinal and transverse motion of the actuator. The elliptical motion used to perform the indents is shown in FIGURE 15.
Indent Experiments

Indents are performed on a 360 brass workpiece using the 40 kHz actuator design. The indented workpiece was imaged using a scanning electron microscope (SEM) to examine the final indent results. Images of a selected region of indents are shown in FIGURE 16 for magnifications of 250x, 500x, 4000x, and 20000x.

![Indent Experiments](image)

FIGURE 16. SEM images of indented brass workpiece at 250x (a), 500x (b), 4000x (c), and 20000x (d).

The indents in FIGURE 16 were generated with the worksurface moving from bottom to top, and the actuator crossfeeding from left to right. Each die impression appears rectangular (in spite of using a square die) due to the fact that overlapping was required to match the worksurface speed with the attainable transverse velocity of the actuator. As transverse amplitude of the actuator is increased, larger surface velocities can be used to match the speed.

The lower magnification images in FIGURE 16(a) and (b) demonstrate the ability to achieve uniform areas of indents using a resonant actuator and appropriate feedback controller. The higher magnification images in FIGURE 16(c) and (d) clearly show the impressions left by the square-post die. The indents appear well-formed with minimal distortion, suggesting that the worksurface speed matched the velocity of the die at the time of contact. The square borders around each indent are artifacts of the die, where a slight tilt in the orientation of the die relative to the workpiece causes one side of the die to indent slightly deeper. This alignment can be fine-tuned in successive experiments by measuring the tilt of each indent and adjusting the actuator attitude appropriately.

CONCLUSIONS

Generating structured surfaces using nanocoining requires an elliptically vibrating, 40 kHz resonant actuator. This motion is achieved by designing the actuator such that two orthogonal vibration modes occur at the same frequency. However, due to model inadequacies, a systematic method of tuning the actuator is required to optimize performance. A control system was developed to automatically track resonance and maintain desired actuator behavior. The effectiveness of the system is demonstrated by rapidly generating sub-wavelength surface structures over a large area.

REFERENCES

Synchronization System of Galvanometer Scanner and 2-axis Linear Stage for Laser Routing in Wide Area FPCB Coverlay

Kyunghan Kim¹, Jaehoon Lee¹, Kwangho Yoon¹ and Jongkweon Park²

¹ Laser application group
Korea Institute of Machinery & Materials
Daejeon, South Korea
² High precision machining group
Korea Institute of Machinery & Materials
Daejeon, South Korea

ABSTRACT
In this current research, the two-axis galvanometer laser scanner and the two-axis linear stage system are synchronized for wide area laser machining with high machining speed. This synchronization system is used as the laser routing machine at consistent machining speed, 170mm/s with a 350×350 mm² area, which area is much larger than the galvanometer scanner working field. The coverlay of FPCB (Flexible PCB) is routed and accuracy is measured as about 5µm, which is similar error regime of a galvanometer scanner itself.

INTRODUCTION
Recently, laser machining is being employed increasingly in many diverse micro fabrication areas such as biomedicine, automotive manufacture, display devices, and semiconductors [1]. A galvanometer scanner delivers laser beam at certain position by rotating two mirrors using galvanometer motors with high speed. However, it has limitation of working area maintaining same optical accuracy. If a focal length which is distance from a f-theta lens to a sample is longer, working area may be larger but optical accuracy becomes worse. A linear stage system can guarantee high positional accuracy with wide area but it has limitation of fabrication speed. To combine two individual systems, step-and-scanning method is popularly applied. During a galvanometer scanner fabricating a sample, a linear stage system stops. After fining fabrication of certain working area of a galvanometer scanner, a linear stage moves next step and a galvanometer scanner fabricates again. This method always meets discontinuities problems at intersection of scanning area and obviously slow machining speed [2].

To overcome this problem, we dynamically combine and synchronize two systems. By this method, we routes continuously without any stopping motion and routing area is extended to two-axis linear stages area without drawback of machining speed.

METHODOLOGY
The synchronization system is built with the 3-axis linear stage, the 2-axis galvanometer scanner, the 355nm ns second laser source, vision system, and controllers which includes the motion controller, the scanner control board as shown Fig.1. Position and speed of the linear stage is fed to the scanner control board by the 2-axis encoder signals. In the scanner control board, scanner movement is calculated by comparison original CAD data and stage movement. The micro vectors of the galvanometer scanner with 10µs intervals always compensate micro motion of the linear stages. In general, stage motion is slower than scanner motion due to its heavy weigh.

FIGURE 1. Schematic sketch & experimental built up of the laser synchronization system.
RESULTS AND DISCUSSION

Before operating the laser routing machine, macro motion of the linear stage and micro motion of the galvanometer scanner is separated. As shown in Fig. 2, FBCB (Flexible PCB) coverlay of the smart phone camera module is planned to be routed. Size of coverlay sheet is $350 \times 350 \text{ mm}^2$, which is much larger than working area of the galvanometer scanner, $50 \times 50 \text{ mm}^2$. The stage motion is selected to be covered whole coverlay sheet and maximum speed and acceleration capability is considered. Due to the low inertia of the linear stage, motion and speed change should be minimized. Even though working area of the galvanometer scanner is narrow, the galvanometer scanner has high inertia which is over 10g in general. Path of it is then suitable for high frequency motion and quick change of speed. Most important thing for path separation, summation of the linear stage speed and the galvanometer scanner speed is constant to maintain constant routing speed. High routing speed can cause poor cutting edge or low routing speed can make cutting edge burn.

FIGURE 2. Routing path of synchronization system and photo of routed coverlay sample.

In Fig. 3, some routed FPCB coverlay samples are selected and measured side length and diameter. Most of samples are within $5 \mu\text{m}$ error range. Maximum error is measured as $5.61 \mu\text{m}$ in sample 3. When the sample is routed with only the galvanometer scanner, the error regime is measured in similar range.

FIGURE 3. Photo of some routed samples and measurement data

CONCLUSION

The two-axis galvanometer laser scanner and the two-axis linear stage system were synchronized for wide area laser machining with high speed. Macro motion of the stage movement was planned with its maximum speed and inertia. In other hands, motion of the galvanometer scanner was planned with a high frequency in small working area. The synchronized laser machine was applied to route the FPCB coverlay sample with a 170mm/s speed. The accuracy was measured in about $5 \mu\text{m}$, which was similar error regime of a galvanometer scanner itself.

REFERENCES

Fabrication of a Flexure-based Linear Translation Stage with Integrated Optical Position System
Philippe Bado1, Ali A. Said1, Mark A. Dugan1 and Yves Bellouard2
1Translume, 655 Phoenix Drive, Ann Arbor, MI, USA
2Mechanical Engineering Dept., Eindhoven University of Technology, Eindhoven, The Netherlands

For certain applications, such as a Fourier-transform spectroscopy, the position of a linear translation stage (shuttle) is precisely monitored using optical means. Typically, this is achieved by attaching an optical interferometer to the moving shuttle and to the companion fixed reference frame. This multi-subsystem approach is susceptible to both short and long-term misalignment when subjected to shocks, vibrations, or thermal effects.

Fabricating the moving platform and the rest frame from a single monolithic slab, and integrating the optical interferometer into this system, would alleviate these shortcomings. This would, however, require that the monitoring optical system be fabricated (at least in part) directly onto the translation stage or inside the translation stage. The later embodiment would further require that the stage be made out of a material that is transparent, but it would provide the additional advantage of an encapsulated optical system protected from the elements. This is the approach we decided to pursue.

Our monolithic linear translation stage with an integrated subsurface optical position system (see Fig. 1) is made of amorphous fused silica glass, also known as fused quartz.

Fused silica is a high-quality optical material, transparent from about 170 nm to above 3 µm. While commonly used in optical and chemical applications (where it is a material of choice due to its general chemical inertness), fused silica is rarely, if ever, used for its mechanical characteristics.

Fused Silica Micromachining
The fabrication of our linear translation stage, with its many flexure elements and its integrated optical position sensor, was made possible only by recent developments in machining fused silica, with the use of femtosecond lasers.

Our translation stage demonstrator is made out of a single piece of amorphous fused silica glass. The body of the demonstrator is precision-machined using a two-step process, which combines femtosecond laser illumination and chemical etching (see Fig. 2).

FIGURE 2. Two-step glass precision machining process

This process, first demonstrated by Marcinkevicius et al. [1], relies on the fact that the chemical resistance of fused silica to selected etchants can be greatly altered, and made to be highly non-isotropic, using femtosecond laser pre-irradiation. We refer to this process as femtoEtch [2]. The etching selectivity ratio between exposed and non-expose approaches 100:1 when using HF as an etchant, and it can exceed 1000:1 when using KOH, as recently demonstrated by Hermans [3].
Using the femtoEtch process, one can create almost arbitrary-shaped 3D volumes in fused silica (See Fig. 3).

Although fused silica glass is intrinsically a strong material, it has not been previously used to fabricate mechanical flexures. This is mainly due to the heretofore absence of a suitable machining technique capable of generating the desired geometric profile, while at the same time preventing the formation of surface defects. Tomozawa [4] has shown that fused silica surface flaws act as stress concentrators and cause the nucleation of cracks, which ultimately lead to failure. Tomozawa also showed that most glasses, including fused silica, are prone to static fatigue under constant loading, due to stress-corrosion effects, i.e., spontaneous crack growth leading to a reduction of the fracture strength in the presence of moisture. This effect can be significantly reduced using chemical treatment that blunt crack tips [4].

We have shown that our femtoEtch process does not generate noticeable surface flaws. In fact, it removes or blunts surface flaws that are present in the glass slab prior to our manufacturing; these flaws are typically generated during dicing, lapping, and polishing operations, which are commonly applied to glass pre-forms. The absence of surface flaws allows for the use of fused silica as an elastic material. Bellouard [5] has shown that our process can be used to fabricate unusually strong flexures, as shown in Fig. 4. Flexural strengths as high as 2.7 GPa were measured, a value that is greater than the breaking strength values of many common engineering materials. As part of this study, it was shown that prolonged etching time clearly enhances the maximum strength of the flexure.

A second fabrication process is used to fabricate the waveguides that are part of the optical position sensor. Davis et al. [6] demonstrated the use of femtosecond lasers to locally increase the index of refraction of fused silica. This process (femtoWrite) is closely related to our femtoEtch process. Most critically, it uses the same femtosecond laser source.

This is a key aspect of our fabrication approach: the various structural, mechanical, and optical elements are all introduced with the same direct-write laser workstation in a continuous manufacturing process. Specifically, there is no need for repositioning of the work piece. Consequently, the precision of this manufacturing process depends, to first order, only on the performance of the motorized stages used to move the specimen under the laser beam.

Microstage Design

Our microstage is composed of two main subsystems: (i) a flexure-based mechanism, which guides the motion of the platform along one axis, and (ii) a waveguide-based optical system that senses the ensuing displacement (see Fig. 5). The mechanical design is a conventional double-compound rectilinear kinematic structure (see Fig. 6), sized to provide the desired 1-mm travel range without unduly stressing the flexing elements (see Table 1).

TABLE 1. Critical Mechanical Dimensions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Notch hinge thickness</td>
<td>50 µm</td>
</tr>
<tr>
<td>Notch hinge radius</td>
<td>7 mm</td>
</tr>
<tr>
<td>Distance from notch hinge center to next notch hinge center</td>
<td>4.7 mm</td>
</tr>
<tr>
<td>Fused silica plate thickness</td>
<td>1 mm</td>
</tr>
<tr>
<td>Young's modulus</td>
<td>75 GPa</td>
</tr>
</tbody>
</table>
FIGURE 5. Demonstrator fabricated in a 1-mm thick fused silica substrate. A force applied to the shuttle tip induces a linear motion of the mobile platform.

This design assumes small deformations, a pure elastic material behavior, and an elastic limit of 300 MPa; the device was over-etched to provide a high ultimate tensile strength. An analytical model predicts a force of 0.2 N was required to reach the maximum excursion [7].

FIGURE 6. Double-compound design. The circle represents ideal mechanical joints with one degree of freedom (rotation in the plane).

We used signal intensity variation, induced by lateral misalignment between waveguides, as the basic principle to track the mobile platform displacement. The position monitoring subsystem is an integrand part of the fused silica platform. It consists of several optical waveguides: (i) an array of short optical waveguides, which are embedded in the moving platform, and (ii) longer waveguide segments embedded in the stationary frame, as illustrated in Fig. 7. The waveguides are located mid-plane in the fused silica substrate. They have an 8 µm x 8 µm square cross-section. The index refraction of the waveguide core is approximately 0.6 percent higher than that of the surrounding material. This index difference corresponds to that found in standard SMF-28 telecommunication. The waveguides are highly multimode at the operating wavelength of 670 nm, but single mode at 1550 nm, albeit wavelength is not critical and selection of the source is dictated by other criteria, such as availability of reliable fiber-pigtailed optoelectronic components. The waveguide array consists of parallel waveguide segments, separated by 30 microns and spanning the 1-mm tail-end section of the movable platform. By design, one transmitting and one receiving waveguide, located in the stationary rest frame of the device, are in direct axial alignment with one of the array waveguides when the stage is unloaded and at rest, as illustrated in Figure 7. An input optical signal is coupled to the device using an optical fiber; fiber ports are machined in the rest frame. This signal travels successively along the input waveguide segment located in the rest platform, through a 20-micron free space gap (Fig. 8), through one of the waveguides found in the movable shuttle, through a second free space gap, and finally along the output waveguide segment, which is connected via an optical fiber to a photodetector.

FIGURE 7. Operating principles of the waveguide-based position monitoring system. (Top) three geometries with changing relative displacement between the moving carrier and the rest frame. (Bottom) Corresponding optical signal.
The 30-micron spacing between waveguides in the movable array, create an uneven coverage of the range of motion (see Fig. 9). In more recent demonstrators, a second output waveguide, positioned in quadrature, was added to address this shortcoming. Various air gaps or slots, positioned in such a way to act as scattering blocks through total internal reflection, were also added to improve the optical signal-to-noise ratio. With this improved arrangement, position measurement resolution along the main axis was found to be better than 50 nm.

REFERENCES

FIGURE 8. Close-up view of waveguide segments located near the junction between the rest platform (left) and the moving carrier (right)

FIGURE 9. Experimental results (upper blue curve) compared with simulation results (lower green curve). With only one output waveguide, the displacement resolution is function of the displacement

Higher precision can be obtained by creating an optical micro cavity whose length is defined by the separation between the end tip of the moving platform and the stationary platform. A hybrid implementation, combining optical fibers with a glass micromechanical flexure-based structure, was recently demonstrated by Cervantes. [8]. A fully integrated version of this approach can be implemented using integrated waveguides instead of surface-bond optical fibers.

In all of our demonstrators, the actuator was external to the device. Integrated electrostatic drives have been fabricated and tested independently. However, it was found that they could not provide the desired translation range. For many applications, an external actuator is acceptable as backlash and other assembly imperfections do not, to first order, critically affect the device operation as the position system is integral to the platform.

Sensitivity to thermal effects is generally not a significant issue either, as the coefficient of thermal expansion of fused silica (3.5x10^{-7}/°C @ 20 °C) is one of the lowest of any solid.
MECHANICAL DESIGN OF MULTIPLE FRESNEL ZONE PLATES
PRECISION ALIGNMENT APPARATUS FOR HARD X-RAY FOCUSING
IN THE TWENTY-NANOMETER SCALE

Deming Shu, Jie Liu, Sophie-Charlotte Gleber, Joan Vila-Comamala, Barry Lai, Jorg Maser, Christian Roehrig, Michael J. Wojcik, and Stefan Vogt
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, U.S.A.

INTRODUCTION

Fresnel-zone-plate-based optics is extensively applied for x-ray instruments [1]. At the Advanced Photon Source (APS) at Argonne National Laboratory (ANL), many synchrotron radiation beamlines are using Fresnel zone plates for hard x-ray focusing. However, the efficiency of Fresnel zone plates (FZPs) as focusing optics for x-rays depends on the height of the structures. In the hard x-ray regime, very high aspect ratios are required for maximum efficiency with focusing spot sizes of few tens of nanometers, which is required for future hard x-ray nanoprobe beamlines planned as part of the APS Upgrade project [2,3].

To overcome the limitations of today’s fabrication techniques for high-efficiency hard x-ray FZPs, a new approach of stacking FZPs at larger distances (in an intermediate-field) was proposed by Vila-Comamala et al. in 2012 [4]. According to this new approach, stacking zone plates with large separation distance is possible by adjusting the diameter of the downstream FZP so that its focal length is equal to the focal length of the upstream FZP minus the distance between both FZPs. Thus, the focal spots of both FZPs overlay when the separation of both FZPs is matching the difference in focal lengths. However, besides designing and fabricating of high quality FZPs for intermediate-field stacking, there are many mechanical design challenges to transfer the theory to a practical instrument. First of all, a precision alignment apparatus for multiple FZPs handling and aligning must be designed to meet the following challenging design requirements:

- Each of the stacking FZPs needs to be manipulated in three dimensions with nanometer-scale resolution and several millimeters travel range.
- The relative three-dimensional stabilities between all of the stacking FZPs (especially in the x-ray beam transverse plane) are required to be kept within few nanometers for more than eight hours, the duration of a typical hard x-ray nanoprobe operation.
- Compatible with the operation of multiple optics configuration for the APS future x-ray nanoprobe design.

To meet the demanding mechanical requirement for the precision alignment apparatus system for hard x-ray focusing in the twenty-nanometer scale, several prototypes have been designed and tested at the APS.

APPARATUS FOR TWO FZPS STACKING

Figure 1 shows a 3-D model of a prototype of alignment apparatus Z2-33 for two FZPs stacking [4]. It enabled the first experiment of stacking FZPs with adjusted diameter in the intermediate field, and the results prove the simulations by Vila-Comamala et al. [4]. It includes a pair of commercial Piezo-motor-driven linear stages (SmarAct™ SLC-1720S), which are mounted on the zone plate alignment base to provide 2-D alignment for the upstream zone plate in X-Y plane. The downstream zone plate holder is driven by a SmarAct™ SLC-1720S linear stage in Z-direction to adjust the
gap distance between the upstream and downstream zone plates. All of the three piezo linear positioners are mounted on a zone plate alignment base frame, which is a part of the carriage of a 2D-tilting stage. Driven by a picomotor™ actuator, the V-axis tilting stage rotates around a vertical pin, which is fixed on the base of the 2D-tilting stage and sliding fitted with the base of the H-axis stage. The H-axis stage tilts around a pair of flexural pivot as shown in figure 1.

APPARATUS FOR THREE FZPS STACKING

Figure 2 shows a 3-D model of a prototype of alignment apparatus for three FZPs stacking [5,6]. Its non-symmetric design is also compatible with mirror-based nanofocusing optics, such as Kirkpatrick-Baez (K-B) mirrors [7] for hard x-ray nanoprobe in switchable multi-optics operation modes. As shown in figure 2, the Z2-34 alignment apparatus has a non-symmetric invar base structure (1) and six commercial Piezo-motor-driven linear stages (SmarAct™ SLC-1720S). Three zone plates (2-4) are mounted on CVD-diamond holders (5-7). The CVD-diamond holder (5) for upstream zone plate (2) is driven by a stage (8) to adjust its position in Z direction with nanometer scale and stability. The second downstream zone plate (3) is driven by a pair of stages (9,10) to adjust its position in X and Y directions. The third downstream zone plate (4) is driven by a set of stages (11-13) to adjust its position in X, Y, and Z directions. Since the thermal expansion coefficient of CVD diamond is similar to the thermal expansion coefficient of invar, it basically ensures thermal stability of the apparatus. To further compensate the thermal deformation from the stages (8), (9,10), and (11-13), the materials of the linkage components (14-16) between the stages and CVD-diamond holders are carefully chosen. If it is necessary, two or three materials may be combined to compensate the stages thermal deformation precisely. Figure 3 shows a photograph of the Z2-34 alignment apparatus for three FZPs stacking.

APPARATUS FOR SIX FZPS STACKING

The Z2-37 precision alignment apparatus is designed for six zone plates intermediate-field stacking [6]. It is especially useful for hard x-ray focusing with x-ray energy 25 keV and above.

As shown in figure 4, the Z2-37 alignment apparatus has a hexagon symmetric invar base structure (1) with an interface mounting plate (38) and eighteen commercial Piezo-motor-driven linear stages (such as SmarAct™ SLC-1720S, PI™ LPS-24, or Micronix™ PPS-20 stages). Six zone plates (2-7) are mounted on CVD-diamond holders (8-13). Each of the zone plate CVD-diamond holders is driven by a set of stages (14-16, 17-19, 20-22, 23-25, 26-28, and 29-31) to adjust its position in X, Y, and Z directions. Similar to the zone plate holders for Z2-34 alignment apparatus, the zone plate holders for Z2-37 alignment apparatus are made of CVD diamond material to ensure thermal stability of the apparatus. Materials of the linkage components (32-37) between the stages and CVD-diamond holders are also carefully chosen to further compensate the thermal deformation from the stage set. If it is necessary,
two or three types of material may be combined to compensate the stages thermal deformation precisely. Figure 5 shows a 3-D model of the Z2-3701 X-Y-Z stages sub-assembly module with CVD diamond holder and linkage component. Figure 6 shows a result of thermal structural stability study with finite element analysis (FEA) method for the zone plate thermal drifting in Y direction under a 1 °C temperature variation. Table 1 summarizes the results with different Y-stage positions. The results show that, under a 1 °C temperature variation, with SS304 linkage and AL6061 adapters, the zone plate center on the CVD diamond holder will have a less than 3 nm drift in a Y-stage travel range of -1 – 0 mm. Similar design with an octagon or decagon symmetric invar base structure and twenty-four or thirty commercial Piezo-motor-driven linear stages can perform eight or ten zone plates intermediate-field stacking for high energy x-ray focusing applications.

Figure 4. A 3-D model of the Z2-37 precision alignment apparatus for six zone plates intermediate-field stacking: (1) invar base structure; (2-7) zone plates; (8-13) CVD-diamond holders; (14-31) X-Y-Z stages; (32-37) linkage components; (38) an interface mounting plate.

Figure 5. A 3-D model of the Z2-3701 X-Y-Z stages sub-assembly module with CVD diamond holder and linkage component.

Figure 6. A 3-D FEA model of the Z2-3701 X-Y-Z stages sub-assembly module for thermal drifting in Y direction under a 1 °C temperature variation at y-stage neutral position.

Table 1. FEA results for zone plate thermal drifting in Y direction under 1 °C temperature variation with different Y-stage positions. In this study, the linkage material is SS304 and the adapters material is AL6061.

PRELIMINARY TEST

A test for stacking five zone plates with 80 nm zone width was performed at the APS undulator beamline experimental station 2-ID-D at 25 keV using the Z2-37 stacking alignment apparatus as shown in Figure 7. Figure 8 shows Moire fringes on the scintillator crystal created before final tweaking for the five FZPs alignment. The initial successful x-ray tests demonstrated the performance of the stacking alignment apparatus. Detailed x-ray test results will be published in separated papers [5].

SUMMARY

The mechanical design of multiple FZPs precision stacking alignment apparatus for the
hard x-ray focusing is presented in this paper. FEA results and initial x-ray experimental measurements have shown that the mechanical design of the precision alignment apparatus system will meet design requirements for the hard x-ray focusing in the twenty-nanometer scale. Further x-ray tests for six or more zone plates with 20 nm zone width for higher spatial resolution are in progress.

Figure 7. A photograph of a x-ray test setup of the Z2-37 precision alignment apparatus for up to six zone plates intermediate-field stacking at the APS experimental station 2-ID-D. In this setup, the Z2-37 invar base is mounted on a large stepping-motor-driven X-Y-Z stage system associated with a four Z2-3701 X-Y-Z stage module using SmarAct™ SLC-1720S Piezo-motor-driven stages and one set of Z2-3704 X-Y-Z stages module using Micronix™ PPS-20 Piezo-motor-driven stages.

Figure 8. A transmission image on the scintillator crystal with CCD camera showing Moiré fringes created before final tweaking for the five FZPs alignment.

ACKNOWLEDGEMENTS

The authors would like to thank S. Keaney, J. Anton, C. Jacobsen and G. Pile from ANL for their help in the development of this project. This research used resources of the Advanced Photon Source and Center for Nanoscale Materials, U.S. Department of Energy (DOE) Office of Science User Facilities operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

REFERENCES

Actuator Design for a High-Speed Large-Range Tip-Tilt-Piston Micro-Mirror Array

Robert M. Panas
Materials Engineering Division
Lawrence Livermore National Lab
Livermore, CA, USA

Jonathan B. Hopkins
Mechanical and Aerospace Engineering
University of California, Los Angeles
Los Angeles, CA, USA

ABSTRACT
This paper presents a new method for the modeling and optimization of actuator performance in a high fill-factor (99%) micro-mirror array design (10,000 1mm² mirrors) in order to produce the highest actuation output possible. The high torque output resulting from the optimization enables the mirrors to be driven with three degrees of freedom (DOFs)—tip, tilt, and piston—over large ranges (≥±10° rotation and >±30µm translation) at high speeds (~40kHz small stepping rate), all with continuous closed-loop control. The capabilities of this new mirror array will extend the performance of a variety of high-impact technologies including: (i) optical switches, (ii) confocal microscopes, (iii) autostereoscopic display and image capture, (iv) microprojectors, (v) high speed focusable LIDAR, (vi) micro-additive fabrication approaches that utilize principles of light steering (e.g., two photon polymerization or optical tweezers), and (vii) high-powered laser steering systems for defense applications including projectile interception. A seven mirror prototype array has been built to-scale to demonstrate the design’s fabrication feasibility.

STRUCTURE
A seven mirror array is shown in Fig. 1 to illustrate the scale and components of the micromirror. Only the middle element is shown fully assembled. The micromirror array is composed of hexagonal unit cells, each of which contains three bipolar electrostatic comb drive actuator paddles, three decoupling flexure linkages and a hexagonal mirror. The actuators are the green/blue paddles which are anchored at two corners to the red actuation plate below and are free to rotate around a single axis as shown in Fig. 2.

1These are both first authors as their contributions to this paper are equal
Each paddle contains two symmetric sets of combs in order to provide bipolar motion control. The rotary DOF of the actuator paddle is driven by energizing the actuation plate side of one of these comb sets, causing the combs of the (grounded) ground plate to pull down towards the actuation plate. The R1 and R2 flexures of the paddle allow this rotary DOF while resisting all other motion. The design of these flexures (R1, R2) and the anchoring structure around the combs is crucial for resisting comb pull-in (relative X-axis motion) and thus maximizing actuation force.

BACKGROUND
Comb drives have been the focus of extensive optimal design efforts. In particular, the instability due to pull-in has been extensively studied [1–5], and a range of additional effects have been considered including bearing stiffness [2] and varying comb cross-section [3]. These efforts typically focus on deducing a critical stiffness for design [1,2,4,5] and take the comb geometry as given. This work operates in the opposite direction. The optimizer draws upon given flexure bearings which have been designed via FACT to find the comb geometry that maximizes actuation within the given design topology and geometric constraints. The flexure stiffnesses are then adjusted to find the best tradeoff between actuation output and bearing stiffness/strength.

We present a new method to analyze pull-in that extends beyond previous work so as to incorporate both fabrication errors and the stiffness of the full load path loop into closed-form analytical expressions for pull-in displacement. This expression is integrated into a new approach to comb-drive design which uses constraint-based optimization (CBO). CBO offers several advantages when used in design, including rapid redesign, optimal performance, and the ability to study sensitivity to constraint inputs, so as to aid in design decisions.

MODEL ELEMENTS
The multiple elements of the paddles are incorporated into the model via several paths. This includes the combs on the actuation and ground plate- these are able to flex under high voltages with their tips moving in the x-direction towards one another. The remainder of the actuation plate is considered a mechanical ground. The ground plate is analyzed in several parts. The sidewall linking the comb tips, the roof over the combs and the H-shaped central mass are all considered part of the rigid body of the paddle. This rigid body is able to both translate in X and rotate in θz under pull-in loading when one comb set is activated.

The paddle fabrication process involves etching both actuation and ground place from single crystalline silicon wafers, then aligning the two structures and bonding them together. The alignment error generates an offset, δ, of the combs relative to the ideal equilibrium locations, as shown in Fig. 3.

ACTUATION TORQUE
The maximum actuation torque, \(\tau_{max} \), for the paddles around their rotary DOF is produced by the tangential electromagnetic stress in the overlap area of the ground and actuation plate combs. A relative voltage between these combs, as shown in Fig. 3, drives the ground plate combs downward to overlap further with the actuation plate combs. This force is calculated by determining the actuation stress-the Z-axis force generated per area (pitch*comb length), then integrating the torque per area over the active comb section of half the paddle. The result is shown in Eq. (1), with the variables identified in Fig. 2 and Fig. 3, where \(L_a \) is the width of the paddle at the axis- also the side length paddle, \(L_t = L_a \sqrt{3}/2 \) is the axis-to-tip distance, \(L_o \) is the comb overlap length, \(N \) is the number of combs on each side, \(\gamma_{cf} \) is the fraction of usable area (≈0.825) in the paddle, \(\varepsilon_r \) is the relative permittivity of the air in the gap, \(\varepsilon_o \) is the permittivity of free space, \(V_{max} \) is the max voltage applied between the combs which is limited by Paschen’s law to be <300V for Si-Si
combs [6] but is typically <200V, \(d\) is the nominal gap between comb faces, \(w_a\) is the actuation plate comb width and \(w_g\) is the ground plate comb width.

\[
\tau_{\text{max}} = \left(L_1 - \frac{2L_0}{3} \right) \frac{I_o N \gamma_{cf} \varepsilon_r \varepsilon_0 V_{\text{max}}^2}{2d} \\
N = \frac{L_o (L_o / L_1)}{w_a + w_g + 2d}
\]

(1)

The goal of the model is to maximize this expression. The torque scales inversely with \(d\), \(w_a\) and \(w_g\), which are the main adjustable parameters for the comb drive. The maximum torque is thus found by thinning the combs. The limit of this is to make the combs so compliant as to cause pull-in during operation. The optimizer must then consider pull-in effects to determine the optimal comb pitch and thickness.

PULL-IN FORCE

The pull-in force, \(F_p(x_p)\), is produced by the normal electromagnetic stress in the overlap area of the ground and actuation plate combs. This force incorporates the assembly offset, raised to its maximum value, as shown in Eq. (2), where \(d_{\text{max}}\) is the maximum average comb overlap length, and \(x_p\) is the net pull-in deflection during maximum loading. The expression includes the forces from the combs on either side of the each ground plate comb. When these are precisely balanced and there is no assembly error, the pull-in forces cancel out.

\[
F_p(x_p) = \frac{1}{2} \varepsilon_r \varepsilon_0 L_o d_{\text{max}} V_{\text{max}}^2 \ldots \\
\left(1 - \frac{1}{(d - \delta - x_p)^2} - \frac{1}{(d + \delta + x_p)^2} \right)
\]

(2)

LOAD PATH STIFFNESSES

The pull-in force is resisted by the full structural loop stiffness of the actuator, as shown in Fig. 3 which includes the lateral stiffness of the actuation plate combs, \(k_a\), ground plate combs, \(k_g\), the paddle structure stiffness in the X-axis, \(k_{rx}\), and the paddle structure \(\theta Z\) rotary stiffness, \(k_{\theta Z}\). All of these stiffnesses are functions of the three main comb drive parameters- \((d, w_a, w_g)\). These are the three values to be optimized.

The springs are modeled as series modes whose displacements are summed to determine the net stiffness, \(k_{\text{tot}}\), at the midpoint of the ground plate combs, as shown in Eq. (3). The two comb stiffnesses are each exposed to the distributed pull-in load of a single comb, but the two paddle motion stiffnesses are driven by the net total pull-in force. The single comb pull-in force for these motions is scaled by \(NY_{cf}\) to account for the \(N\) other combs, only \(\gamma_{cf}\) fraction of which are usable, each averaging only of \(\frac{1}{2}\) the length of the full comb \(L_o\) due to the triangular area. The \(\theta Z\) term includes an additional lever arm factor, \(L_{rz}\) to account for the comb distribution when generating a torque around the Z-axis. This standardizes the input load to all of the springs to be the single comb pull-in force as shown in Eq. (2).

\[
k_{\text{tot}}^{-1} = k_a^{-1} + k_g^{-1} + \left(\frac{2k_{rx}}{N\gamma_{cf}} \right)^{-1} + \left(\frac{2k_{\theta Z}}{N\gamma_{cf}L_{\theta Z}} \right)^{-1}
\]

(3)

DISPLACEMENT CALCULATION

The net pull-in displacement \(x_p\) is calculated by balancing the load path spring force against the non-linear pull-in force, as shown in Eq. (4).

\[
\sum F_s = F_p(x_p) - k_{\text{tot}}x_p = 0
\]

(4)

The pull-in force generates a 3rd order polynomial, but can be simplified via a Taylor series around the expected operating regime as shown in Eq. (5) with series coefficients \(t_0, t_1, t_2\). This provides a means to bring Eq. (4) back to a closed-form solvable expression which enables the optimization to be run quickly.

\[
T \{ F_p(x_p) \} = \frac{1}{2} \varepsilon_r \varepsilon_0 L_o d_{\text{max}} V_{\text{max}}^2 \ldots \\
\left(t_o + t_1 (x - d, r_p) + t_2 (x - d, r_p)^2 \right)
\]

(5)

The linearization point for the series is specified as a fraction, \(r_p\), of the initial gap on the smaller side, \(d_1 = d - \delta\). In a simple parallel plate actuator (with only two plates), the pull-in threshold would occur at \(x_p/d_1 = 1/3\). The addition of the second plate on the opposing side of the moving comb, with distance \(d_2 = d + \delta\) adjusts this value. When the assembly error is 0, then the pull-in forces balance and alter the threshold value. As the
assembly error grows relative to the nominal gap, the d_2 term becomes insignificant and the location of the threshold converges back to $1/3$ [2]. The optimization process will tend towards this as smaller gap means more actuation force. A safe design assumption is to assume failure at $r_p=1/3$, so set a maximum value $r_p=1/6$.

The displacement solution is solved using the quadratic formula as shown in Eq. (6). The solution is most accurate around the linearization point $r_p d_1$, which is the target around which the optimization code designs.

$$x_p(d, w_a, w_g) = d_1 r_p = \frac{C t_2}{2 t_1 C} - \ldots$$

$$\sqrt{\left(t_1^2 - 4t_0 t_2\right) C^2 + \left(4d_1 r_p^2 - 2t_1\right) C + 1}$$

$$C = a_p k_{tot}^{-1}$$

OPTIMIZATION

An optimization is carried out to maximize the actuator performance given the various constraints - including pull-in - on the designs. The pull-in constraint is defined by enforcing the solution of x_p as calculated in Eq. (6) to be at the r_p limit. The three inputs (d, w_a, w_g) are then adjusted to maximize the actuator torque while meeting the gap and fabrication constraints, as shown in Eq. (7).

Given

$$x_p(d, w_a, w_g) = r_p d_1$$

$$d > d_{min}$$

$$\left(w_a, w_g\right) > w_{min}$$

Maximize(τ_{max})

The optimization can theoretically proceed over the full three parameter design space, however it can be difficult to converge given the singularity at the $r_p=1/3$ pull-in. The system will always operate along the pull-in constraint boundary as that provides the maximum electromagnetic stress. The pull-in constraint equation can thus be used to define one of the three inputs (d, w_a, w_g) as functions of the other two. A sub-function is used to calculate the nominal gap width d from of the comb widths. This sub-function masks the singularity from the general torque maximization function. The resulting torque output over the remaining two parameter space is shown in Fig. 4.

$$FIGURE 4: Torque output over the two parameter comb width space$$

The comb widths turn out to have a symmetric input to the performance via the stiffness expressions due to simplifying boundary condition assumptions. This leaves effectively a single variable to scale over in this design for performance maximization. The torque output over a range of equal comb widths is shown in Fig. 5. The solving surface is now smooth with an easily identifiable single peak value occurs at around $3.5 \mu m$.

$$FIGURE 5: Torque output as a function of the$w_a=w_g$one parameter space.$$

CONFIRMATION

The structural kinematics and elastomechanics were confirmed via Finite Element Analysis (FEA) as shown in Fig.'s 6 and 7. The load path stiffness predictions were found to underpredict the overall stiffness by 9%. The slight underprediction is due to the conservative simplifying assumptions of i) no sidewall boundary conditions on the ground plate combs, and ii) comb tip loading. Conservative estimates are desired as they increase the safety factor for the design.

The total deflection of the ground plate paddle under pull-in load is shown in Fig. 6. The maximum deflection occurs about 75% of the way along the comb length. This is due to an interaction of the boundary conditions at the far end of the comb restricting the ground plate
comb deflection, while the \(\theta_z \) rotation mode appears as a radially increasing deflection with distance from the center of the paddle. The combs were loaded over a trapezoidal area to account for the load distribution under maximum rotation. The far ends of the combs overlap further with the actuation plate combs so see a higher concentration of the pull-in force.

The main DOF stiffnesses of the design were also analyzed in FEA in order to study the effect of the actuation torque on the full design. The R1 and R2 flexures enforce the single rotary DOF of the actuator paddle as seen in Fig. 7. The nearly pure rotation occurring on the paddles drives the three decoupling flexures vertically, controlling the tip, tilt and piston motion of the mirror.

CONCLUSIONS
A new method is described for the modeling and optimization of electrostatic comb drives in a MEMS micromirror device. This enables the micromirror array to operate at high speeds over large ranges. The new method is able to incorporate assembly error and the full load path stiffness into the analysis of the actuator performance. The optimization process operates in reverse of the typical analysis, as the overall bearing stiffness is used as an input around which the process optimizes the main comb drive parameters \((d, wa, wg)\) to produce the largest possible actuation output. This allows for the actuator to be rapidly resized as the general flexure topology is adjusted, either manually or as part of a larger analysis cycle.

Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-657938.

REFERENCES

Flexure Design for a High-Speed Large-Range Tip-Tilt-Piston Micro-Mirror Array

Jonathan B. Hopkins¹
Mechanical and Aerospace Engineering
University of California, Los Angeles
Los Angeles, CA, USA

Robert M. Panas¹
Materials Engineering Division
Lawrence Livermore National Lab
Livermore, CA, USA

¹These are both first authors as their contributions to this paper are equal

ABSTRACT
The aim of this paper is to introduce the flexure topology of a new, high fill-factor (99%) micro-mirror array (10,000 1mm² mirrors) that can achieve continuous, closed-loop control of three degrees of freedom (DOFs)—tip, tilt, and piston—over large ranges (>±10° rotation and >±30μm translation) at high speeds (~40kHz small stepping rate). The flexure topology of this array was designed using the Freedom and Constraint Topologies (FACT) synthesis approach [1], which utilizes geometric shapes to help designers rapidly consider every flexure topology that best achieves a desired set of DOFs. The performance capabilities of this new mirror array will enable, or significantly improve, the performance of a variety of high-impact technologies. Examples include: (i) optical switches, (ii) confocal microscopes, (iii) autostereoscopic displays, (iv) micro-projectors, (v) high-speed focusable LIDAR systems, (vi) micro-additive fabrication approaches that utilize principles of light steering (e.g., two photon polymerization or optical tweezers), and (vii) high-powered laser steering systems for defense applications including projectile interception. A single mirror prototype is currently being built to-scale to demonstrate its predicted performance.

CONTRIBUTIONS
In this paper, we introduce a new micro-mirror array (Fig. 1). Specifically, we explain how FACT was used to synthesize the array’s flexures such that they (i) only permit the three desired DOFs, (ii) are symmetric and exactly-constrained to achieve maximum precision with minimal parasitic error and thermal drift, (iii) decouple each mirror’s actuators to enable independent actuation of the mirrors’ desired DOFs over large ranges while accelerating as little mass as possible, (iv) don’t permit any under-constrained bodies in the design to protect against unwanted vibrations, and (v) behave as transmission elements that allow the design to be tuned to achieve a large range of target speeds and strokes for specific applications.

MICRO-MIRROR ARRAY’S FLEXURE DESIGN
The micro-mirror array introduced in this paper is shown in Fig. 1. Although the maximum number of mirrors within the array is limited primarily by the size of the wafer on which the array is fabricated, the array in Fig. 1 shows only seven mirrors. Each mirror in this array is constrained from below by flexures that only permit three DOFs—two rotations (shown as red lines in Fig. 1) and a translation (shown as a black arrow).

FIGURE 1. New micro-mirror array design

A single hexagonal mirror within the repeating array is shown with different views in Figs. 2A-B. An exploded view of the system is shown in Fig. 2C. The mirror is constrained by three identical axisymmetric serial flexure limbs labeled (1) through (3) in this figure. Each of these limbs consists of two parallel flexure modules stacked in series. One parallel module consists of two wire flexures (colored yellow) that form a triangular truss and join the mirror to one of its three paddles (colored blue and green). These flexures are labeled “Decoupling Flexures” in Fig. 2C. The other parallel module consists of six blade flexures (Fig. 2D) that join the
corresponding paddle to the fixed via plate (colored red). This second parallel module only permits each paddle to rotate about a single axis located at its center. The paddle on the far right of Fig. 2A, for example, can only rotate about the axis labeled R_{paddle}. Each paddle is driven by a bipolar electro-static rotary comb drive actuator that uses two sets of combs. Each set of combs can be independently charged with a voltage by a corresponding via that passes through the backside of the via plate where controller electronics are attached. The mirror’s vias are numbered 1 through 6 in Figs. 2A-C. Note that the electrically charged combs of the via plate mesh and overlap with the combs of the paddles (labeled in the bottom view of Fig. 2D), which are electrically grounded. If the via labeled 1 is given a charge, its corresponding paddle will pull down and rotate about R_{paddle} in the direction shown in Fig. 2A. If the other two paddles are simultaneously held fixed, the mirror will rotate about the axis labeled $R(1)$ in Figs. 2A.

To rotate the mirror about the same axis, but in the opposite direction, the via labeled 2 should be given a charge instead of the via labeled 1. Similarly, the mirror can be rotated about the axes labeled $R(2)$ and $R(3)$ (Figs. 2E-F) in different directions by charging vias 3 or 4 that correspond with paddle (2) and vias 5 or 6 that correspond with paddle (3) respectively. Thus, the mirror’s six actuation vias can be independently charged to drive any combination of $R_{(1)}$, $R_{(2)}$, and $R_{(3)}$. By charging these six actuation vias different amounts, the mirror can be made to translate along the axis of the black arrow shown in Fig. 2F, and rotate about any axis that lies on the mirror’s plane shown outlined red in the figure. This red plane of rotation lines and the orthogonal translation arrow is the system’s active freedom space (AFS) [2]. An AFS is a geometric shape that represents all the ways a system’s stage (i.e., the mirror in this instance) can be actuated for every combination of actuator loads. Note that the three desired DOFs (i.e., tip, tilt, and piston) shown in Fig. 1 lie within this AFS.

USING FACT TO DESIGN THE FLEXURES

In this section, we utilize the geometric shapes of FACT to explain how the mirror’s flexure topology was synthesized. According to FACT, every parallel flexure module (i.e., two bodies directly joined by compliant constraint elements arranged side by side in parallel) possesses a constraint space (CS) and a complementary passive freedom space (PFS). A parallel flexure
module’s PFS is a geometric shape that represents all the ways one of the bodies within the parallel module is permitted to move as a result of its compliant constraint elements (e.g., wire or blade flexures) when the other body is held fixed. The module’s CS represents the region of space within which every viable compliant constraint element can be placed to permit the motions within its complementary PFS while constraining other unwanted motions. It is important that enough independent compliant constraint elements are selected from a parallel flexure module’s CS such that the module will be permitted to move with the motions of its PFS only. If too many compliant constraint elements are selected from the CS such that some are redundant (i.e., they constrain the same motions), the module is over-constrained. The process of appropriately selecting compliant constraint elements from a module’s CS such that the resulting module is exactly or over-constrained to achieve the desired DOFs of the module’s desired PFS has been addressed in many previous publications [2] and is not the focus here.

Consider the parallel flexure module shown in Fig. 3A that consists of a single paddle joined directly to the via plate by six flexure blades. This module’s CS is an infinite number of planes that intersect along a common axis as shown by the blue planes in Fig. 3A. Note from Fig. 2D that two of the paddle’s flexure blades lie on the labeled vertical plane in Fig. 3A and the paddle’s remaining four flexure blades lie within the labeled horizontal plane. The CS’s complementary PFS is a single rotation line (Fig. 3B) that is collinear with the intersection axis of the CS’s planes. Thus, the reason the paddle can only rotate about this axis is because a sufficient number of compliant constraint elements were selected from within the module’s CS. Now, consider the parallel flexure module shown in Fig. 3C that consists of the mirror joined directly to a paddle by two angled wire flexures. This module’s CS is a disk of blue constraint lines that lie on the plane shown. Note that the axes of both wire flexures are coincident with constraint lines within the module’s CS. Its complementary PFS (Fig. 3D) consist of (i) a plane of rotation lines that is coplanar with the CS’s disk, (ii) a translation arrow that is orthogonal to this plane, (iii) a sphere of rotation lines that intersect at the intersection point of the constraint space’s disk, and (iv) screw lines that

FIGURE 3. Paddle’s constraint space (CS) (A) and passive freedom space (PFS) (B), decoupling flexure’s CS (C) and PFS (D), limb’s effective PFS (E) and effective CS (F), system’s effective CS (G), decoupling flexure’s PFS satisfies the necessary conditions to correctly decouple the system’s actuators (H).
are not shown in the figure to avoid visual clutter. Thus, if the paddle shown in Fig. 3D were held fixed, the mirror would be able to move with all of these motions because enough wire flexures were selected from this PFS's complementary CS.

To determine the effective PFS of the single serial limb shown in Fig. 3E that consists of the two parallel modules shown in Figs. 3B and 3D stacked together, the motions within the PFS of both parallel modules should be linearly combined (i.e., summed together). Thus, if the via plate is held fixed, a mirror constrained by one of these serial limbs could not only move with all the permissible motions within both PFSs, shown on the left side of Fig. 3E, it could also move with every combination of these motions. The resulting PFS, shown on the right side of Fig. 3E, consists of (i) an infinite number of intersecting red planes that contain rotation lines, (ii) a disk of translation arrows that are perpendicular to the axis of intersection of these planes, and (iii) screw lines that are not shown to avoid visual clutter. The complementary CS of this effective PFS is a single constraint line that is collinear with the axis of intersection of the rotational planes of the PFS. Thus, a mirror constrained by a single wire flexure, like the one shown in Fig. 3F, is kinematically equivalent to the serial limb of Fig. 3E (i.e., it does the same job of both constraining and permitting the same motions).

Thus, to determine the effective PFS of the entire single mirror system shown in Fig. 3G that consists of three identical axisymmetric serial flexure limbs arranged in parallel, the effective CS of each limb must first be linearly combined to determine the overall system's effective CS. The complementary PFS of this CS is the effective PFS of the entire system. The effective constraint space of each limb (i.e., a single constraint line) is shown and labeled according its corresponding limb number in Fig. 3G. The effective CS that results from linearly combining these three constraint lines is the single plane shown outlined blue in the same figure. Its complementary PFS is the red plane of rotation lines and the perpendicular translation arrow shown in Fig. 2F. Thus, if the via plate is held fixed, the overall flexure topology of each mirror within the array of Fig. 1 is correctly designed to passively constrain the mirror to only achieve the motions that result from the combination of the three desired DOFs shown in the same figure. Note also that this system's PFS is identical to the system's AFS. This means that the actuators have been correctly designed to actively drive all of the system's passive DOFs. Furthermore, note that the fewest number of actuators have been employed to fully actuate the desired system DOFs (i.e., three paddles are used to drive the mirror's three DOFs). Note also that to drive each paddle so that it can rotate in both directions, two sets of combs that are independently charged by two sets of corresponding vias are necessary.

The mirror's flexure topology is also largely symmetric and exactly-constrained to achieve maximum precision with minimal thermal drift and parasitic error over its full range of motion. Since each serial limb within the system contributes a single constraint line (Figs. 3F-G) that restricts a unique DOF, the limbs exactly constrain the mirror (i.e., none of the limbs contribute redundant constraint). Furthermore, the two wire flexures selected from within the constraint space of the parallel module of Fig. 3C are independent and thus exactly constrain the module within each limb. The only source of over-constraint in the design comes from the redundant flexure blades within the parallel module of Fig. 3A. Although, we could have used FACT to exactly constrain this module with five independent constraint lines, such a design would (i) not be able to be made sufficiently stiff to achieve optimal mirror performance, (ii) not lend itself to a practical fabrication approach, and (iii) not be symmetric resulting in harmful thermal instabilities, unbalanced dynamics that induce unwanted vibrations, as well as significant parasitic error as the paddle rotates over its full range. Most of the negative effects caused by the choice to over-constrain this module are mitigated by the fact that many of the redundant blade flexures are made from the same piece of material (i.e., no assembly required during fabrication). Furthermore, these blade flexures will likely avoid appreciable temperature gradients, which are harmful to over-constrained designs, because of their close proximity and high thermal conductivity to thermal expansion ratio (they are made of silicon). Note that if the entire array shown in Fig. 1 is heated, the mirror can only displace along the direction of its translational DOF because of symmetry. This minor potential for thermal drift will not, however, affect the light steering capability of the overall system but
could influence its ability to modulate the light's phase.

The FACT shapes (Fig. 3) used to synthesize the flexure topology of this tip-tilt-piston mirror design also ensure that the design's topology correctly decouples its actuators. Note from Fig. 2A that regardless of how much the paddle in the serial limb labeled \(f\) is rotated by charging vias 1 or 2 various amounts, the other two paddles remain largely unaffected and experience no harmful forces as the mirror is rotated about the \(R_{(1)}\) axis. Thus, the desired mirror DOFs can be independently actuated without requiring the via plate's combs (i.e., the system's actuators) to move during operation, which is the case for stacked actuator designs. Thus, this design achieves high speed in part because its actuators are designed to be stationary and because each paddle can independently actuate the mirror without causing the other paddles to move appreciably. As a result, the amount of mass that is necessary to accelerated to achieve any desired mirror DOF is minimized. This decoupling effect also greatly reduces the system's control complexity. According to FACT, the PFS of a system's decoupling flexures (e.g., the wire flexures shown in Fig. 2C) must satisfy specific conditions to optimally decouple the system's actuators [1]. First, this PFS must not contain the PFS of the actuator's flexure bearing such that the actuator can rigidly pass the intended displacement through the limb to the system's stage. For this design, the PFS of the actuator's flexure bearing is the rotation line shown in Fig. 3B. Note from Fig. 3H that this line, labeled \(R_{\text{paddle}}\), is not contained by the PFS of the decoupling flexures (Fig. 3D) so the first condition is satisfied. If this line did belong within the PFS of the decoupling flexures, the mirror would hardly move as the actuated paddle rotates. The second condition states that the PFS of the system's decoupling flexures must contain all the motions caused by the actuation of the other serial flexure limbs so that the system's stage motions induced by one actuator do not affect the other actuators. For this design, note from Fig. 3H that the motions \(R_{(2)}\) and \(R_{(3)}\), caused by actuating the serial limbs labeled (2) and (3) respectively, both lie within the sphere of rotation lines within the decoupling flexures' PFS of limb (f) thus, satisfying the second condition.

Not only is the flexure topology of this paper's mirror design not over-constrained (except within the parallel flexure module of Fig. 3A as previously discussed), it is also not under-constrained. A serial limb is under-constrained when any of its stacked parallel flexure modules possess redundant DOFs. Thus, when the stage of an under-constrained system is held fixed, one or more of its intermediate bodies possess one or more permissible motions that are not fully constrained and are thus susceptible to unwanted and uncontrolled vibrations. Note that for this paper's design, if its mirror is held fixed, the three paddles will be fully constrained. Note also that if all the paddles are held fixed, the mirror is exactly-constrained by an effective hexapod. If two paddles are held fixed, the mirror is only free to rotate with the motion caused by the paddle that was not held fixed. Thus, the controller used to dynamically drive this mirror can be simplified and does not need to compensate for poor mechanical design.

The mirror of this paper's design is shaped like a hexagon for a number of reasons. A circular mirror would be the optimal geometry for a tip-tilt mirror from the standpoint of balanced mass moments of inertia. As long as a circular mirror rotates about an axis that lies on its plane and intersects its central point, the mass moment of inertia associated with that rotation is the same regardless of which axis is actuated (i.e., tip, tilt, or any combination of the two). Unfortunately, however, circles cannot fill space and would thus achieve an array with a low fill factor. Only three repeating regular polygon options exist that fully fill space—equilateral triangles, squares, and regular hexagons. Of these three options, hexagons are the most circle-like in that they possess the most balanced moments of inertias.

Hexagons also enable a significant actuation advantage based solely on their geometry. Regardless of the regular polygon chosen for the mirror within any space-filling array, the maximum area that can be allotted to the bipolar electro-static rotary comb drive actuators is the area of the mirror’s polygon itself. Thus, an optimal design should utilize this full area to enable the maximum number of combs that can be packed for achieving the largest possible torque loads to drive the mirror. It is difficult to divide the area under a square into three axisymmetric paddles for driving the mirror’s three DOFs. Such a design would require a fourth and thus, redundant actuation paddle to be axisymmetric, which would dramatically
increase the system’s control complexity. Although both a triangle and a hexagon can be divided into three such axisymmetric paddles, only the hexagon can be divided into three axisymmetric paddles that utilize the full area of the mirror’s polygon and are themselves symmetric about their axis of rotation (Fig. 4). This latter paddle symmetry, like a balanced seesaw, further simplifies the dynamic control of the system. Furthermore, note that a hexagon-mirror’s paddles can be made to fully utilize the allotted area of the hexagon in a way that also allows them to trade area real-estate under neighboring mirrors as shown on the right side of Fig. 4. Using this configuration, the paddles can impart a significantly larger torque load to their corresponding mirror because their moment arm lengths are substantially increased. Thus, to optimize the speed with which the mirrors of the design of this paper can be driven, the configuration shown on the right side of Fig. 4 was used.

![Diagram of hexagon-mirror design with axisymmetric paddles](image)

FIGURE 4. Two ways to utilize the full area of a hexagon with three axisymmetric paddles that are also symmetric about their rotational axis. The design on the right side can achieve more torque because of its larger moment arm length.

Finally, note that the flexure topology of the design of this paper possesses a double transmission effect that can be tuned to achieve a large variety of desired mirror speeds and ranges of motion. If each pair of wire flexures, labeled “Decoupling Flexures” in Fig. 2C, are moved toward the center of the mirror such that the parameter labeled D in Figs. 2A and 2E increases and the parameter labeled L decreases the same amount within each of the system’s three serial limbs, the mirror’s rotational range increases substantially while its driving torque and speed capability decreases. In like manner, moving these wire flexures away from the mirror’s center toward the rotational axis of each paddle (i.e., the mirror’s edge for the configuration on the right side of Fig. 4) substantially increases the mirror’s driving torque and speed capability while decreasing its rotational range. Thus, by simply arranging the position of the decoupling flexures within the mirror design of this paper, the mirror can be tuned to achieve a large range of speed and stroke combinations that are tailored to satisfy the functional requirements for a multiplicity of diverse applications. Note also that the length along which the decoupling flexures can be displaced is substantially larger for the configuration on the right side of Fig. 4 compared with the configuration on the left side.

CONCLUSIONS

This paper introduces the flexure topology of a new high-fill factor micro-mirror array that achieves unprecedented performance. The array’s flexure topology (i) only permits the mirror to passively achieve tip, tilt, and piston DOFs, (ii) is largely symmetric and exactly-constrained, (iii) decouples each mirror’s actuators to enable independent actuation of the mirrors’ desired DOFs over large ranges while accelerating as little mass as possible, (iv) doesn’t permit any under-constrained bodies in the design to protect against unwanted vibrations, and (v) behaves as a double transmission mechanism to enable large ranges of target speeds and strokes for various applications. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-658144.

REFERENCES

In this paper, we present the development of a flexure-based five-axis nanopositioner with dynamic-tuning capability for parallel nanomanufacturing applications, e.g., electro-machining (nano-EM), dip-pen nanolithography and nano-scratching. Static, dynamic, and dynamic-tuning experiments were devised and performed to characterize the range, speed, and resolution characteristics of the nanopositioner.

DYNAMIC-TUNING FOR NANOPositionER

Nanopositioners can move objects of different sizes with nanometer precision. They are important as they set the limits on our ability to measure, manipulate, and manufacture physical systems. To fulfill the stringent repeatability and precision requirements, compliant mechanisms, i.e., flexures, are often used for their advantages (no wear between joint members and free of backlash etc.) over traditional mechanical linkages [1].

It is known that the dynamic performance of a flexural mechanism depends on its natural frequency; however, this is often compromised by the required stroke of the mechanism. In other words, high natural frequency can only be achieved at the expense of reduced stroke. In this work, we aim to develop a dynamic-tunable flexure-based nanopositioner that allows trade-offs between its speed (natural frequency) and range (stroke)—a concept inspired by compliant actuators used in humanoid robots [2].

The dynamic-tuning effect is achieved by exploiting the “stress-stiffening effect”, i.e. the stiffness of a beam increases when it experiences tensile loads in the axial direction [3]. The natural frequency of a simply supported beam with axial force \(N \) can be described by Equation (1), where \(\omega \) is the natural frequency; \(l \), \(A \), \(I \), \(E \), and \(\rho \) is the length, cross-section area, moment of inertia, Young’s modulus, and density of the beam, respectively [3]. For example, the natural frequency of a 70mm long and 1mm thick titanium beam can be shifted from 450Hz to 1164Hz when 1000N tensile force is applied. Note that compression load is not used as it may cause buckling and instability.

\[
\omega = \left(\frac{\pi}{l} \right)^2 \sqrt{\frac{EI}{\rho A}} \sqrt{1 + \frac{N^2}{\pi^2 EI}}
\]

(1)

Figure 1 presents the simulated results of a symmetric double parallelogram (DP) mechanism with increasing axial loads until the yield stress is reached. Figure 1A shows the CAD model. The material used in the FEA simulation is titanium.
NANOPOSITIONER DESIGN

Figure 2 shows the layout of the nanopositioner, where an in-plane X-Y stage and an out-of-plane Z-θX-θY stage are connected in series to achieve five degrees of freedom. The design of the X-Y stage utilizes the principle of constraint-based design [4] by using multiple folded-beam mechanisms to decouple the X and Y motion. The extended range in the X and Y directions are achieved by the symmetric DP mechanism. To implement dynamic-tuning, two piezoelectric actuators (green arrows in Figure 2; PI P-845.20) are used in each DP mechanism to generate axial loads (stress) for dynamic-tuning. The dynamic-tuning design is implemented on the X-Y stage to enable trade-offs between its range and speed.

Figure 3 shows the layout of the out-of-plane compliant stage which generates independent motions in the Z, θX, and θY directions. The central stage is supported by six flexural arms. Three piezoelectric actuators (Newport NPA100) are installed below the motion tabs extending from the central stage, as indicated by the blue circles. Three capacitance probes (in red; Lion Precision C30/CPL290) are used to measure the out-of-plane displacements for closed-loop position control. Piezoelectric actuators are used for the out-of-plane stage for high-speed parallelism control and nano-patternning application.

To characterize the dynamic properties of the nanopositioner, we first conducted an impulse response experiment to obtain resonant frequencies of the nanopositioner in different axes. Resonant frequencies were calculated from the displacement data by performing the fast Fourier transform (FFT). Table 1 summarizes the measured and simulated resonant frequencies. These parameters are used in the dynamic-tuning experiments as well as the implementation of closed-loop control.

<table>
<thead>
<tr>
<th>Freq [Hz]</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>θX</th>
<th>θY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulated</td>
<td>15.5</td>
<td>20.1</td>
<td>2236</td>
<td>3499</td>
<td>3558</td>
</tr>
<tr>
<td>Measured</td>
<td>14.5</td>
<td>20.3</td>
<td>1936</td>
<td>3223</td>
<td>3182</td>
</tr>
</tbody>
</table>

To understand the level of cross-axis motion coupling and implement the open-loop control, static displacement experiments were performed.
to identify the input-output matrix S_X that maps actuator displacements to mechanism displacements. Equations (2) and (3) [5] are used to obtain the matrix S_X. The measured results are shown in Equation (4).

$$X_c = S_X X_A \to [\Delta x \; \Delta y \; \Delta z \; \Delta \theta_x \; \Delta \theta_y \; \Delta \theta_z]^T$$

$$= S_X \begin{bmatrix} x & y & z_1 & z_2 & z_3 \end{bmatrix}^T$$

Equation (2)

$$X_A = S_X^{-1} X_c$$

Equation (3)

$$S_X = \begin{bmatrix} 0.950 & -0.011 & -0.002 & -0.001 & -0.002 \\ -0.008 & 0.987 & -0.038 & -0.033 & -0.002 \\ 0.002 & 0.001 & 0.105 & 0.157 & 0.108 \\ 0 & 0 & 0 & 0.013 & 0.010 \\ 0 & 0 & 0.004 & 0.007 & 0 \end{bmatrix}$$

Equation (4)

POSITIONING EXPERIMENT

First, static positioning experiments in selected axes (X, Z, and θ_X) were performed to demonstrate the range and precision of the nanopositioner. In these experiments, the input-output matrix, S_X, was used as an open-loop controller. Figure 5 shows the measured displacements and rotation in the X, Z and θ_X axis respectively. The displacements and rotation are plotted versus open-loop displacement commands in the left column, and the off-axis errors are plotted versus displacement commands in the right column. Overall, we found the off-axis parasitic motions to be reasonably small, i.e. 0.05% of the device’s range.

FIGURE 5. X, Z, and θ_X position results
In the second experiment, the nanopositioner was commanded to generate precise X and Z motions with the open-loop controller in a local work volume to demonstrate its nanoscale positioning capability. Figure 6 plots the measured displacements (left) and off-axis errors (right) versus open-loop displacement commands. The results demonstrate the nanopositioner can precisely perform multi-axis nano-patterning tasks with 10s nanometer precision. The precision can be further improved with closed-loop control.

DYNAMIC-TUNING EXPERIMENT
To validate the in-plane dynamic-tuning capability, axial loads (displacements) were applied to the X-Y stage by the stiffness-tuning actuators shown in Figure 2. The results are shown in Figure 7, where resonant frequencies in X and Y directions can be increased by 2-3 times with increasing axial loading. The measured resonant frequencies are constantly lower than the simulated results and the errors increase with increasing displacements. This may be due to the following reasons: (1) misalignment between the piezoelectric actuator and the loading axis and (2) imperfect actuator constraints.

FIGURE 6. Y and Z position results

FIGURE 7. The relationship between resonant frequency and applied displacement
NANOMANUFACTURING STATION

Figure 8 presents the conceptual design of a nanomanufacturing station design that includes the five-axis nanopositioner integrated with a custom-built AFM tip/stage assembly, where an AFM tip array is affixed to a manual Z-positioner with a side imaging camera that provides coarse distance control between the AFM tips and the sample. During a nano-patterning process, the Z-θx-θy stage controls both the Z position of the tip array and the parallelism between the array and the sample, while the X-Y stage performs the actual X-Y scanning and patterning.

When the area to be patterned is smaller than the default range of the X-Y stage, the stiffness-tuning commences. According to the FEA results in Figure 1B, the natural frequency of the X-Y stage can be easily increased by a factor of 2 to achieve higher patterning speed and better dynamic characteristics.

![Figure 8. CAD model of the nanomanufacturing station](image)

CONCLUSION

We have developed a dynamic-tunable five-axis nanopositioner. In this paper, we presented the design, modeling, assembly, and characterization of the nanopositioner, including the static, dynamic, and frequency-tuning characteristics. Our experiments indicate the nanopositioner can control the stage position within ±25nm and tune its natural frequency between 15 to 40 Hz, which proves effective trade-offs between the natural frequency and elastic range. The demonstrated range and precision make the five-axis nanopositioner suitable for various large area parallel nanomanufacturing applications, including nano-EM, dip-pen nanolithography and nanoscraping. A parallel nanomanufacturing station will be developed based on the nanopositioner and a custom-developed AFM.

ACKNOWLEDGEMENT

This work is supported by the HKSAR Innovation and Technology Commission (ITC) Innovation and Technology Fund (ITF), ITS/262/12: Design and Control of Flexure-Based Multi-Axis Nanopositioners for Ultra Precision Applications.

REFERENCES

INTRODUCTION
Due to the quantity of textile materials in the environment, there is a high probability of fiber transfer during the commission of a crime. As a result, identification of fiber samples often plays a critical role in criminal investigations. In a typical case, a sample of known origin must be compared to an evidence sample to determine if both could have the same origin. A wide variety of techniques are available to test this hypothesis and each provides a different type of information. Forensic fiber examinations begin with non-destructive visual comparison of characteristics such as color, diameter, cross-sectional shape, birefringence, refractive index and fluorescence. These techniques include light microscope, UV-visible spectrometry and Fourier Transform Infrared spectrometry.

One way to add additional specificity is to identify the dyes used to color the fabric. Such analysis are more sensitive but destroy the evidence sample. Among the quantitative techniques available are high performance liquid chromatography, capillary electrophoresis, pyrolysis-gas chromatography/mass spectrometry and time-of-flight mass spectrometry. The latter technique is becoming increasingly popular for identifying the dye material from a fabric with a high degree of molecular specificity. It can measure the mass of a distribution of different dye molecules extracted from the fiber sample.

However, to use these analytic techniques, dye molecules must be separated from the fiber sample. While useful and pertinent research has been conducted to optimize macroscopic extraction conditions, what is needed is a microfluidic device that can quickly and automatically extract the dye from the fabric. The resulting dye solution could then be loaded into an LC column for separation and subsequent detection by mass spectrometry. Such a system would make it feasible for the forensic examiner to apply the quantitative methods to a larger number of samples while minimizing the risk of human error and sample contamination. Microfluidic systems have been developed for a variety of applications from chemical analysis to DNA amplification. The differences in the dye extraction problem are 1) the requirement to insert a macroscopic solid object into the device and 2) aggressive extraction solvents such as pyridine that limit the compatible materials.

This paper describes the development of a system to automate the dye extraction process. The system uses a microfluidic cavity to separate the dye from tiny fiber strands less than 3 mm in length and 50 µm in diameter and then prepare the dye for MS analysis – all in less than 10 minutes. This automation is less labor-intensive and allows the forensic examiner to analyze multiple samples at once. Additionally, the system could provide a higher sample concentration than can be achieved manually, thus reducing the size of fiber needed to make a positive ID.

EXTRACTION SYSTEM
The process begins with the forensic examiner placing a small fiber sample onto a flexible microfluidic cavity (10 µl volume) shown in Figure 1. This is typically done using a microscope and tweezers. The examiner then seals the chamber by placing the glass cover over the cavity and checks that the fiber is clamped in place. This design feature allows the examiner to see the fiber both before and after the process.

![Figure 1](image_url)
FFKM – often called elastomeric Teflon – to create the extraction cavity and sealing it with a glass cover. The FFKM cavity was machined with a 1/32” milling tool operating at 30,000 rpm for these prototypes but will be molded in future versions.

Dye Extraction

The extraction chip holding the sealed microfluidic cavity is then inserted into the system and fits under the heater at the bottom of Figure 2.

FIGURE 2. Extraction system layout.

FIGURE 3. The chip is inserted into the system (A-C), breaking the beam of an optical switch. (D) A pneumatic cylinder is triggered, providing sealing pressure to the cavity and fluid connections.

Figures 2 and 3 show the components and steps in the extraction process. When the chip is inserted into the system (3A), it breaks the beam of an optical switch and triggers a pneumatic cylinder to seal the cavity (Figure 3A-3C). The cylinder loads the glass against the flexible cavity to seal the cavity as well as the fluid connections through the bottom of the extraction chip (Figure 3D).

Fluid, air, waste, and extracted dye are routed to and from the microfluidic cavity through shut-off valves and a 10-position rotary valve shown in Figure 2. Pressurized reservoirs supply solvent (a mixture of pyridine and water) into the cavity to immerse the fiber.

A resistive heater in the clamping block heats the solvent through the glass cover to produce solvent temperature of 90°C in less than 50 sec. High temperature reduces the extraction time of the dye.

Evaporation

After the dye is extracted, the pyridine is evaporated by flowing air through the cavity. This process was also a challenging aspect of the design. The number and shape of the air passages and the air volume/speed were instrumental in creating controlled evaporation of the solvent without blowing the mixture out of the chamber. For a fluid temperature of 90°C, the evaporation process is completed in 1 minute.

Re-dissolution

After the pyridine is evaporated, the dye molecules coat the cavity walls. A buffer solution is introduced into the cavity to re-dissolve the molecules. The temperature of this process needs to be controlled for best results. The buffer solution and reconstituted dye molecules are then pumped through the inlet to a sample container or directly into an HPLC-Mass Spectrometer for analysis. Waste fluid and solvent vapors are pumped to a waste container that is vented by an activated charcoal filter.

RESULTS

Figure 4 shows a red-dyed fiber in the microfluidic cavity before and after extraction with the device.

FIGURE 4. Microfluidic cavity and red fiber (A) before and (B) after dye extraction.

The device has been used to successfully extract direct dyes from cotton threads (a bundle of fibers) and acid dyes from nylon threads as small as 3 mm in length. Timing of each extraction step was as follows:
1. Solvent introduction and heating for extraction \rightarrow 3-5 min.
2. Evaporation of solvent \rightarrow 2 min.
3. Waste ejection and buffer introduction \rightarrow <1 min.
4. Re-dissolution of dye and ejection of sample \rightarrow 1-2 min. (longer for larger sample volume)

HPLC and MS Measurements

High Pressure Liquid Chromatography (HPLC) and Mass Spectrometry (MS) were used to analyze the red dye extracted from the fiber sample. The HPLC separates the molecules based on polarity and MS measures the mass/charge ratio. The results for the extracted red dye are shown in Figure 5. The retention and EIC time from the HPLC Fig 5(A) identify a region of interest and the charge ratio (m/z) of 631.08 from Fig 5(B) identify the DR 81 red dye molecule. This extraction system was successfully employed with HPLC-MS analysis for the detection of the dyes listed in Table 1.

TABLE 1. List of extracted dyes

<table>
<thead>
<tr>
<th>Color Index Name</th>
<th>Fiber Material</th>
<th>m/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Green 26</td>
<td>Cotton</td>
<td>544.08</td>
</tr>
<tr>
<td>Direct Red 81</td>
<td>Cotton</td>
<td>314.53</td>
</tr>
<tr>
<td>Direct Yellow 106</td>
<td>Nylon 6,6</td>
<td>298.99</td>
</tr>
<tr>
<td>Acid Blue 25</td>
<td>Nylon 6,6</td>
<td>393.05</td>
</tr>
<tr>
<td>Acid Yellow 49</td>
<td>Nylon 6,6</td>
<td>424.00</td>
</tr>
<tr>
<td>Acid Red 186</td>
<td>Nylon 6,6</td>
<td>514.33</td>
</tr>
<tr>
<td>Acid Red 114</td>
<td>Nylon 6,6</td>
<td>785.10</td>
</tr>
<tr>
<td>Acid Yellow 151-9</td>
<td>Nylon 6,6</td>
<td>807.07</td>
</tr>
</tbody>
</table>

FIGURE 5. Results of analysis of Direct Red 81 ($C_{29}H_{21}N_5O_8S_2$) extracted dye sample. (A) The retention time and EIC time from LC analysis and (B) the mass spectrum show the detection of the DR81 dye.

Direct Injection to MS

The direct coupling of the extraction system output to a Quadrupole Time of Flight - MS (QTOF-MS) device significantly improves the limits of detection for the system. The QTOF-MS and the dye extractor are shown in Figure 6. Acid Blue 25 dye was extracted from an individual nylon fiber (< 1 ng) less than 10 mm in length. The sample was sent directly to a mass spectrometer from microfluidic system, where the characteristic m/z (393.05) of the ions was detected.

In addition to extraction from individual fibers, the system can be used to extract from multiple fibers with different dye colors simultaneously. Acid Blue 25 and Acid Yellow 49 dyes were extracted from individual nylon fibers in a single test where direct injection to the mass spectrometer was used. The mass spectra of the individual dyes is easily distinguished in Figure 7.
CONCLUSIONS
Automated dye extraction from trace fibers in a microfluidic system has been achieved. The extraction process is accomplished in under 10 minutes with minimal fabric and chemical volume. While the extraction is taking place, the forensic examiner is free to prepare the next sample for extraction in a parallel machine, thus increasing throughput and addressing the back-log of samples currently awaiting analysis within the justice system.

Future work will push detection limits to their maximum by minimizing fluid volume to extract dye from even smaller samples. Furthermore, solid-extractions applications are being developed for drug testing, hair analysis, food quality control, etc. Since the device provides control over operation conditions (temperature and process times), extraction can be optimized for a variety of dye and fiber types, as well as other solid-extraction applications.

Figure 7. (A) Mass spectra of Acid Blue 25 and Acid Yellow 49 dyes from combined extraction (individual fibers 5-10 mm in length). The individual mass spectra of (B) Acid Blue 25 and (C) Acid Yellow 49 are easily distinguishable.

FIGURE 6. Direct coupling of extraction system to mass spectrometer.
INTERFEROMETRY AND OPTICS AS EMPLOYED IN ADVANCED LIGO

David H. Shoemaker1
1LIGO Laboratory
Massachusetts Institute of Technology
Cambridge, MA, USA

SUMMARY
A second generation of gravitational-wave detectors employing laser interferometric sensing of test-mass motion is currently in commissioning. The basic notion is to use a Michelson interferometer to sense the strains in space-time due to a passing gravitational wave. Due to the very small anticipated signal sizes, the actual instrument must have superb optics, have km-scale arms for sensitivity, and perform as limited by quantum and thermodynamic fundamental limits. The design drivers, realization, and the performance to date of both the components and the overall system will be described.
WIDE-FIELD INTERFERENCE MICROSCOPY FOR AREAL TOPOGRAPHY OF PRECISION ENGINEERED SURFACE

James Biegen, Xavier Colonna de Lega and Peter de Groot
Zygo Corporation, Middlefield, CT

INTERFEROMETERS FOR SURFACE ANALYSIS

Interference microscopy is a well-established optical method for areal surface topography and characterization. Of the available techniques, the dominant method for general applications in precision engineering is coherence scanning interferometry or CSI, because of its ability to measure a wide variety of surface textures. CSI microscopy relies on interference fringe contrast, optionally combined with interference phase, to determine surface heights [1-3].

MEASUREMENTS OVER A WIDE FIELD OF VIEW

Although the range of part sizes encompassed by "microscopy" is subject to interpretation, most often the field of view of microscopes is limited to low magnifications (e.g. 2X) and a 10 mm field of view. Many precision-engineered parts are much larger than this while still requiring the precision of interferometric metrology.

For fast and convenient measurements of surface form and waviness, there is an interest in extending the basic field of view beyond the usual limits of microscope objectives. Some solutions rely on a change in technology to grazing incidence [4], geometrically desensitized interferometry [5], or infrared interferometry [6]. These solutions trade some of the attractive performance benefits of CSI for a larger field of view, and also restrict functionality to form only, whereas detailed surface texture is accessible with CSI using higher magnifications.

There is therefore an interest in extending CSI to larger fields of view. In a previous ASPE paper, we discussed several of the obstacles to this extension, including the optical configuration, the ease of use and the acquisition and processing of interference signals that may be weak and difficult to interpret at the low numerical aperture (NA) values typical of low magnification objectives [7]. Here we report significant new progress in hardware and software for wide field of view areal surface topography metrology for precision engineering.

NEW INTERFEROMETER DESIGN

Researchers and manufacturers have developed a number of configurations based on dedicated systems for wide field of view CSI systems. Most of these systems are of the Twyman-Green or Michelson geometry [6, 8] and are dedicated to low magnification measurements of form.

![Diagram of interferometer design](image)

FIGURE 1. Wide-field of view 0.5x objective [9].

We propose an approach based on new, compact and removable low-magnification 0.5X, 1X and 1.4X objectives. This approach allows for form and fine-scale texture measurements up to 100X with a single, multi-purpose platform. FIGURE 1 illustrates the new design for wide-field objectives using a plate beamsplitter and partially-reflecting plate reference mirror [9, 10]. This interferometer realizes an equal-path geometry without the large cube beamsplitter.
and reference arm of the more familiar Michelson configuration. The partially transparent surfaces obviate the need for the central obscuration of the Mirau type objective, while retaining the advantages afforded by placing all of the optical components along the same axis. The beam splitter and reference surfaces are oriented so as to reject unwanted reflections, resulting in high fringe contrast with minimal scattered light. Although the imaging is through tilted plates, the optical design achieves well-controlled lateral chromatic aberration and distortion < 0.1% over the full field at 0.015 NA. The complete objective is significantly lighter and more compact than traditional wide field objectives.

A dovetail mount allows for installing the new objective interchangeably with objectives of other magnifications on a complete CSI system for both form and texture measurements (FIGURE 2). The 0.5X wide-field objective is matched to appropriate tube lenses and camera formats to maximize the field of view. A megapixel camera provides lateral sampling of 32µm over a 32 x 32mm area.

DATA ACQUISITION AND PROCESSING

At low magnifications, the range of random surface heights present within the point spread function of the optical system can be comparable to the wavelength of light when measuring rough parts, resulting in lost fringe contrast [11]. This effect combines with the large variations in surface texture and effective reflectivity of common precision-engineered parts to create significant challenges in signal detection.

Advances in data collection and processing since our last report have dramatically improved the data density on difficult surfaces [12-14]. The result has been an improvement in the number of useable height values when compared to conventional CSI in some cases from 30% to 99%. In many cases, the system reports full 3D topography maps for parts that are not discernable in the intensity images because the surface texture scatters most of the incident light.

The platform of FIGURE 2 offers user-selectable measurement modes, depending on the desired speed, surface height range and measurement precision. These modes include CSI with frequency-domain data processing [15], sub-Nyquist sampling for 3X higher data acquisition speed, and a mode that combines CSI with sinusoidal phase shifting interferometry (PSI) for low noise on smooth parts[14, 16].

Measurement precision depends on part texture, with best results for optically smooth surfaces. The surface topography repeatability [16] for a single image field on a polished reference artefact is 2 nm for individual CSI measurements and 0.1nm/√Hz for continuous averaging using sinusoidal PSI [14]. This low noise level enables measurements of fine detail even on reference specimens such as the SiC flat, as shown in FIGURE 3.

FIGURE 2. Multi-functional interference microscope system with interchangeable objectives, here configured with the 0.5X objective.

FIGURE 3. 3D surface topography image of a 30-mm diameter SiC standard flatness artefact. The measured Sq is 3.9nm.

PRECISION MACHINING EXAMPLES

Principal uses of large field of view CSI include flatness and waviness measurement of automotive, aerospace, semiconductor and, most recently, 3D additive manufacturing.
components [17]. CSI also provides the required data for relational metrology such as parallelism or height between separated surfaces. Here we provide examples of measurements on machined metal parts and assemblies.

A first example in FIGURE 4 is a CSI measurement of a fuel injector component having a ground, unpolished surface finish. The surface roughness is such that there are no continuous fringes visible in the instrument. The full 3D image of FIGURE 5 is readily acquired in a few seconds using CSI and the new objective.

![FIGURE 4. Photograph of a 29-mm diameter machined fuel injector component.](image1)

![FIGURE 5. 3D CSI image of the part shown in the previous figure. Parameter results: \(S_q = 1.106 \mu m, S_z = 6.615 \mu m \).](image2)

For larger objects, an established technique is the automated stitching of multiple acquisitions with lateral displacements [11]. For stitching measurements, the benefits of the wide field objective include significantly reduced data acquisition time and improved form metrology as a consequence of fewer stitched fields. As a first example, the pump part of FIGURE 6 is slightly too large for a single data acquisition, but is readily measured with four overlapping fields. The result in FIGURE 7 reveals the top surface form, and the recess of the impeller blades. As a final example, FIGURE 8 shows an assembly of gears in a housing with variable surface textures and reflectivities, successfully measured using stitching of 29 sub-Nyquist CSI image fields into the complete 3D topography shown in FIGURE 9.

![FIGURE 6. Photograph of a 36-mm diameter pump impeller component.](image3)

![FIGURE 7. 3D CSI image of the part shown in the previous figure.](image4)

![FIGURE 8. Photograph of the gear assembly in a housing with variable surface textures and reflectivities.](image5)

![FIGURE 9. Complete 3D topography of the assembly shown in the previous figure.](image6)
FIGURE 8. Photograph of a 150-mm diameter transmission pump assembly.

FIGURE 9. 3D image of the part shown in the previous figure. $S_Q = 26.7 \mu m$, $S_z = 119.8 \mu m$.

REFERENCES

DEVELOPMENT OF A MINIATURE, MULTICHANNEL, EXTENDED-RANGE FABRY-PEROT FIBER-OPTIC LASER INTERFEROMETER SYSTEM FOR LOW FREQUENCY SI-TRACEABLE DISPLACEMENT MEASUREMENT

Bartosz K. Nowakowski¹, Douglas T. Smith¹, Stuart T. Smith²,
¹National Institute of Standard and Technology
Gaithersburg, Maryland, USA
²Center for Precision Metrology
University of North Carolina at Charlotte
Charlotte, North Carolina, USA

INTRODUCTION
Laser interferometry has become a staple of SI-traceable displacement measurement techniques. With decreasing cost per channel, miniaturization, and a multitude of commercially available off-the-shelf systems, these systems create ever more attractive applications unheard-of a few years ago. Although significant efforts have been made to shrink the size of the optical components necessary for a fully functioning laser interferometer sensor, most currently available commercial sensors have a sensing element on the order of millimeters or more [1].

The goal of the work presented in this paper, which builds on our previous experience with fiber-based laser interferometer systems [2], was to build a directly SI-traceable laser interferometer displacement sensor with a sensor head no bigger than a single optical fiber diameter (0.125 mm). The sensor was designed and built specifically to serve as the primary displacement and force gauge sensor in an SI-traceable precision nanoindentation platform (PNP) [3]. Significant efforts were made to assure that each component not only performed a needed function, but also contained known uncertainties or a specific methodology to ascertain uncertainty values.

SENSOR DESIGN
The sensor is based on a fiber-optic, homodyne, low finesse, single detector Fabry-Perot (FP) cavity that is set up between a polished surface and the cleaved end of an optical fiber (FIGURE 1). When the cavity length changes, a Fabry-Perot laser interferometer system has an output best described by an Airy function, and is typically used only near a quadrature point, i.e., the mid-point between an interference maximum and minimum. At or near that point, the intensity-displacement relation is assumed to be linear to within a 1% error for displacements on the order of 100 nm for wavelengths near 1550 nm, but displacements larger than this cannot be tracked.

To overcome this limitation and extend the working range of our sensor, the laser wavelength (nominally 1550 nm) is continuously modulated sinusoidally at a frequency of \(f = 1.2 \text{ kHz} \), which was chosen based on the upper modulation frequency limit of our rapidly tunable laser (RTL). By sinusoidally modulating the wavelength while cavity length, \(h \), is being changed, the signal measured by the detector has a spectrum consisting of responses at the modulation frequency \(f \) and its harmonics. The optimal modulation depth depends on the cavity length, and typically is 0.5 nm (peak-to-peak) for cavities on the order of few mm. Taking a closer look at the \(f \) and \(2f \) signal intensities, \(I_f \) and \(I_{2f} \) respectively (FIGURE 2), it can be seen that when the cavity is changing they resemble sine

![FIGURE 1. Main system components.](image-url)
and cosine. Those signals can be combined into a rotating vector created between point (0,0) and point \((I_f, I_{2f})\). Changes in cavity length caused by motion of the polished surface can then be calculated from:

\[
\Delta h = \frac{\lambda}{2} \left(\frac{\alpha}{360} + n \right), \quad \alpha = \arctan \left(\frac{I_{2f}}{I_f} \right),
\]

where \(\lambda\) is the wavelength, \(n\) is the number of times the vector completes a full revolution, and \(\alpha\) is the angle (in degrees) formed between the vector and the horizontal axis. This approach extends the working distance of a laser interferometer to well beyond 25 mm, while still maintaining sub-nanometer resolution.

ERROR COMPENSATION STRATEGIES

Compensation for fringe asymmetry

One inherent problem related to using a FP cavity in this extended mode is the inclusion of periodic errors described by Wilkinson et al. [4]. We have developed two methods for reducing these errors: one based on a look-up table created during system operation, and another based on post-processing the data using the model developed in Ref. [4].

Experimental approach to error compensation

In this method, a cavity is continuously swept by an open-loop piezoelectric-based nano-positioner capable of a maximum displacement of approximately 35 \(\mu\)m. It is generally known that piezoelectric actuators, if operated in voltage-controlled mode, exhibit nonlinear voltage-displacement characteristics. During a 35 \(\mu\)m cavity sweep with 1550 nm laser wavelength, the rotating vector completes a maximum of 45 full revolutions. Because all these data can be stored and overlapped, they

FIGURE 2. (Top) Demodulated signals at \(f\) and \(2f\) during mirror displacement. (Bottom) \(f\) and \(2f\) combined into a rotating vector.

FIGURE 3. Residual periodic error mapped during laser initialization (10 cycles overlapped).
can be averaged in post-processing to reveal cyclic nonlinearities, as shown in FIGURE 3. In this figure (top), the idealized angle is reconstructed; that is, the angle that the vector should have if no nonlinearities existed, is plotted against the actual measured angle. In the bottom figure, multiple overlapped cycles are presented with angular errors extracted. A bicubic spline function is then used to fit the data to average all overlapping cycles into one monotonic data set. These data form a base for creating a 7200 point lookup table with linear interpolation used in between points.

By using this method alone, it was possible to reduce the amplitude of the periodic errors from approximately 50 nm down to the single-nanometer level (FIGURE 4).

Analytical approach to error compensation
This section provides a brief overview of an ongoing study to evaluate a theoretical model of this interferometer implementation. Assuming an approximately Gaussian beam profile, Nemoto and Nakimoto [5] produced a theoretical model for predicting beam coupling between two fibers. Wilkinson and Pratt [4] adapted this to model field reflectance of the fiber and mirror interferometer. In their paper, they develop the following equation to model the coupling of each successive reflection of the cavity. In this model the coupling can be expressed in terms of the n^{th} reflection (this should not be confused with the refractive index of the cavity n_c). Hence the coupling C_n for the n^{th} reflection is given by [4]

$$C_n = \Delta e^{i\beta_n} e^{i\theta_n}$$

$$\Delta_n = \frac{1}{\sqrt{1 + n^2 z_m^2}} e^{\left[\frac{k_{2z} \left[(1 + 5n^2 z_m^2) - n^2 z_m^2 \right]^{i \theta_n}}{2} \right]}$$

$$\Theta_n = -\tan^{-1} \left(\frac{3n^2 z_m^2 - n^2 z_m^2}{1 + n^2 z_m^2} \right)$$

$$\beta = 2nk_z$$

where k is the wave vector in the cavity ($= 2\pi n_c / \lambda$), z_R is the Rayleigh length ($= ks^2$), s is the spot radius, λ is the vacuum wavelength of the illumination source, $\bar{z} = z / z_R$ is the normalized separation of the cavity, $\bar{x} = x / z_R$ is the normalized lateral (or transverse) shift of the reflecting beam and θ_n is the angular misalignment between the two surfaces of the cavity. Summing the coupling of the beam into the fiber for each reflection, the resultant complex value will provide the field reflectance of the cavity.

Having calculated the coupling coefficient for each reflection of the beam, the total field reflectivity, r, of the cavity is computed from the complex sum of reflections [4]:

$$r = r_o C_o + \frac{t_o^2}{r_o} \sum_{n=1}^{\infty} (r_m r_o)^n C_n e^{-i\pi}$$

where r_m and r_o represent the field reflectivity of the mirror and fiber end-face and t_o the transmitted field. The net result of this analysis is a complex number representing the magnitude and phase of the Fabry-Perot mirror. Squaring the field reflectivity produces the intensity reflectance corresponding to the voltage output of the detector.

In order to model experimental f and $2f$ responses like those shown in FIGURE 2, the first and second modulation harmonics are calculated and compared with the real and imaginary components of the cavity with a glass reflecting surface, FIGURE 5. From this model, a cavity misalignment of 47.7 mrad, minimum separation of 2.0056 mm and field reflectivity of 0.2011 were derived from the fit coefficients.
From the initial tests, the theoretical model above deviates from reflectance measurement of the FP cavity at around the 1% level. While further analysis may reduce these deviations, it is likely that the discrepancies are due to differences between the physics of the model and that of the experimental apparatus and measurement methods. Possible error sources include: non-sinusoidal time modulation of the source beam, the normalization methodology used to extract phase from the quadrature signal, the non-sinusoidal nature of the FP cavity reflectance, errors with the assumed Gaussian beam profile, and errors associated with the assumption that the spot size from which the Rayleigh length is calculated is the same as the fiber diameter.

It is mainly because of these uncertainties that a more robust approach based on renormalization and look-up tables is being pursued, an approach also adopted in [1].

Amplitude normalization technique and offset removal
Other sources of periodic errors include differences in f and $2f$ amplitudes, as well as minute DC voltage offsets present in signals. Since basic trigonometry is used to compute the angle from f and $2f$ intensities, it is assumed that their corresponding amplitudes are equal, and the rotating vector forms a perfect circle centered at the point (0,0). Any deviation from that creates periodic errors.

In order to maintain a constant ratio of f and $2f$ amplitudes, a closed-loop proportional-integral-derivative (PID) system was incorporated; it is presented schematically in FIGURE 6. The signal from a detector is separated into f and $2f$ components using a lock-in amplifier implemented with field-programmable-gate-array (FPGA) methods. Amplitudes and residual offsets of the f and $2f$ signals are then measured individually for every interference cycle. Offsets are then removed by subtracting the measured values from corresponding f and $2f$ signals. The amplitude ratio of f and $2f$ is sent to the PID controller, which changes wavelength modulation depth to keep the ratio at unity.

ABSOLUTE CAVITY LENGTH MEASUREMENT
Because the laser wavelength can be easily changed by applying an input voltage to the laser control module, the absolute cavity length can be measured by sweeping wavelength and counting the number of times the interferometer signal reaches its peak. Knowing the wavelength at the first maximum (λ_1) and last (λ_2) and the number of interference cycles (m) in between, the absolute cavity length (h) can be computed from the following equation:

$$h = \frac{m}{2} (\frac{\lambda_1 \cdot \lambda_2}{\lambda_2 - \lambda_1}).$$

The biggest contributor to uncertainty in this cavity length determination method is how accurately wavelengths at interference maxima can be determined.
SENSOR PERFORMANCE

Sensor stability and noise
There are various methods of stabilizing the laser wavelength in interferometry applications. Many systems have been developed using a reference gas absorption cell or a reference Fabry-Perot cavity. In this work, laser stability is achieved by measuring wavelength with an optical spectrum analyzer (OSA). The OSA continuously sends wavelength and modulation depth information through an RS-232 interface to a real-time control module used as a PID controller. This scheme allows low-picometer wavelength stability while maintaining the flexibility to choose the operating wavelength.

In order to test how stable the displacement measurement is in a fully operational instrument deployed in its working environment, a test setup was built (see FIGURE 7). A glass ferrule holding an optical fiber was mounted with a dab of glue to a glass substrate having a very low coefficient of thermal expansion. An optical cavity was formed between a cleaved fiber end and an optically polished glass wedge attached to the substrate. Care was taken to assure that the metrology loop was as short as feasible. The assembly was then placed in a temperature-controlled chamber capable of maintaining a temperature setpoint to approximately 0.01 °C.

Data obtained during the logging of displacement are shown in FIGURE 8. Data were recorded over 66 h at a rate of 10 samples per minute. The average stability of the sensor during this experiment was measured to be approximately 1 nm per 24 h. The exponentially decaying drift is likely caused by handling the assembly prior to recording data. Higher-frequency variations in displacement are caused primarily by the dynamics of the environmental chamber PID temperature control system.

The noise performance of the system at higher frequencies can be seen in FIGURE 9. Here data were recorded at the rate of 74 Hz. Data obtained follows a normal distribution with σ of 0.914 nm and noise amplitude $0.106 \text{ nm}/\sqrt{\text{Hz}}$.

Maximum range for a mirror-polished target
The maximum working range of our system, which uses a source laser power of approximately 5 mW, was determined by moving the cleaved fiber end away from target until accurate nanometer level displacement measurement was no longer possible. The maximum distance was determined to be approximately 25 mm, which is more than adequate for the current application.
Angular misalignment and target roughness
One major advantage of using a bare cleaved fiber is that careful fiber-target alignment using focusing lenses is not required. The maximum possible misalignment at which the interferometer would still work was ±10°, when tested on an optically polished aluminum target. The setup and misalignment can be seen in FIGURE 10. This feature greatly reduces set-up time and precision required for the fiber-target pair during assembly. Although the system can function with high degrees of misalignment, it is not advised to operate at those limits without careful consideration of the beam path to reduce unwanted uncertainty.

Typical laser interferometer systems require an optically polished target surface to operate properly. To test how our system behaves when the target surface is of significantly poorer optical quality, we used a set of targets made from common nanoindentation specimens. They are presented in FIGURE 11. In order they are: 1) a cured epoxy resin, 2) poly (methyl methacrylate), 3) a polished polycrystalline ceramic, 4) a silicon wafer, and 5) high-density polyethylene.

There was no distinguishable difference between any of those samples and a polished Al mirror in the performance of the system. The interferometer system was stable and the noise level remained at the reference level.

CONCLUSION
This paper presents the development of a miniature, multichannel, extended Fabry-Perot fiber-optic laser interferometer system designed for a precision SI traceable nanoindentation application. The system meets all requirements, achieving sub-nanometer noise levels, high stability, immunity to minute fiber-target misalignments and a surprising level of immunity to surface roughness. Periodic errors can be successfully reduced using the methods described.

DISCLAIMER
Commercial equipment and materials may be identified in order to adequately specify certain procedures. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

REFERENCES

FIGURE 10. Fiber-target misalignment.

FIGURE 11. A variety of materials that all created functional Fabry-Perot cavities.
A NOVEL HETERODYNE GRATING INTERFEROMETER SYSTEM FOR IN-PLANE AND OUT-OF-PLANE DISPLACEMENT MEASUREMENT WITH NANOMETER RESOLUTION
Lei J. Wang¹, Ming Zhang¹, Yu Zhu¹, Ya F. Wu², Chu X. Hu¹, Zhao Liu¹
1. State Key Laboratory of Tribology, Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2. School of Mechatronics Engineering, University of Electronic Science and Technology, Chengdu 611731, China

INTRODUCTION
In the past, the multi-axis heterodyne laser interferometer system is the main tool for the six-degree-of-freedom (DOF) displacement measurement with nanometer-level accuracy of the wafer stage in a lithography scanner [1-2]. However, as the semiconductor process is scaling down continuously, the accuracy enhancement of this system is becoming more and more difficult due to its high environmental sensitivity. Hence, an environmental robustness grating encoder system is more favorable to meet the ever-increasing measurement requirement of wafer stages in non-vacuum environment [1-2]. In addition, a special grating encoder which can simultaneously measure a long stroke with hundreds of millimeters along in-plane direction and a short stroke with hundreds of micrometers along out-of-plane direction with nanometer-level accuracy is one of the key components for six-DOF displacement measurement grating encoder system of wafer stages [3].

Former work of interferometry based homodyne grating encoders which could simultaneously measure multi-dimensional displacement has been demonstrated in some reports [4-7]. Nevertheless, these proposed encoders have two disadvantages by the reason of adopting homodyne detection scheme, which limit its application in wafer stages. For the first, direct-current (DC) interference signal of these homodyne grating encoders suffers from susceptibility to random disturbance such as laser power variation, geometry alignment and electronic noise, which have a negative effect on the accuracy of the encoders [4-6]. For the second, the optical setup of these homodyne grating encoders usually have an optical phase shifting structure for homodyne quadrature detection, which make the optical setup large and complicated [4-6].

This paper describes a novel heterodyne grating interferometer system which can simultaneously measure a long stroke with hundreds of millimeters in the in-plane direction and a short stroke with hundreds of micrometers in the out-of-plane direction. The displacement resolution is 1.63nm along the x-direction and 0.75nm along the z-direction. Due to the utilization of the heterodyne detection scheme, higher AC heterodyne signal anti-disturbance capability, less optical components and more compact optical setup can be achieved as compared to the homodyne counterpart. First accuracy test results show that the measurement standard deviation is 6.37nm in the in-plane direction, and is 3.69nm in the out-of-plane direction.

We aim to improve the displacement measurement accuracy of the wafer stage in the lithography scanner in the future, by means of this novel environmental robustness heterodyne grating interferometer system for simultaneous in-plane and out-of-plane displacement measurement with nanometer accuracy.

CONSTRUCTION OF NOVEL HETERODYNE GRATING INTERFEROMETER SYSTEM

Structure of Novel Heterodyne Grating Interferometer System
Figure 1 shows the schematic diagram of the proposed two-dimensional heterodyne grating interferometer system. The grating interferometer system is composed of a dual-frequency laser head, a reflective-type scale grating, a read head, two receivers and a two-axis phase meter. The read head consists of a polarizing beam splitter, a reflective-type reference grating, four mirrors and two fiber pickups with a built-in polarizer.
FIGURE 1. The Proposed novel heterodyne grating interferometer system diagram and measurement principle.

A dual-frequency laser head radiates a beam which contains two frequency components with unique linear polarization (one frequency component is \(f_1 \) with p-polarization, and the other is \(f_2 \) with s-polarization). The beam is split into a measurement and reference optical path at a polarizing-beam-splitter (PBS). The frequency component \(f_1 \) with p-polarization is used as the measurement beam and diffracts from the moving scale grating back to the PBS. The other frequency component \(f_2 \) with s-polarization diffracts from a fixed reference grating back to the PBS. At the PBS, the positive and negative first-order diffracted beams from the scale grating respectively combine with the corresponding diffracted beams from the reference grating. The combined beams form two optical heterodyne signals at the two fiber pickups, then detected by two receivers, respectively. Two electronic measurement signals from the receivers and an electronic reference signal from laser head, separately access to the two-axis phase meter, finally, two-dimensional displacements are read out by the two-axis phase meter with heterodyne phase detection scheme.

Displacement Measurement Principle of Heterodyne Grating Interferometer System

As the Figure 1 (upper right) illustrated, if there are relative displacements \(\Delta x \) in x direction and \(\Delta z \) in z direction between grating interferometer and scale grating, following phase changes will be detected by two-axis phase meter:

\[
\Phi_1 = -2\pi \left[\frac{\Delta x}{\Lambda} + (1 + \cos \theta) \frac{\Delta z}{\Lambda} \right], \quad \theta = \arcsin \left(\frac{\lambda}{\Lambda} \right)
\]
\[
\Phi_2 = -2\pi \left[-\frac{\Delta x}{\Lambda} + (1 + \cos \theta) \frac{\Delta z}{\Lambda} \right]
\]

Where \(\theta \) is the \(+1/-1 \) diffraction angle when the beam vertically incidents the scale grating, \(\Lambda \) is the grating pitch, and \(\lambda \) is the wavelength of the laser.

The electric field vector of the incident beam with the orthogonal polarization is defined as:

\[
E = \begin{bmatrix} E_0 \exp[-i(2\pi f_1 t + \phi_0)] \\ E_0 \exp[-i(2\pi f_2 t + \phi_0)] \end{bmatrix}
\]

After passing through the polarized optical parts, the electric field vector of four diffraction beams, i.e., \(E_r \) and \(E_m \), can be written as:

\[
E_{r(+1)} = J_{P(45)} J_{PBT} J_{RGI(+1)} J_{PBR} E_r
\]
\[
E_{r(-1)} = J_{P(45)} J_{PBT} J_{RGI(-1)} J_{PBR} E_r
\]
\[
E_{m(+1)} = J_{P(45)} J_{PBR} J_{MGI(+1)} J_{PBR} E_m
\]
\[
E_{m(-1)} = J_{P(45)} J_{PBR} J_{MGI(-1)} J_{PBR} E_m
\]

Where \(J \) is the Jones matrix and is explicitly pointed out in the Table 1.

TABLE 1. The Jones Matrix of the optics in the heterodyne grating interferometer system.

<table>
<thead>
<tr>
<th>Optics</th>
<th>Jones Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarizer</td>
<td>(J_{P(45)} = \frac{1}{2} \begin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix})</td>
</tr>
<tr>
<td>PBS</td>
<td>(J_{PBT} = \begin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix}, J_{PBR} = \begin{bmatrix} 0 & 0 \ 0 & 1 \end{bmatrix})</td>
</tr>
<tr>
<td>Scale Grating</td>
<td>(J_{MGI(+1)} = \begin{bmatrix} \sqrt{\eta_p} e^{\phi_1} & 0 \ 0 & \sqrt{\eta_s} e^{\phi_1} \end{bmatrix})</td>
</tr>
<tr>
<td></td>
<td>(J_{MGI(-1)} = \begin{bmatrix} \sqrt{\eta_p} e^{\phi_2} & 0 \ 0 & \sqrt{\eta_s} e^{\phi_2} \end{bmatrix})</td>
</tr>
<tr>
<td>Reference Grating</td>
<td>(J_{RGI(+1)} = \begin{bmatrix} \sqrt{\eta_p} & 0 \ 0 & \sqrt{\eta_s} \end{bmatrix})</td>
</tr>
</tbody>
</table>

Where \(\eta_p \) is the diffraction efficient of p-polarization beam, and \(\eta_s \) is the diffraction efficient of s-polarization beam for the scale and reference grating.
Finally, the electric field vector of the optical heterodyne signals at the receivers can be written as:

\[
\begin{align*}
E_{M1} &= E_{m(+1)} + E_{r(-1)} \\
E_{M2} &= E_{m(-1)} + E_{r(+1)}
\end{align*}
\]

Therefore, the heterodyne signals respectively detected by two receivers are:

\[
\begin{align*}
I_{M1} &\propto E_{M1}^* E_{M1} \propto \cos \left[2\pi \left(f_1 - f_2 \right) t - \Phi_1 \right] \\
I_{M2} &\propto E_{M2}^* E_{M2} \propto \cos \left[2\pi \left(f_1 - f_2 \right) t - \Phi_2 \right]
\end{align*}
\]

As \(\Phi_1 \) and \(\Phi_2 \) could be read out by the two-axis phase meter, the displacement values of \(\Delta x \) and \(\Delta z \) can be resolved as:

\[
\begin{align*}
\Delta x &= \frac{\Lambda}{4\pi} (\Phi_1 - \Phi_2) = \frac{\Lambda \left(k_1 - k_2 \right)}{2N} \\
\Delta z &= \frac{\lambda}{4\pi \left(1 + \cos \theta \right)} (\Phi_1 + \Phi_2) = \frac{\lambda \left(k_1 + k_2 \right)}{2 \left(1 + \cos \theta \right) N}
\end{align*}
\]

Where \(k_1 \) and \(k_2 \) are the counts of phase meter, \(N \) is the subdivision value of the phase meter, and the phase resolution of the phase meter is \(2\pi/N \).

In addition, as shown in Figure 1 (upper left), the overlapping area of measurement and reference beam will shrink when the scale grating moves along the out-of-plane direction in a small range. Nevertheless, only overlapping area generates the measurement signal which contains the displacement information. Thus, the out-of-plane measurement stroke is restricted to get enough overlapping area.

Experiment Setup of the Heterodyne Grating Interferometer System

We establish an experiment setup of the heterodyne grating interferometer system, as shown in Figure 2. The experiment setup employs two identical holography gratings with a pitch of 833.3nm—one is the moving scale grating and the other is the fixed reference grating. The Agilent 5517C laser head is used to provide dual-frequency orthogonal polarization laser with 632.8nm wavelength. The frequency difference of the dual-frequency is 2.7MHz and the diameter of the beam is 6mm. The setup also employs Agilent E1709A as the receiver and Agilent 10898A as the two-axis phase meter with a 2\(\pi/256 \) phase resolution. For Agilent E1709A receivers, the overlapping size cannot be lower than 80\% of the beam spot size, so the out-of-plane measurement stroke is no more than 1.2mm. And for this experiment setup, the displacement resolution is 1.63nm along the x-direction and 0.75nm along the z-direction.

COMPARISON EXPERIMENT BETWEEN NOVEL HETERODYNE GRATING INTERFEROMETER SYSTEM AND HETERODYNE LASER INTERFEROMETER SYSTEM

Experiment Setup

To verify the measurement result of the heterodyne grating interferometer, another Agilent measurement system with two plane mirror interferometers is built for comparison. The resolution of Agilent measurement system is 0.62nm. Figure 3 shows the photograph of the comparative measurement system setup.

In this comparison system setup, the scale grating and the plane mirrors are mounted on the moving part of a PI six-axis piezo-stage. The read head of the grating interferometer, the laser interferometers and the stationary part of the pizeo-stage are fixed on the optical bench. The Agilent 5517C laser head is used to provide dual-frequency orthogonal polarization laser for...
the grating interferometer and plane-mirror interferometers. The optical path of the comparison system is also illustrated in Figure 3.

Experiment Result

The previously-mentioned piezo-stage is operated to move in sinusoidal trajectories, and the magnitudes are 1μm along the x-direction and 0.1μm along the z-direction, respectively. The experiment results are separately illustrated in Figure 4 and Figure 5.

FIGURE 4. The displacement measuring curves and the measurement discrepancy along x-direction.

FIGURE 5. The displacement measuring curves and the measurement discrepancy along z-direction.

A primarily accuracy test of the novel heterodyne grating interferometer system is also done based on the comparative experiment system. The piezo-stage is operated to move about 1μm in x direction, and 100nm in z direction for 20 times. The measurement data of 20 times is recorded and processed, and the mean and stand deviation of the measurement data are illustrated in Table 2.

TABLE 2. The accuracy test result of the novel heterodyne grating interferometer system and laser interferometer for comparison.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Stand Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grating Interferometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xg (nm)</td>
<td>-995.09</td>
<td>6.37</td>
</tr>
<tr>
<td>Zg (nm)</td>
<td>89.43</td>
<td>3.69</td>
</tr>
<tr>
<td>Laser Interferometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xi (nm)</td>
<td>-963.22</td>
<td>5.56</td>
</tr>
<tr>
<td>Zi (nm)</td>
<td>95.70</td>
<td>4.56</td>
</tr>
</tbody>
</table>

The measurement results illustrated in the figures and table between grating interferometer and interferometer show good consistency with each other, but there are little values of the measurement discrepancy are (31.87nm, 0.81nm) in x-direction and (6.27nm, 0.87nm) in z-direction, respectively. We consider that the discrepancy may result from the error of grating interferometer and Abbe error of the comparative system. It is possible to further improve the difference by optimizing the design of the two-dimensional grating interferometer and minimizing the alignment errors. Nevertheless, the goal to verify the principle of the heterodyne grating interferometer is achieved by this experiment.

RESULT

A novel heterodyne grating interferometer system which can simultaneously measure a long stroke with hundreds of millimeters in the in-plane direction and a short stroke with hundreds of micrometers in the out-of-plane direction is proposed. The displacement resolution is 1.63nm along the x-direction and 0.75nm along the z-direction. The primarily accuracy test results show that the measurement standard deviation is 6.37nm in the in-plane direction, and is 3.69nm in the out-of-plane direction.

FUTURE WORK

Further developments of this type of grating interferometer will focus on three points for the application in wafer stage:

- The resolution improvement based on optical frequency multiplication method and electronic subdivision technology;
- The accuracy enhancement based on error analysis and calibration method;
- The optical fiber transmission technology for orthogonal polarization dual-frequency laser's transmission from laser head to grating interferometer.

In the future, this type of grating interferometer system together with large scale planar grating will be used for the six degree-of-freedom displacement measurement with nanometer accuracy in wafer stage.

ACKNOWLEDGEMENTS
This work was supported by the Foundation of the State Key Laboratory of Tribology in China under Grant SKLT12C01, and the National Natural Science Foundation of China under Grant 51105226.

REFERENCES
PHASE COMPENSATION FOR DYNAMIC DOPPLER FREQUENCY SHIFTS

Chen Wang1 and Jonathan D. Ellis2,3
1Department of Electrical and Computer Engineering
2Department of Mechanical Engineering
3The Institute of Optics
University of Rochester
Rochester, NY, USA

INSTRUCTIONS
Displacement measuring interferometry is a widely used technique for displacement metrology. There are two types of displacement interferometers: homodyne and heterodyne. In all cases, the metrology principle is the same: target position changes are recorded as a Doppler frequency shift in the optical frequency, which manifests as a measured phase change. The target displacement is determined by the measured phase changes. As the velocity of the measurement target changes, the instantaneous frequency of the detected signal changes. The relationship between the Doppler frequency shift and the velocity of target is

\[f_D = \frac{1}{2\pi} \frac{d\phi}{dt} = \frac{N n}{\lambda} \frac{dx}{dt} \tag{1} \]

where \(\phi \) is the phase difference between the reference and measurement signals, \(N \) is the interferometer fold factor (two for the interferometer used in this work), \(n \) is the refractive index along the optical path difference, \(\lambda \) is the nominal wavelength of the laser light, and \(x \) is the displacement of the target.

For heterodyne interferometry, the two optical frequencies from the laser source provide a quasi-static heterodyne frequency, \(f_s \). The combination of a nominal heterodyne frequency, \(f_s \), with a moving target inducing a Doppler frequency shift, \(f_D \), means the frequency of the measurement signal is \(f_s \pm f_D \). As the target velocity changes, the instantaneous frequency of the measurement signal changes, leading to a different local phase response as a function of detection frequency due to filtering in the measurement [1]. This imparts a distortion in the measured phase change, leading to errors when there are rapid position changes and non-constant velocity motions of the target.

SIGNAL PROCESSING
Prior to being processed, two optical signals (measurement signal and reference signal) are detected and converted to voltage level representations of interference amplitude. The measurement signal has an instantaneous frequency of \(f_s \pm f_D \) and its phase is measured against the reference signal at \(f_s \). Typically, the analog signal is processed prior to converting it to a digital signal to maximize the signal and quality in the analog-to-digital converter (ADC). Figure 1a shows the analog processing used in this work, which is designed for a 70 kHz heterodyne frequency, with a maximum Doppler frequency shift of 20 kHz. Figure 1b shows the modeled phase response for this system.

In this work, a single-bin discrete Fourier transform (SBDFT) [2] is used as phase measurement method. Figure 2 shows an example of a SBDFT technique and its LPFs’ Bode plot that we used as part of this research with our heterodyne interferometer. The input signals are reference and measurement signals, which have experienced the analog processing; the output signal is the phase difference between two input signals. The detail mechanism can be found in, e.g., Ref. [2, 3]. Once the phase is known, the displacement can be calculated from the phase difference from the start of a measurement, scaled with the interferometer fold factor, \(N \), refractive index, \(n \), and wavelength, \(\lambda \).

DYNAMIC DOPPLER FREQUENCY SHIFTS
When the desired signal passes through a filter with varied frequency, a frequency-dependent phase delay will be introduced due to the non-constant phase response of the filters. This problem will occur when the target, which is measured by the interferometer, moves with a varied velocity. However, this phenomenon widely exists in phase measurement. Because filters are used to remove noise or demodulate, signals always have a non-constant phase delays
FIGURE 1. The schematic of the analog processing system (a) and its modeled phase response (b). The system employs several op-amp circuits: HPFs, LPFs, TIAs, IAs, to process the analog signal. However, it delays the phase of signal by a function of frequency (b), which is the superimposition of those circuits’ phase responses. In the band of 70 ± 20 kHz, the phase difference caused by this is about 30° or 27 nm.

even over narrow pass bands, and the filters are irreplaceable in most phase measurement algorithms. This delay can be a critical phase measurement error in any application where the velocity is varied continuously, such as in semiconductor equipment and inspection, dynamic position calibration, and pick-and-place machines. Thus, compensating the phase delay due to non-constant phase response of filters is crucial to accurate phase measurements, especially when there are high velocities and accelerations in the system. Additionally, there is a recent push to have a calibration standard for dynamic positioning errors, which must account for this error [4, 5, 6, 7].

The phase measurement in heterodyne displacement interferometry systems consists of two main sources of dynamic frequency shift error: 1) filtering in the high frequency detection regime, and 2) filtering after the phase has been converted to a quasi-DC level signal. The high frequency regime consists of any processing that would cause a frequency-dependent phase delay prior to the signal being multiplied by the signals from the VCO, which is the analog processing system in this work (Figure 1). In the high frequency regime, HPFs and LPFs are typically used to remove the DC component and high frequency noise of the signals, contributing to the phase delay. Similarly, the low frequency regime is for phase shifts induced after the multiplication with the VCO, which is the digital processing system in this work (Figure 2). The filters in low frequency regime are typically used to demodulate the phase.

Assume the input measurement and reference signals are

$$u_m(t) = U_m \sin (2\pi f_0 t + \phi_m) + U_{DC} + U_{Noise}, \quad (2)$$

$$u_r(t) = U_r \sin (2\pi f_0 t + \phi_r) + U_{DC} + U_{Noise}, \quad (3)$$

where U_m and U_r are the amplitudes of the measurement and reference signals, f_0 is the nominal heterodyne frequency of the laser source, ϕ_m and ϕ_r are the phases of the two signals (could be functions of time), and U_{DC} and U_{Noise} are the DC offset and noise, which may

FIGURE 2. The schematic of the digital processing (a) which is based SBDFT and implemented in FPGA in this design; and the phase response of the digital low-pass filters (b). Within its pass band 0 to 20 kHz, up to 180° phase delay or 160 nm displacement error could be introduced.
differ in the two signals.

After processing in the high frequency regime and converting to digital for mixing and low frequency processing [8], the relative phase difference \(\Delta \phi' \) between the measurement and reference signals is

\[
\Delta \phi' = \phi_m - \phi_r
\]

\[
= \phi_m - \phi_r
+ \left(\phi_{h,m}(f_m) + \phi_{h,r}(f_d,m) - \phi_{l,r}(f_d,r) \right).
\]

where \(\phi_h() \) and \(\phi() \) are the high frequency and low frequency regime phase responses (Figure 1b and Figure 2b), \(f_m \) and \(f_r \) are the instantaneous frequency of the two signals, and \(f_d,m \) and \(f_d,r \) are the Doppler frequency shifts.

The ideal result should be \(\phi_m - \phi_r \), however, the extra phase terms, \(\phi_{h,m}(f_m) \), \(\phi_{h,r}(f_d,m) \), \(\phi_{l,r}(f_d,r) \), and \(\phi_{l,m}(f_d,m) \), contribute some error and are a function of the Doppler frequency shift. For quasi-static measurements, these added phase terms can be largely ignored. For dynamic measurements, these added phase errors can contribute significant error and must be considered.

Simulations were performed to illustrate how these extra phase terms or phase delays impact the final result when target is moving with constant and non-constant velocity profiles. As shown in Figure 3, filters introduce constant phase delay when target moving in constant velocity, which does not cause an error in the measured phase value because the relative displacement between any two time points is the same in theory and in practice. However, when the target is moving with non-constant velocity, the phase delay and the relative displacement change along with Doppler frequency shift (velocity of the target), which is undesirable in practice.

The following sections detail two different methods for compensation of the phasemeter under dynamic conditions, which includes an instantaneous frequency monitoring part and a phase delay computation part. The schematic of overall phase compensation module is shown in Figure 4, which includes an instantaneous frequency monitoring part and a phase delay computation part.

Phase Response Measurement

The preliminary step in the process is to determine the phase responses of the system, specifically from analog and digital filtering. Although the filter parameters are nominally known, variations in component tolerances (analog) and difference from fixed point calculations (digital)
cause deviations from the desired performance. For analog components, the performance of each amplifier chip, capacitive coupling in the board and near-field influence from other components can also cause variations in the performance and phase profile. For digital system, the delay and fixed point operation make the response a little different from the ideal, floating point design, but may still cause slight variations. Thus, the actual phase response must be measured to accurately compensate for this error.

Frequency Measurement

To compensate the phase in real time, the frequency measurement should be performed in real time. Frequencies \(f_m \) and \(f_r \) are the frequencies of the input measurement and reference signals, \(f_{d,m} \) and \(f_{d,r} \) are the Doppler frequency shifts in the measurement and reference signals. Since \(f_{m}(f_t) \) is the sum of split frequency \(f_s \) and Doppler frequency shift \(f_{d,m} \) \((f_{d,r})\) and the split frequency is nominally known, only one set of frequencies is necessary to measure \(f_{m}(f_t) \) or \(f_{d,m} (f_{d,r}) \).

There are two potential methods to measure the frequencies. One is the short-time Fourier transform (STFT). This would be suitable to measure \(f_m \) and \(f_r \) of measurement and reference signals at the beginning of the digital processing in the FPGA. Another method is to directly compute the discrete derivative of the raw phase. This would measure \(f_{d,m} \) and \(f_{d,r} \) after digital processing getting uncompensated raw phase.

Comparing the two methods, the phase derivative method has better measurement resolution, easier real time implementation and less resource usage. Hence, the derivative method is chosen to monitor the instantaneous Doppler frequency shifts in this design.

Phase Delay Computation

The last main step to compensate the phase delay is solving for the phase delays \(\phi_a(f_m) \), \(\phi_d(f_{d,m}) \), \(\phi_a(f_t) \) and \(\phi_d(f_{d,r}) \). The phase responses \(\phi_a() \), \(\phi_d() \) and frequencies \(f_m(f_t) \) or \(f_{d,m} (f_{d,r}) \) are already known, thus there are two ways to solve for the phase delays. One is method is a calculation in real time while the another is looking up a table which stores previously calculated phase delays.

Since the LUT quantification error is minimal, controllable, and fewer resources are needed, the LUT was implemented for this work.

We will present results from modeling this effect at different heterodyne frequencies, present real-time measurement techniques for the Doppler frequency, discuss compensation techniques, and present limitations to this approach for measuring and compensating this error.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation CMMI program under award 1265824 and by the U.S. Department of Commerce, National Institute of Standards and Technology (NIST) under award 70NANB12H186. The authors are grateful to J.A. Tarbutton, T.L. Schmitz, S.R. Gillmer, X. Yu, and C. Lu for fruitful discussions regarding this work.

REFERENCES

A COMPARATIVE PERFORMANCE ANALYSIS OF FDM MACHINES BASED ON A CALIBRATION ARTEFACT

G. D’Angelo, H. N. Hansen, J. S. Nielsen, J. Rasmussen, D. B. Pedersen
Department of Mechanical Engineering
Technical University of Denmark
Kgs. Lyngby, Denmark

INTRODUCTION
During the past ten years Additive Manufacturing (AM) technologies have been constantly developing in terms of materials and processes. This allows the use of the AM not only during the preproduction but also for the manufacturing of final components for commercial use [1], [2].

However one of the still existing challenges for AM concerns the quality of the final components. Every manufacturing process has a strict set of requirements that every component has to meet in order to meet production tolerances, yet AM still shows a lack of industrial standards [3]. The advantage of AM to be able to manufacture components of very complex geometries with intricate internal features becomes in this case a drawback. In fact, the control of the quality and the verification of tolerances become difficult task to accomplish with traditional measuring equipment. Some features can be difficult to reach and there are no standards to compare them with.

To overcome this problem, a method to evaluate the performance of AM machine tools based on the printing of an artefact and the subsequent measuring of its features is proposed and shown. This paper shows a validation of the method by means of a laser interferometer. Furthermore, different AM machines are tested using the printed artefact.

METHOD
The performance of the AM machine tools was evaluated using an opto-mechanical hole plate, normally used as a calibration artefact for CMM machines. The plate has dimensions of 120x120x5 mm and it has 25 holes (5x5) with a diameter of 5.5 mm each and a center distance of 20mm in both X and Y directions (see Figure 1) [4].

The plate is printed with an AM machine tool and then measured using a traditional calibration procedure by touch probe CMM [5]. The CMM used in this investigation is a DeMeet 220 with a validated MPE of 4µm. Center coordinates of the holes are then compared to the nominal values. For positioning evaluation, deviations of printed and measured center coordinates from nominal center coordinates are used.

Table 1: Machines, processes and materials used for the comparison and evaluation

<table>
<thead>
<tr>
<th>Machine</th>
<th>Material</th>
<th>Build envelope [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimaker</td>
<td>PLA</td>
<td>210x210x200</td>
</tr>
<tr>
<td>Witbox</td>
<td>PLA</td>
<td>297x210x200</td>
</tr>
<tr>
<td>Stratasys Dimension 1200</td>
<td>ABS</td>
<td>254x254x305</td>
</tr>
<tr>
<td>Stratasys Mojo</td>
<td>ABS</td>
<td>127x127x127</td>
</tr>
</tbody>
</table>

The AM machine tools and processes involved in this study are listed in Table 1. All machines are based on the FDM process but physical layout and construction differs significantly. The Ultimaker and Witbox are low-end machines, whereas the rest of the machine types can be classified as professional AM machines.

![Figure 1 Illustration of the hole plate layout.](image)
The study is presented in this paper in 3 different steps:

I. Laser interferometer analysis on a Witbox, (FDM machine). The X and Y axis of the Witbox are analysed using a Renishaw XL80 Laser interferometer. The X and Y axes of the AM machine tool were analyzed based on the principles of ISO 230 [6], but not following the standard in details. A total length of 250 mm for the X-axis and 200 mm for the Y-axis were measured (steps of 10 mm). Subsequently, a hole plate was printed on the same machine and measured using the CMM. Finally the results were compared.

II. Comparison of different AM machines of the same type. 6 Ultimakers are selected and a hole plate is printed on each of them. Subsequently the plates are measured with the CMM procedure and the data are analyzed.

III. Comparison of the method applied to different machine types and different processes. 4 different FDM machines (see Table 1) are used in the investigation. A hole plate is printed on each of the AM machines and measured with the CMM procedure in respect of X and Y axis and the hole diameters. Results are then compared.

I. LASER INTERFEROMETER ANALYSIS ON WITBOX

Figure 2 illustrates the performance of the X axis. It shows the mean values of 3 travels on the positive direction, going from 0-250 mm ("X+"), and the mean values of 3 travels on the negative direction, going from 250-0 mm ("X-"). The biggest deviation between the 2 sets of measurements is approximately 200 µm (observed in the very last point of the axis). Standard deviation between the 3 travels in the same direction is approximately 15 µm for the X-axis. The general trend from the laser interferometer is a positive positioning error that could be compensated for. The analysis of the measurements of the printed hole plate in X-direction are also plotted in Figure 2. The points have been placed on the approximate position of the hole plate in the working volume of the printer. The hole plate was printed with axes orientations similar to the machine axes. A first observation is concerned with the fact that the general trend is negative for the hole plate (as opposed to the laser interferometer results). A second observation is that the order of magnitude of the observed error on the hole plate is comparable with the laser interferometer but with a negative sign.

Subsequently the Y axis was measured following the same principle. Results from the Y-axis are shown in Figure 3. The machine shows a difference between forward and backward movements corresponding to a value of approximately 300 µm. This is caused by the relatively large backlash of the Y-axis. Also a comparison of the results from the laser interferometer and the printed hole plate is shown. Similar trends as for the X-axis can be seen.

When the material is extruded during the movement of the axes, it is deposited onto a fixed build plate. Upon exiting the extrusion nozzle the polymer material cools down and shrinks due to the CTE of the material. If the adhesion of the polymer to the build plate is very good, the effect of the shrinkage is first seen after releasing the printed part from the build plate. The material also expands upon exit of the nozzle due to the pressure difference. Both these phenomena affect the precision and variation of the extruded parts. In particular, the thermal shrinkage of the polymer can explain the different trends in the two graphs. If it is assumed that the material has a CTE of 90*10^-6 1/K then a temperature difference of 40°C (between the material temperature when deposited and room temperature) would allow for a linear shrinkage of approximately 300 µm over a distance of 80 mm. This corresponds to the difference seen in Figure 2. The big backlash of the Y-axis makes a similar analysis of the Y-axis less relevant.

The correlation between the laser interferometer measurements and the hole plate measurements can be established in this way. It is also clear that for the practical use of the AM machines a compensation would be relevant to increase accuracy. This should be based on the hole plate method because the material behavior during printing is included in this approach.
II. COMPARISON OF ULTIMAKERS

In order to demonstrate the hole plate as a tool to compare AM machines of the same type, and as a tool to identify type-specific generic errors, a study of six Ultimakers was carried out. A hole plate was printed on each machine and measured following the proposed method. Figure 4 shows the standard deviation of X and Y axes on each Ultimaker as obtained from the hole plate measurement. In Figure 5 each positioning error is plotted in a two-dimensional grid, from which scale errors as well as squareness errors are visualized.

A general observation from the six machines is that the Y axes show smaller positioning errors than the X axes. This can especially be observed in Figure 4, where data are compared by means of the standard deviation. In Figure 4 it can be observed a much smaller standard deviation on the Y axis meaning that it would be better at reaching the target value. From Figure 5 can also be observed that Ultimaker#4 is the one performing the best on X axis while Ultimaker#5 is the one performing best on Y axis. However the machine showing the best overall performance with respect to both X and Y axes is Ultimaker#2. In fact Ultimaker#2 is close to the nominal value and with a small standard deviation on both axes.

If the positioning errors in both directions (X and Y) are compared (see Figure 5) a close similarity on the scale error of the Y axis can be observed between the different machines. Considering that the machines were assembled at the same time by six different people, the trend shown in Figure 5 suggests that this kind of errors is a problem originating from the design and construction of the machine rather than one single machine being assembled in a bad manner.

III. ANALYSIS OF DIFFERENT MACHINES AND PROCESSES

The proposed method is finally used for the analysis and comparison of different FMD printers (see Table 1). Figure 6 shows the results of the analysis of hole plates printed on Ultimaker #1 and Stratasys Dimension 1200 respectively. Clearly the Ultimaker performs worse than the Stratasys machine. Positioning errors as well as squareness errors are significantly larger. This results in a large spread of data with respect to the nominal positions as illustrated at the bottom of Figure 6.

An analysis of the diameters of the holes on the hole plate was performed. The nominal diameter is 5.5 mm. The two Stratasys machines are the closest to target value. So, besides helping rating the machine performance in relation to the others, the calibration artifact also provides information on individual level of each machine with respect to dimensional accuracy in the mm range.
Figure 5 Comparison between the positioning errors of the Ultimakers on X and Y axis

Figure 6 Analysis of two different FDM machines using the hole plate.
Table 2 Diameter comparison of the different printers. Mean and standard deviation [mm]

<table>
<thead>
<tr>
<th>Machine</th>
<th>Mean</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratasys Mojo Diameter</td>
<td>5.535</td>
<td>0.018</td>
</tr>
<tr>
<td>Stratasys Dimension 1200 Diameter</td>
<td>5.456</td>
<td>0.014</td>
</tr>
<tr>
<td>Ultimaker No 3 Diameter</td>
<td>5.110</td>
<td>0.057</td>
</tr>
<tr>
<td>Witbox Diameter</td>
<td>5.445</td>
<td>0.075</td>
</tr>
</tbody>
</table>

CONCLUSION AND OUTLOOK
The proposed approach has proven to be a suitable method for the verification of the performance of AM machine tools. The method was successfully used for the comparison of different machines of the same kind and it allows for an analysis of the errors on the different axis. The method seems to be effective also for the comparison of different types of machines and different processes.

By studying the calibration artifact it is possible to trace the errors in the machine and correct them properly by applying correction factors. Additionally the calibration artifact contains further information, such as the material behavior during the process.

As future work there is the verification of the performance of the machine along the z axis and the application of the correction factor to the Witbox machine for performing further analysis.

REFERENCES

MICRO-LASER ASSISTED SINGLE POINT DIAMOND TURNING ON UNPOLISHED SINGLE CRYSTAL SILICON

Hossein Mohammadi¹, H. Bogac Poyraz ¹, Deepak Ravindra², and John Patten¹

¹ Manufacturing Research Center
Western Michigan University
Kalamazoo, MI, USA
² µ-LAM Technologies, LLC
Battle Creek, MI, USA

ABSTRACT
In this study Micro Laser Assisted Machining (µ-LAM) is coupled with Single Point Diamond Turning (SPDT) to machine an unpolished single crystal silicon (Si) wafer. Cutting fluids, distilled (DI) water and mineral spirit, were used to decrease tool wear and increase surface quality. Results were very promising for using this process for machining of unpolished Si wafers. It has been shown that combination of laser and cutting fluid not only increases the tool life but also improves the surface quality significantly. Surface finish was improved from 1.2 μm (as-received) to approx. 80 nm by using this process in optimal condition.

INTRODUCTION
Semiconductors and ceramics such as Si, silicon carbide (SiC), quartz, etc. are very desirable materials in modern industrial applications. These materials have many suitable properties such as being hard, inert, light weight and strong that make them ideal candidates for tribological, semiconductor, MEMS and optoelectronic applications. In most of these applications products require a high quality surface finish and close tolerances to function properly. In spite of all these characteristics, the difficulty during machining and material removal has been a major obstacle that limited the wider application of these materials [1]. Manufacturing these materials without causing any surface and subsurface damage is extremely challenging due to their low fracture toughness. Brittle fracture during processing results in excessively rough surfaces and causes detrimental sub surface damage, which has to be removed in subsequent processing steps. These additional processing steps reduce the overall productivity and increase the manufacturing cost associated with machining these nominally brittle materials. Machining mirror-like surface finishes contribute significantly to the total cost of a part. In some cases, grinding alone can account for 60-90% of the final product cost [2].

In one of the previous research works [3], it has been demonstrated that the ductile mode machining of semiconductors and ceramics is possible due to the high pressure phase transformation (HPPT) occurring in the material. The ductile response of nominally hard and brittle materials, SPDT/traditional scratch tests were coupled with micro-laser assisted machining (µ-LAM) technique. The µ-LAM system was used to preferentially heat and thermally soften the work piece material in contact with a diamond cutting tool. In µ-LAM the laser and cutting tool are integrated into a single package, i.e. the laser energy is delivered by a fiber laser to and through a diamond cutting tool. This hybrid method can potentially increase the critical depth of cut (DoC), i.e., a larger ductile-to-brittle transition (DBT) depth, in ductile regime machining, resulting in a larger material removal rate.

Those tests in previous works [3,4] were performed on a polished surface of a single crystal Si wafer. Initial study on machining unpolished silicon was very promising, however it was dry machining and tool wear was considerable [4]. The current work focuses more on implementing the µ-LAM technology on a SPDT setup for machining unpolished Si wafers with cutting fluid. The results show that using cutting fluid not only improves the surface finish but also decreases tool wear significantly.
EXPERIMENTAL APPROACH
The Universal Micro-Tribometer (UMT) manufactured by CETR-Bruker Inc. was modified and coupled to the µ-LAM system to perform all of the machining tests. The UMT was primarily developed to perform comprehensive micro-mechanical tests of coatings and materials at the micro scale. Resolution of vertical slider (carriage) of the UMT is 2μm, therefore lowest programmable depth of cuts was 2μm.

An IR CW fiber laser, wavelength of 1064nm and max power of 100W with a beam diameter of 10μm, was used in this investigation. A single point diamond tool with a 1mm nose radius, -45 degree rake angle and 5 degree clearance angle was used for this cutting operation. Figure 1 shows the machining setup used for initial experiments.

An IR CW fiber laser, wavelength of 1064nm and max power of 100W with a beam diameter of 10μm, was used in this investigation. A single point diamond tool with a 1mm nose radius, -45 degree rake angle and 5 degree clearance angle was used for this cutting operation. Figure 1 shows the machining setup used for initial experiments.

An IR CW fiber laser, wavelength of 1064nm and max power of 100W with a beam diameter of 10μm, was used in this investigation. A single point diamond tool with a 1mm nose radius, -45 degree rake angle and 5 degree clearance angle was used for this cutting operation. Figure 1 shows the machining setup used for initial experiments.

Figure 1 shows the machining setup used for initial experiments.

An IR CW fiber laser, wavelength of 1064nm and max power of 100W with a beam diameter of 10μm, was used in this investigation. A single point diamond tool with a 1mm nose radius, -45 degree rake angle and 5 degree clearance angle was used for this cutting operation. Figure 1 shows the machining setup used for initial experiments.

Figure 1 shows the machining setup used for initial experiments.

An IR CW fiber laser, wavelength of 1064nm and max power of 100W with a beam diameter of 10μm, was used in this investigation. A single point diamond tool with a 1mm nose radius, -45 degree rake angle and 5 degree clearance angle was used for this cutting operation. Figure 1 shows the machining setup used for initial experiments.

Figure 1 shows the machining setup used for initial experiments.

An IR CW fiber laser, wavelength of 1064nm and max power of 100W with a beam diameter of 10μm, was used in this investigation. A single point diamond tool with a 1mm nose radius, -45 degree rake angle and 5 degree clearance angle was used for this cutting operation. Figure 1 shows the machining setup used for initial experiments.

Figure 1 shows the machining setup used for initial experiments.

An IR CW fiber laser, wavelength of 1064nm and max power of 100W with a beam diameter of 10μm, was used in this investigation. A single point diamond tool with a 1mm nose radius, -45 degree rake angle and 5 degree clearance angle was used for this cutting operation. Figure 1 shows the machining setup used for initial experiments.

Figure 1 shows the machining setup used for initial experiments.

An IR CW fiber laser, wavelength of 1064nm and max power of 100W with a beam diameter of 10μm, was used in this investigation. A single point diamond tool with a 1mm nose radius, -45 degree rake angle and 5 degree clearance angle was used for this cutting operation. Figure 1 shows the machining setup used for initial experiments.

Figure 1 shows the machining setup used for initial experiments.

An IR CW fiber laser, wavelength of 1064nm and max power of 100W with a beam diameter of 10μm, was used in this investigation. A single point diamond tool with a 1mm nose radius, -45 degree rake angle and 5 degree clearance angle was used for this cutting operation. Figure 1 shows the machining setup used for initial experiments.

Figure 1 shows the machining setup used for initial experiments.

An IR CW fiber laser, wavelength of 1064nm and max power of 100W with a beam diameter of 10μm, was used in this investigation. A single point diamond tool with a 1mm nose radius, -45 degree rake angle and 5 degree clearance angle was used for this cutting operation. Figure 1 shows the machining setup used for initial experiments.

Figure 1 shows the machining setup used for initial experiments.

An IR CW fiber laser, wavelength of 1064nm and max power of 100W with a beam diameter of 10μm, was used in this investigation. A single point diamond tool with a 1mm nose radius, -45 degree rake angle and 5 degree clearance angle was used for this cutting operation. Figure 1 shows the machining setup used for initial experiments.

Figure 1 shows the machining setup used for initial experiments.

An IR CW fiber laser, wavelength of 1064nm and max power of 100W with a beam diameter of 10μm, was used in this investigation. A single point diamond tool with a 1mm nose radius, -45 degree rake angle and 5 degree clearance angle was used for this cutting operation. Figure 1 shows the machining setup used for initial experiments.

Figure 1 shows the machining setup used for initial experiments.

Table 1. Parameters used for machining

<table>
<thead>
<tr>
<th>Laser Power (W)</th>
<th>Cutting fluid</th>
<th>Cross feed (μm/rev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>DI water</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>Mineral spirit</td>
<td>10</td>
</tr>
</tbody>
</table>

DI water and odorless mineral spirit, as two common types of cutting fluid, were used for machining Si wafers in this study. Since laser was using, to avoid any fire during process a nonflammable mineral spirit was used.

In this research effects of different parameters such as using cutting fluid, laser power and cross feed rate, as table 1, on process outputs like surface roughness (Ra) have been investigated. These parameters have been chosen based on previous results. To understand the effect of using laser and cutting fluid during process, Si samples machined with/without laser with those two cutting fluids. Note that laser power output after diamond tool was about 40% of adjusted power due to scattering, reflections, absorption and etc. It means for adjusted laser power of 20 W, actual output was about 8 W. All tests were performed at constant spindle rotational speed of 100 RPM. All other conditions were kept constant to have same conditions for all tests.

Initial tests - on polished surface of a Si wafer - showed that the micro-laser assisted SPDT tests were successful in demonstrating the benefits of the thermal softening effect from preferential laser heating [3-5].

The focus of this study is on machining an unpolished single crystal Si wafer which is very brittle and hard to machine by conventional methods. Figure 2 shows microscopic image of unpolished surface of a Si wafer and also its three-dimensional image captured by using a white light interferometer. As it is clear, surface is full of peaks and valleys. The aim of this work is to reduce Si wafer roughness as much as possible with least number of machining passes with the lowest time of machining.
RESULTS AND DISCUSSION

All the cuts performed in this experiment were in ductile regime. Feed marks on machined surfaces are a sign of ductile mode machining because a brittle material like Si only in metallic phase can flow. The surface roughness was measured by using the white light interferometer and the tool wear was investigated with an optical microscope.

Figure 3 shows microscopic images of the machined surface of the Si without using laser with 30, 10 and 2 µm/rev cross feed rates. Mineral spirit used as cutting fluid for these tests. Dark areas in this figure represent either remained valleys of surface or brittle mode machining that should be removed in final machining process. White areas in this figure represent ductile mode machined areas. Figures 4 and 5 show the machined regions with laser using mineral spirit and DI water as cutting fluids respectively.

As it is clear from images 4 and 5, surface qualities are much better than when no laser is used. Regions machined with 30 and 10 µm/rev cross feed still have dark areas; however they are much smaller than no laser condition. Surfaces machined with 2 µm/rev cross feed are very smoother and for example for the sample machined with DI water is almost in pure ductile mode (Figure 5c).

The results from the analyses presented in figure 6 suggest that the surface roughness’s for all regions with laser and cutting fluid are better than that of no laser power (room temperature). It was found before that higher depth of cuts can be achieved by using laser which directly translates to increased material removal rates and higher productivity [5,6]. In addition, the cutting forces for the machined regions with laser are lower suggesting extended tool life for large scale production.
In optimal condition the surface roughness can be improved from 1.2 μm (as-received) down to approx. 83 nm. Achieving such a surface finish from an unpolished surface is a very promising result for this process. Also tool wear during the tests using laser power was less than when no laser has been used. Results show that using cutting fluid, in this study DI water and mineral spirit, not only improves the surface finish but also decreases the tool wear significantly.

![Figure 7. Surface roughness (Ra) corresponding to different cutting fluid and cross feed rate](image)

Figure 8 shows a 3D image of Si sample machined with no laser with mineral spirit as cutting fluid. This is the same surface as figure 3c, which shows those black areas in figure 3c were actually pits. As mentioned before these pits can be either the remained valleys of original surface or because of ductile to brittle mode transition.

![Figure 8. 3D image of unmachined region (right) and machined region with 2 μm/rev cross feed rate with no laser (left).](image)

In figure 9 an unmachined area is compared to a surface machined with 30 μm/rev cross feed rate with laser. Even though cross feed rate for this region is much higher than the region machined with 2 μm/rev in figure 8, surface is much better due to using laser. Comparing figure 8 and 9 shows how much laser can improve the surface quality.

In figure 10 a surface machined with same condition as surface in figure 8 (2 μm/rev cross feed rate) but with laser is compared to an unmachined area. It is same surface as figure 5c. Almost no sign of brittle mode or transition can be seen in this image and it is a pure ductile mode machining.

![Figure 9. 3D image of unmachined region (right) and machined region with 30 μm/rev cross feed rate with laser (left).](image)

![Figure 10. 3D image of unmachined region (right) and machined region with 2 μm/rev cross feed rate with laser (left).](image)

Tool wear after machining all Si samples (figure 11) and track length of about 7 km was very minimal (compared to previous work [6]). It seems combination of laser and cutting fluid improved the tool life significantly.

SUMMARY

Results of this study show that the micro-laser assisted SPDT tests were successful in...
improving surface finish of unpolished Si wafers and less tool wear. Best surface roughness, \(Ra = 83 \, \text{nm} \), obtained with laser and DI water as cutting fluid, while \(Ra \) for sample machined with no laser with cutting fluid was 376 nm. The effect of a combination of laser and cutting fluid on surface roughness is obvious and promising.

FIGURE 11. Microscopic image of tool after 7 km machining track length.

ACKNOWLEDGEMENT
The authors would like to thank the National Science Foundation (SBIR Phase I/IB Award #: IIP-1214772 and SBIR Phase II Award #: IIP-1330439) for funding this study.

REFERENCES

EFFICIENT MICRO-CONCENTRATOR FOR MICROSYSTEMS-ENABLED PHOTOVOLTAICS

Bradley H. Jared1, Michael P. Saavedra1, Ben J. Anderson1, Bill K. Miller1, David L. Zamora1, William C. Sweatt2, Gregory N. Nielson3, Murat Okandan3 and Brenton Elisberg4

1Materials Engineering R&D
2Thermal, Fluid & Aero Sciences
3Microsystems Integration
4Solid Mechanics & Structural Dynamics
Sandia National Laboratories
Albuquerque, NM

MOTIVATION

In response to the DOE SunShot initiative to achieve utility scale solar power generation at $1 per watt peak, Sandia National Laboratories is investigating a microsystems-enabled photovoltaics (MEPV) approach that combines the high conversion efficiencies of concentrated photovoltaics (CPV) with the form factor and low system costs of flat panel PV. MEPV combines solar cells having lateral dimensions smaller than 1 mm with micro-optic concentrators to reduce the use of expensive semiconductor materials and to increase solar conversion efficiency \cite{1}. While existing semiconductor infrastructure is being leveraged for MEPV cell research \cite{2}, a parallel effort is underway to develop design and fabrication techniques for MEPV micro-optics.

DESIGN

Previous work has described the progress of prototype systems \cite{3,4} as micro-optics have been developed with a 100X magnification and a $\pm2.5^\circ$ field of view for 250 μm diameter multi-junction “stacked” MEPV cells. Current work has developed a third generation prototype with a 200X magnification and a $\pm1.7^\circ$ field of view in the visible and NIR spectrum. The optical design, Figure 1, was simplified from the first two prototypes to involve a single PDMS lens array which is cast directly onto a silicon substrate containing the MEPV cell array. The wavelength band of the optics is roughly 400 to 1600 nm as different regions of the solar spectrum are collected by different layers in the stacked cells. Optical system complexity has been reduced with each successive prototype in an effort to reduce material and fabrication costs. In this design, a single plano-convex lens is used for concentration which incorporates an 8^{th} order asphere with a conic term to minimize cell losses due to local hotspots on the cell surface. Its aperture diameter is 3.85 mm as the lenses are arranged in a hexagonal closed pack pattern with 120 lens elements for a footprint size of roughly 50 mm square. Alignment requirements have been simplified from prior designs to involve only the alignment of the cast lenses to the MEPV cells. The silicon substrate and PV cell array is mounted onto a 3 mm thick, glass backplane to provide strength and an environmental barrier, Figure 2. The module is enclosed by a Macor frame that more closely CTE matches the glass than metal and provides the standoff for the front protective glass.
Thermo-mechanical modeling was performed during the design phase to insure module performance across its anticipated operating temperature range of -40° to 80° C. The distortion of the front glass due to air volume changes with temperature was analyzed to prevent damage. Volume changes were determined based on a simple ideal gas law relationship, \(P \cdot V = n \cdot R \cdot T \), and used to predict glass deformation. Front glass thickness had the greatest impact on deformation and resulted in a design thickness of 3 mm. Shear and normal stresses in the PDMS lenses from curing at 80° C were also analyzed to insure that delamination would not occur. Finally, simulations of lens distortion for temperatures from 80° to 20° C revealed that adhesion of PDMS material to the module sidewalls is critical to reducing lens array warping. Figure 3 plots the tilt angle of lenses in one direction across the array where its center is fixed. Minimum lens distortion occurs when the PDMS bonds directly to the module frame but does not extend above the lens surfaces.

ASSEMBLY AND FABRICATION

The first two prototype MEPV modules contain significant complexity and introduce a host of challenges to achieving low cost, high volume production. Recent work has leveraged prior experience to further reduce module complexity. Precision alignments are only required during the first two module assembly steps where the silicon substrate is attached to the glass backplane and then the PDMS lenses are cast onto the Si-glass subassembly. Figure 4 shows the mechanical fixture used to align and mount the silicon substrate to the glass backplane. All assembly is referenced based on ground edges of the glass as the fixture aligns the Si to the glass using dowel pins. The silicon is adhered to the glass using PDMS. Mounting and bonding of Si substrates without MEPV cells has been demonstrated with an accuracy of 5 µm. While the mechanical fixturing utilized during product development are not scalable for mass production, the alignment principles utilized and general process flow could be implemented in production equipment. Casting of the PDMS lens array involves a mold that is also aligned to the ground edges of the glass using dowel pins. The final aluminum mold will be produced by rough micro-milling and finish diamond precision milling and is still in process. An acrylic mold, Figure 5, however, was micro-milled and has been used for process development. Casting of
a 120 element, PDMS lens array has also been demonstrated onto a Si-glass assembly using the acrylic mold, Figure 6, with lens to cell alignment accuracies on the order of 10 µm. Wire bonding the cell array to the glass backplane metal traces, mounting the Macor frame, back-filling the frame to lens gap with PDMS and mounting the front glass to the frame do not require precision assembly, are relatively straightforward, and have been demonstrated.

FUTURE WORK
Process development for a third generation MEPV system continues with functional module assemblies expected in the coming weeks. Final process and module performance will be available for presentation at the annual meeting.

ACKNOWLEDGEMENTS
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This document has been reviewed and approved for unclassified, unlimited release under SAND2014-16745C.

REFERENCES

DESIGN AND FABRICATION OF AN OPTICAL SYSTEM FOR A BALLOON-BORNE SPACE TELESCOPE
Stephen Furst, Thomas Dow, Kenneth Garrard
Precision Engineering Center, NC State University, Raleigh NC

INTRODUCTION
The NASA Balloon Experimental Twin Telescope for Infrared Interferometer (BETTII) concept, shown in FIGURE 1, consists of two identical telescopes mounted onto a space frame and carried to an altitude of 130,000 ft. by a balloon. Each telescope has four optical elements -- a primary mirror, a turning flat, a secondary mirror, and a tertiary mirror.

The balloon-based mission brings with it many unique challenges for designing, fabricating and assembling the optical system. During the ascent into the high atmosphere, the telescope will experience temperature changes of 250 degrees F. To minimize the effect of these changes, the entire telescope is Aluminum 6061-T6 so that the optics will all expand and contract the same amount during this thermal cycling. In addition, the Cryostat with the optical sensors is hanging from the telescope (see Figure 2) to assist beam alignment and the telescope/cryostat is supported by the Metering Truss. The telescope is tilted 13.3 degrees with respect to the horizontal to allow full optical access to the primary mirror from the siderostat.

FIGURE 1: BETTII Infrared Binocular Space Telescope [1]

TELESCOPE DESIGN
The design and fabrication of the two identical telescope assemblies shown in Figure 2 are the subjects of this paper. The primary mirror is a segment of a 2.75 m parabola that is 651 mm off-axis with an aperture of 522 mm, as shown in FIGURE 3. In its lightweight form, it has a mass of 5 kg. The mirror face is diamond machined on center using a fast tool servo to produce the non-rotationally symmetric tool path that will create the off-axis shape. The flat, 220 mm diameter turning mirror in Figure 2 is supported from the primary through a thin walled “trough” mounting structure. The two other mirrors in each telescope are complex, non-rotationally symmetric designs but are small (< 40 mm) and can be seen sticking through a slot at the bottom of the trough in Figure 2.

FIGURE 2. Layout of the telescope optical system

FIGURE 3: Primary mirror optic at parent location (right) and centered/tilted for machining

The design challenge was to keep the overhanging 2 Kg load caused by the turning flat from distorting the primary while robustly supporting the flat mirror which is 800 mm from the primary. This is accomplished by the combination of mounting rings that are bolted to each end of the trough and kinematic support of the two mirrors via Kelvin...
couplings. Both of the telescope assemblies are mounted to the steel/carbon fiber space frame by struts attached to the mounting ring shown in Figure 2. The struts have flexures that allow the aluminum mirrors and trough to contract at a different rate than the space frame without imparting significant moments into the optic structure.

Primary Mirror

Figure 4 shows the design of the primary mirror with light-weighting ribs on the back and toroidal features on the front that form half of the non-influencing kinematic mount. Raised bosses on the back of the mirror will be used along with spherical washers to hold the part during diamond turning. The mirror has light-weighting features on the back consisting of thicker ribs with a wide spacing to combat gravity sag and thin ribs spaces 30 mm apart to reduce the amplitude of print-through during diamond turning.

Machining Primary Mirror

The primary mirror is machined on a Nanoform 600 DTM coupled with the FLORA II fast tool servo built at the PEC. The off-axis parabolic section is machined on axis by translating the shape to the center of rotation, tilting it and finding the best fit rotationally symmetric surface with a sag of 13 mm for the DTM to follow as shown in Figure 3. The 1 mm correction for the non-rotationally symmetric surface, shown in FIGURE 6, is simultaneously added by the FTS. The result is an optical surface with form error of < 200 nm RMS and surface finish less than 30 nm RMS.

FIGURE 4: Primary mirror front (top) with kinematic coupling and back (bottom) with light-weighting ribs

Analysis showed that gravity will cause the primary to sag by 426 nm PP when tilted 13.3 degrees, as shown in FIGURE 5. Since this telescope is designed to study long wave-length (> 1.5 µm) light, form errors on the order of 400 nm are acceptable.

FIGURE 5: Deflection of primary mirror due to gravity with PV of 426 nm.

Because the surface of the mirror is 2.5 mm thick, print-through due to tool thrust force is a concern. Analysis was done by applying 1 N force at many locations on the front of the mirror and calculating
the deflections. The sum profile – approximated by placing an equivalent pressure load on the front face – is shown in Figure 7.

FIGURE 7: Deflection due to tool thrust force at different locations on the primary mirror with PV=182 nm

<table>
<thead>
<tr>
<th>Location</th>
<th>Deflection (nm)</th>
<th>Resulting Error (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Mounting Boss</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>Large Support Spar (near boss)</td>
<td>39</td>
<td>7</td>
</tr>
<tr>
<td>Outer Rim</td>
<td>173</td>
<td>141</td>
</tr>
<tr>
<td>Small Support Spar</td>
<td>85</td>
<td>53</td>
</tr>
<tr>
<td>Between Spars</td>
<td>118</td>
<td>86</td>
</tr>
</tbody>
</table>

TABLE 1 shows that FE model deflection at a number of different points on the face of the primary as a result of a 1 N thrust force at that point caused by the diamond turning operation. The second column assumes that if the load is applied everywhere for the tool pass, each of these deflections will be achieved and the shape will have print-through features less than 141 nm PP.

Turning Flat

The Turning Flat poses similar challenges to the primary but with a smaller diameter. The flat mirror uses the same toroid-shaped feature for its kinematic mount as the primary. The back of the flat mirror is light-weighted, but because it is half the size of the primary, the simple pattern shown in FIGURE 7 is sufficient to combat gravity sag as well as print-through. Also, the features on the back side of the flat mirror can be cut out with a square end mill, eliminating the need for weight-adding fillets at the bottom of the pockets. The outside of the Turning Flat is 254 mm in diameter and 12.7 mm deep. The face is 2 mm thick, the outer rim is 4 mm wide, and the rest of the ribs on the back are 2 mm wide. As with the primary, raised bosses are used for mounting during diamond turning.

FIGURE 8: Front (top) and back (bottom) of the Turning Flat. Note the kinematic coupling features.

FIGURE 9: Deflection of Turning Flat due to gravity sag
Combined Effect of Form Errors
Since the flat mirror is nearly parallel to the primary and supported with 3 features around its rim, the shape of its deflection is qualitatively similar to that of the primary, as shown in FIGURE 8, with about half (175 nm) the peak amplitude. Both the primary and the secondary sag in the same spatial direction, so that their effects on the optical path will cancel. The predicted form errors are shown side-by-side in Figure 10. Note that deformations of the turning flat have a two-fold effect on optical path length.

Mounting Structure
The components in the mounting trough-ring structure are decomposed in FIGURE 11. Each part is machined from a single piece of aluminum 6061-T6 and heat-treated to relieve internal stresses. The two sides of the trough are joined in the middle first to produce a rigid one-piece base. The rings are then bolted to the ends to create the optical bench. The mirrors are mounted to this reference frame using the non-influencing kinematic couplings and spring tabs. The alignment of the primary mirror and the turning flat can be measured and adjusted by shimming the four bolted connections between each ring and that end of the trough.

The mirrors are attached to the rings using a kinematic Kelvin coupling that enables repeatable positioning and decouples deformations in the mounting structure from the optical surface. The Kelvin coupling consists of a toroidal feature that is machined on the front of each mirror and a triangular groove cut into the mounting rings, as shown in Figure 12. The mirrors are then clamped through the center of the toroid features using a constant-pressure clamp.

Assembly and Alignment
Once the primary and turning mirrors are aligned, the telescope is mounted to the x-frame that attaches it to the Metering Truss. The Cryostat is hung from the primary mirror mount and the remaining mirrors are adjusted to get the collimated beam into the cryostat for analysis.

References
ANALYSIS OF NOZZLE DESIGN USED FOR THE CREATION OF ADVANCED ENERGY BEAM

Nan Yu¹, Renaud Jourdain¹, Mustapha Gourma², Paul Shore¹,³
¹Precision Engineering Institute, Cranfield University
²Department of Engineering Computing, Cranfield University
³Loxham Precision Limited
Bedfordshire, England, UK

INTRODUCTION
A variety of scientific and industrial projects, such as segmented ground based telescopes, compact space based observers, short wavelength microlithography and high power laser systems, demand metre scale ultra-precise surfaces [1]. Cranfield University and Loxham Precision have been engaged in developing effective fabrication of medium to large optical surfaces for the aforementioned applications. A process chain of three sequential machining steps has been proposed (Figure 1). These steps are ultra-precision grinding, robot based polishing and plasma figuring. The fabrication target is to reach a 20 hours cycle time for each stage of surface generation for 1.5m size optics: equating to 1ft² per hour [2-3].

FIGURE 1. Proposed rapid production line for large scale mirror segment fabrication [2].

BACKGROUND
The final processing step of this fabrication chain is a state-of-the-art plasma figuring process. This figuring process uses an Inductively Coupled Plasma (ICP) torch whose motion is managed by the dwell time algorithm that provides a controllable chemical reaction for etching local regions of a surface. The use of an ICP torch for the study of surface aberrations was carried at Lawrence Livermore National Laboratory (LLNL) in the late 1990s by Dr Jeffrey Carr et al [4-7]. From this work a series of processing systems were created. The measurement of the plasma temperature has been carried out by Dr William O’Brien [8]. The largest and most sophisticated plasma figuring machine was created in 2008 through a collaboration between RAPT Industries of the US and Cranfield University in England. The so-called Helios 1200 is a unique 1.2 metre scale plasma surface figuring facility housed within the Cranfield University Precision Engineering Institute [9]. In 2012, Castelli et al [10] demonstrated fast figure correction of near meter scale optical surfaces to 30nm RMS form accuracy using this plasma technology.

This large scale plasma facility uses an ICP torch which is operated at atmospheric pressure. The plasma torch is able to create a highly collimated plasma beam, in which fluorine atoms are introduced. These fluorine atoms react with silicon-based substrates. Typically, material removal rate of ~1.5 mm³/min is achieved. The material removal footprint of the ICP torch is characterised by a Gaussian cross section with “soft edges”. An important feature of the plasma torch is its dedicated nozzle. This nozzle is mounted onto the end of the ICP torch. The nozzle design determines the size, shape and plasma velocity of the energy beam as it impinges the processed surfaces.

The processing of metre scale optical surfaces achieved in 2012 was successful both in terms of processing duration and form accuracy. Plasma figuring of a 440mm sized substrate was performed in less than 2.5 hours achieving 30nm RMS form accuracy from an initial 2.5 micrometre PV value. However, mid spatial frequency (MSF) structure was evident [11-12]. This surface structure was assessed and linked to the raster-scanning parameters and ICP torch nozzle design. Figure 2 highlights this surface structure showing the main spatial frequency and its harmonics.

The identified and undesired residual surface features need to be removed. To accomplish
this improvement, the use of smaller scale energy beams has been suggested [12]. The energy beam footprint achieved in the previous research is shown in Figure 3. It can be seen that Full Width at Half Maximum (FWHM) is 12mm.

The purpose of the work presented in this paper is to advance the plasma figuring of optical surfaces through the development of optimised ICP torches and associated nozzles. This research aims at providing highly collimated energy beams characterized by a material removal footprint of between 1mm and 5mm FWHM.

This paper describes initial work towards the creation of a CFD model of the plasma process with initial attempts to correlate CFD results with plasma beam removal footprint data. This CFD model is developed to help understand some important design rules for new nozzles.

NUMERICAL SIMULATION OF PLASMA NOZZLE DESIGNS

This paper introduces initial CFD modelling of the plasma torch nozzle designs. As a first study the CFD model evaluates the aerodynamics of the gas flow. A number of assumptions are made regarding the fluid. The fluid is considered to be high temperature argon gas, it is also assumed axisymmetric, uniform, steady and laminar. Consequently, a simple 2D cross-sectional model of De-Laval nozzle design has been created. This model is based in the software package FLUENT (Figure 4).

The CFD model boundary conditions include: flow input velocity, gas type, gas temperature, and pressure distribution. The initial entry temperature is set at 6000 Kelvin as supported by the PhD work of Dr O’Brien.

Figure 4 shows a 3D drawing of the ICP torch and a cross-section of the current nozzle as modelled in the FLUENT software. Argon is fed into the nozzle through the upper aperture and flows downward in an axis-symmetric manner. Two areas are of interest in this work: the De-Laval throat and the near surface substrate region where the chemical reaction takes place. This second area is the focus of this paper.

To ease explanation a line of study is defined at 10 μm from the substrates surface. This line is entitled the “Pathway of Investigation”, see Figure 4.

As shown in Figure 5 the “Pathway of Investigation” is characterised by regions experiencing either downwards and upwards flow directions. The regions experiencing downwards flow are shown with a negative...
value in Figure 5. Regions along the Pathway of Investigation that experiences an upwards vertical flow component are shown having a positive value.

The negative regions are considered to be those which will experience the presence of the radical compounds. The CFD model is able to determine the amplitude and direction of these particles and consequently help understand the regions of preferential etching.

From a processing viewpoint, the plasma etching is considered to take place only in the region exposed to free radicals, because the fluorine radicals in the plasma jet can be in contact with the silicon atoms of the substrate. This assumption is supported by experimental tests performed by Dr Fanara. In the future this assumption will be further validated through tests using differing nozzle designs. However, there seems to be good initial indications supporting this assumption from footprint experiment data carried out at Cranfield in 2010 by Dr Castelli. The 4 sigma value of the footprint 22 mm (11mm radius) is very close to the 10.75 mm radius exposed to free radicals as shown in Figure 5.

Figure 6 combines images from the gas flow simulation model and footprint experiment data. This figure highlights correlation between the material removal footprint and the regions along the “Pathway on Investigation” which experience a downwards vertical flow profile.

FIGURE 4. Overview of the CFD investigation. 3D drawing of the plasma figuring torch (upper); 2D CFD simulation illustration of flow velocity in the nozzle (lower).

FIGURE 5. Vertical flow velocity plots along the pathway of investigation.

FIGURE 6. Curves of the etched area and gas velocity.
In Figure 6, the black curve shows the amplitude of the vertical velocity of the gas along the near surface regions of the substrate, whilst the blue plot shows the actual footprint removal profile obtained by Dr Castelli.

NOZZLE DESIGN EVALUATION USING CFD MODEL
Investigation of the nozzle’s key design parameters using the aforementioned 2D axis-symmetric numerical model has been made. Evaluation is based on the changing radius along the Pathway of Investigation that is exposed to free radicals. The hydrodynamic characteristics of the De-Laval nozzle depend on seven parameters (shown in Table 1). Three of them have been changed to investigate their effect on gas flow. The three design parameters varied were: the diameter of the throat \(D_2\), the diameter of divergent end \(D_3\), and the depth of the divergent path \(h_3\). The following paragraphs detail the findings and results obtained through the CFD model focusing on the radius exposed to free radicals and the maximum velocity in the throat.

Effect of the Throat Diameter
The throat -parameter \(D_2\) in the De-Laval nozzle is crucial, because the speed of flow increases strongly when the gas goes through this narrow section. A five-step increase of the throat diameter (4.0mm, 4.3mm, 4.7mm, 5.0mm and 5.3mm) was chosen for the investigation of the flow velocity change. The correlation between the diameter of the throat and the radius exposed to free radicals is highlighted in Figure 7. When \(D_2\) decreases by 24%, the radius exposed to free radicals decreased by 19%. The sensitivity of \(D_2\) is 0.79. Also it can be observed that the flow velocity increases when the throat dimension gets smaller.

FIGURE 7. The throat diameter \((D_2)\) versus the radius exposed to free radicals (♦ left), and \(D_2\) versus the maximum velocity in the throat (▲ right).

Effect of the Divergent End Dimension
Similar comparison is made among nozzles with different dimensions of divergent end diameter - parameter \(D_3\). The chosen diameters were 10.8mm, 11.4mm, 12.0mm, 12.6mm, 13.2mm and 16.7mm. The correlation between the diameter of the divergent end and the radius exposed to free radicals can be seen in Figure 8. As expected, the results show that a wider divergent end generates a larger etched area. The dimension of the etched area decreases 8% as \(D_3\) shrinks 18%. The sensitivity of \(D_3\) is 0.44. The maximum flow velocity through the throat is little affected at these levels by this nozzle parameter.

TABLE 1. Parameters of the nozzle in the characteristic analysis.
Effect of the Divergent Path Dimension

Through this third investigation, the influence of the dimension of the divergent path - parameter h_3 is analysed. Here two scenarios are investigated.

First scenario: the diameter of the divergent end is kept constant at 11.4mm. Thus the change of divergence path dimension affects the divergent angle which consequently increases. Unlike the last two comparisons, the obvious change of the divergent depth doesn’t change the radius exposed to free radicals (Figure 9).

Second scenario: the angle of divergence is kept constant and therefore the divergent path dimension is altered. It can be seen in Figure 10 that the short nozzle reduces the radius exposed to free radicals. However, the response from h_3 is not obvious comparing to that of D_2 and D_3.

These last two sets of results are complementary and they enable to correlate the radius exposed to free radicals and the diameter of the divergent end. Moreover, from the series of results obtained through this initial modelling work, there are three general design rules of the De-Laval nozzle:

1. Radius exposed to free radicals decreases significantly as the throat (D_2) shrinks;
2. Radius exposed to free radicals decreases when the divergent end (D_3) shrinks.
3. Smaller energy beam footprints should be achieved with adjustment of D_2 as it is more efficient than tuning D_3.

CONCLUSIONS

An initial 2D axis-symmetry numerical model of an existing torch nozzle has been created. This simple model has indicated some sensible results when compared to actual process data of removal footprints. Correlation data gives confidence for more detailed modelling work.

Some initial design rules and nozzle parameter sensitivity analysis has been obtained. This
information can be used to create a number of new nozzle designs for future experiments.

Limitations of this CFD model include the use of argon flow instead of a plasma flow and insufficient supporting experimental data. These limitations will be addressed by the lead author during the next 2 years of his PhD.

FUTURE WORK
The CFD model will be advanced by:

1. Measurement using plasma diagnostic for more accurate parameters including initial entry flow velocity and temperature, heat loss in the nozzle;
2. Definition of the ionization and recombination of the argon particle and its electron so as to simulate argon plasma instead of hot argon pure argon;
3. Taking the turbulence and swirl into account;
4. Further validation through material removal footprint trials using differing nozzle designs.

Using the developed CFD model new nozzles and torch designs will be created. These new torch / nozzle designs will be employed to establish an effective plasma process that rapidly removes MSF for large scale metre class optics.

ACKNOWLEDGEMENT
This research work was funded by the Centre for Innovative Manufacturing in Ultra Precision of the Engineering and Physical Sciences Research Council (EPSRC) UK.

REFERENCES
INTRODUCTION
The world is in motion. This fact is being taken for granted by most of us in daily life. But it can be a challenge for those working in precision engineering or related industries when it comes to problems caused by vibrations.

Vibrations can be caused by the machine itself or the surroundings, such as a nearby highway, railroad or other machinery. Today, we have to face drastically increasing demands regarding quality and precision in nearly all fields of the engineering process. Therefore, measuring devices cannot only be found in laboratories, but also closer to the production lines. This allows continuous monitoring of quality parameters as well as evaluation of selected product samples throughout the entire manufacturing process. Depending on the requirements regarding precision and accuracy, vibrations can be of great negative impact for the results of a production or measurement process. In general, the more precision is required, the more efficient the vibration control has to be.

Over the last few years, air spring systems in combination with high-quality mechanical level control have been the first choice of an optimal compromise between achievable accuracy and cost effort.

By using electronic valves, that enable precise and accurate adaption of the system control parameters, isolation efficiency and transfer function can be drastically improved. As mechanical and electronic level control systems can be combined with the same type of air spring elements, no constructive modifications at the machine bed or at the support of the isolators are required. Moreover costs of the entire isolation system do not increase disproportionately.

There are numerous advantages of air spring technology compared to steel springs, electromagnetic actuators or linear motors. The linear correlation between applied air pressure and resulting load capacity of air spring isolators leads to a high flexibility and easy adaption for different load distributions.

Basic properties like natural frequency and dampening are nearly constant within a reasonable range of operation. Moreover air spring elements are characterized by a very high mechanical stability with low maintenance effort. They also do not require any additional damping elements. Their very low energy consumption is essential to avoid any heat generation and magnetic variation, which is essential for many applications, like e.g. electronic beam microscopes.

Fundamentals
The efficiency of any vibration isolation system significantly depends on the matching ratio \(\eta \) between excitation frequency and natural frequency of the isolator, see [1]. In general, the efficiency of vibration isolation increases as the natural frequency of the isolator drops. The graph in Figure 1 shows that the system only isolates when this ratio exceeds \(\sqrt{2} \). If the ratio is less than \(\sqrt{2} \), the vibration will be amplified due to resonance effects. The damping factor D determines the amplification resonance and the transmissibility with high frequencies.

\[
\eta = \frac{f_{\text{excitation}}}{f_{\text{Isolator}}}
\]

\[
V = \frac{1+4D^2\eta^2}{(1-\eta^2)+4D^2\eta^2}
\]

FIGURE 1. Transmissibility of a vibration isolator depending on damping and matching ratio.
Typically, the objective is to achieve a ratio of between 3 and 4 \([2]\), whereas a ratio of 3 is considered to be the minimum effective target value where an isolation efficiency of nearly 80\% can be achieved, and a ratio of 4 to be an economic limit.

Electronic Pneumatic Position Control

Effective and cost-efficient solutions for nearly every problem caused by vibration – that is the claim Bilz Vibration Technology meets every day and very successfully worldwide. More than 45 years of experience in the field of vibration isolation have made the company based in southern Germany the European market leader today.

Bilz offers a wide range of products for vibration isolation including: simple bonded rubber isolation pads, rubber and membrane air springs, mechanical and electronic level control systems, and both semi-active and active vibration cancellation systems with 3 or 6 Degrees of Freedom. This is why Bilz is able to provide an optimal isolation concept for nearly every application where vibration issues occur, starting from reducing shock emissions of forging hammers to the point of elastic machine support in the semiconductor industry.

The latest product by Bilz, the EPPC™ (Electronic Pneumatic Position Control), was launched in fall 2013. It is a real-time level control system which complements the Bilz product portfolio perfectly. The EPPC™ provides optimal vibration isolation for highly dynamic and shock-sensitive machines. Therefore, the EPPC™ can be installed with high-precision machines, where the focus is on optimal level accuracy of \(\pm 8 \, \mu\text{m}\) over a 12 mm range and little deflection as well as short settling times at load changes. Therefore it can be used to isolate not only measuring devices and microscopes but also test equipment and production machines.

The system is used in combination with standard BiAir® membrane air spring isolators, which can be mounted directly below machine supports, support platform or a massive foundation block. Figure 2 provides a schematic cross-sectional diagram of a BiAir® element.

The two chamber system design consists of a load and a damping volume. Both volumes are connected by an adjustable mechanical bypass throttle valve. Any deflection of the isolated machine on top of the element leads to a change of the size of the load volume and a resulting air flow from one air volume to the other through the bypass. Due to air friction inside the bypass, energy will be converted into heat and damping up to a maximum value of \(D = 15\%\) can be created. The natural frequency of the given air springs ranges between approx. 1.1 and 2.5 Hz in vertical direction, whereas the horizontal direction is characterized by a natural frequency of 2.5 Hz.

Multiple air spring types and sizes are available to ensure that design and layout of the isolation system perfectly matches the individual demands of the specific application. In practice, air spring elements are typically designed to work with an air pressure between 2 and 5 bar and vary between 70 mm and 900 mm in diameter. This results in a total load capacity of less than 20 kg up to 15.5 tons per element.

FIGURE 3. EPPC™ level control incl. position sensors and servo-valves (3 units each) as well as the electronic control unit

The EPPC™ can be combined with three (refer to Figure 3) or six groups of air springs to control up to 6 degrees of freedom. It monitors the machine position for every degree of freedom as well as internal air pressure of the air springs to control the dynamic behavior of the system. The performance of the passive air spring itself is significantly improved by using a high-performance 14bit AD converter and a 16bit PID.
controller which allow nearly noise free regulation. Servo-valves are mounted very close to the air springs to eliminate control degradation through pressure losses in the tubes.

All these features enable the EPPC™ level control system to act as a semi-active system and create a very high damping factor up to 30% in the resonance frequency range. This leads to a significant reduction of the corresponding amplification or transmissibility factor.

In addition to the general advantages of air spring technology compared to systems driven by electro-magnetism (see section “Introduction”), the CAN-Bus topology allows a distance of up to 20 m (66 ft) from the isolation system to the electronic control unit itself. This way the isolation system can even be applied at highly sensitive locations and surroundings e.g. clean room environment and laboratories etc.

MEASUREMENTS AND PERFORMANCE

Figure 4 shows a measured disturbing frequency spectrum on the floor (Boden) and the resulting vibration frequency spectrum remaining on a Bilz EPPC™ isolated system (System).

The isolating air spring element, which is part of the given system, is characterized by a natural frequency of approx. 2.5 Hz in vertical direction. This leads to resonance amplification of approx. +100% within the $\sqrt{2}$ range around the natural frequency, see bottom diagram of Figure 4.

This value corresponds to the amplification factor given by the formal expression and its plot shown in Figure 1 in the “Fundamentals” section: The curve named “30%” represents the theoretical transmissibility function of the EPPC™ system. This system performance can be achieved when the maximum damping value of 30% is applied within the electronic system setup. In this case a maximum transmissibility value of 2 results in the resonance case ($\eta = 1$), which equals an amplification of 100%.

For frequencies higher than 3.5 Hz, the reduction of the vibration passing from the ground through the isolating system can be clearly observed. At 7.5 Hz ($\eta = 3$) a vibration amplitude of approx. 90 µm is reduced to nearly 15 µm which equals a vibration efficiency of around 85%.

In comparison to currently used mechanical pneumatic levelling systems (e.g. Bilz MPN) there is a significant increase in performance. The maximum damping factor of the mechanical systems of approx. 15% leads to a much higher resonance amplification, see again Figure 1.

The settling time, which is required to reach and stay within a certain range, is drastically reduced, see Figure 5. For excitation amplitude of 80 µm, the response curve of the respective isolation system is shown. To reach a stable position within a range of e.g. 15 µm, the settling time reduces by 40% from approx. 1.25 s to 0.75 s.

FIGURE 5. Settling time of electronic (EPPC™) and mechanical (MPN) pneumatic position control

For applications with very high dynamic loads due to rapid movement of work pieces or machine components like scanning units, tool changing units etc. with very high requirements for settling time and constant leveling, the performance of an EPPC™ and air spring based
isolation system can be further improved by adding additional mass to the system.

Figure 6. Vibration analysis of CMM with (System) and without (Floor) vibration isolation

Figure 6 shows the measured values obtained by a vibration analysis of an isolated coordinate measurement machine (CMM). In the described application, the footprint of the CMM is approx. 2.0 m x 5.5 m. The maximum height of the machine itself is more than 5.0 m. The weight of the CMM incl. work piece is more than 40 tons. High masses and large dimensions of machine components and work pieces desire a high quality isolation concept to ensure constant reproducibility of measurement results as well as optimal duration of the measurement process.

In the same time, the foundation block helps to avoid any torsion of the machine bed due to the elastic installation of the machine. Moreover the static layout of the system is improved by lowering the center of gravity of the complete setup. Therefore, the isolation system was realized with the EPCC™ in combination with foundation isolation. In this example of an indirect isolation concept, a massive concrete block is put between the isolators and the isolated object. The concrete mass in the given project was around 100 tons.

In order to meet the requirements according to the limit values given by the CMM manufacturer and the vibration scenario coming from the environment from the CMM, the foundation block was put on Bilz BiAir®-HE air spring elements which are characterized by a reduced natural frequency of 1.7 Hz. The reduction is achieved by increasing the volume of the air springs. Similar to the example discussed previously, the resonance amplification can be observed. The achievable high dampening of the EPCC™ results in a resonance amplification of less than factor 2. For excitation frequencies above 2 Hz, isolation efficiency is drastically improving with increasing frequencies.

CONCLUSION

The EPCC™ level control system provides highly effective vibration isolation in the field of precision engineering. The combination of high-performance electronic and pneumatic devices, optimized pneumatic design and technically mature air spring technology facilitates daily
work with optimal results even for critical applications.

REFERENCES

Characterizing Alternate Methods of Determining Velocity Information for Feedback Control of High Performance Stages

Charles M. Kohn¹, Tetsuo Ohara¹, Susumu Makinouchi², Akihito Watanabe³, and Kotaro Nakamura³
¹NanoWave, Inc., Sutton, Massachusetts, USA
²Medical Business Development Division, Nikon Corporation, Yokohama, Kanagawa, Japan
³Encoder Business Unit, Nikon Corporation, Natori, Miyagi, Japan

INTRODUCTION
Feedback control loops for high performance stage positioning require not only input of stage position, but also velocity. Both must be accurate, have low noise, have good resolution, and must have low phase delay in order to obtain high performance. Modern position sensors can provide reasonable position information, but stage performance can often be limited by the quality of the velocity information, especially at low velocity. It is widely documented that simply differentiating position to create velocity creates a noisy velocity signal and that a high resolution position signal results in better performance [1,2,3]. Various velocity estimator algorithms are used to create a higher quality velocity signal, but no single velocity estimator ranks best for all applications [4]. Velocity estimators always create phase delay, as a result of combining data taken over multiple samples, and the greater the number of samples, the greater the phase delay.

The purpose of this investigation is to evaluate alternate ways of achieving a high quality velocity signal. The methods we analyzed utilize features of a relatively new type of position encoder that achieves ultra high position resolution and also makes available an internally created ultra high resolution velocity signal that is not created by differentiating position [5]. Any model in Nikon's ModuRay® series of incremental position encoders has these required capabilities. For this investigation we used the LT700 model encoder head and scale, along with new and improved interpolation electronics that provide a bandwidth of 20kHz.

ModuRay linear encoders provide digital position resolution of 3.81pm, with 3-σ position noise that can be below 100pm. (For reference, the diameter of a single hydrogen atom is about 108pm.) The ModuRay encoders achieve such high performance by modulating the wavelength of a VCSEL light source at 100kHz, which causes a diffraction pattern to move back and forth over the 4µm grating pitch. The position and direction information become embedded in the phase of a single modulated signal seen by the photo diode detectors. This modulated signal is decoded by high speed electronics, e.g., an FPGA, using a patented phase lock method. ModuRay encoders are able to achieve significantly low interpolation error and high signal-to-noise ratio compared to conventional A-quad-B output encoders. This is because the interpolation electronics are always decoding the phase signal of a single modulated AC signal, even when there is no stage motion, whereas conventional A-quad-B output encoders rely on the stability, noise, and accuracy of two DC levels for position calculation.

It is thought that differentiating a position signal with such low noise and quantization error will provide a low noise velocity signal. The noise and spectrum of this velocity signal are compared to the noise and spectrum of the internally generated velocity signal. Also, by removing the lowest 4 bits of position output we simulated the position output of an encoder whose resolution is not as good and computed the position noise and velocity noise, for comparison.

The primary concern of this investigation was the velocity signal resulting from a stage that is not moving or is moving at a relatively low velocity. The term “in-position stability” has been used to specify the case of a stage that is not moving. In-position stability is important in applications such as diamond turning machines in which one axis is supposed to be stationary or moves very slowly.
Some systems, such as scanning exposure systems, utilize a stage moving at a constant velocity. It is likely that a method of achieving a low noise velocity signal for zero or near zero motion will also be a critical requirement for precise and smooth motion in a constant velocity application.

THE INTERNAL VELOCITY SIGNAL
The interpolation electronics of ModuRay encoders contain a feedback loop which, among other things, creates a velocity output. Both the position and the velocity outputs are updated by a 40MHz clock, i.e., every 25ns. A diagram of the velocity generation section is shown in Figure 1. The filter is shown as a dotted block because the characteristics can be customized for a particular application.

![FIGURE 1. Block diagram of the basic signal processing flow in ModuRay interpolation electronics.](image1)

One LSB (Least Significant Bit) of the digital velocity signal employed for this investigation corresponds to 18E-15m/s. (Such ultra high velocity resolution is probably unnecessary, and it is likely that we will determine that lower resolution, such as 1.1pm/s, will be more than adequate and will allow a higher maximum velocity using a 40-bit output.) The low-pass filter is included to provide anti-aliasing before the output signals are sampled by the motion controller, but this filter should probably be optimized to provide steeper attenuation at frequencies above the targeted bandwidth of the motion controller.

The phase delay of this velocity output, relative to the actual position of the stage, is determined by the transfer function of the loop, whose bandwidth can be as high as 20kHz for small amplitude stage motion. The data propagation latency is about 250ns, including the ADC pipeline delay. The optional anti-aliasing filter will also contribute phase delay in addition to the 20kHz bandwidth of the feedback loop for position and velocity decoding.

THE MEASUREMENTS
The measured velocity output is limited by the noise of the system, including both mechanical (including acoustic) noise and noise in the electronics, plus possibly noise due to quantization error. In an effort to achieve as little stage motion as possible, we created a rigid stage with no moving parts, as shown in Figure 2, and we measured the output when the stage was mounted on a high quality vibration isolation table.

![FIGURE 2. Immovable stage](image2)

We measured position and velocity, sampling at a rate of 20kHz and collected 100,000 samples (5 seconds). The standard deviation of position was 25.7pm, which means the 3-σ noise is well under 100pm. Figure 3 shows a typical FFT plot of the position output.

![FIGURE 3. Typical FFT of Position output from a stage that is rigidly held in place.](image3)
The measurements shown above were taken in Japan. The peaks at 50Hz and 100Hz are probably due to the AC line frequency, as similar measurements taken in the US showed peaks at the US AC line frequency of 60Hz and its harmonic. Commonly air currents, acoustic noise, and floor vibration caused by machinery can all cause mechanical noise. The vibration isolation table reduces the amplitude of floor vibration above 50-100Hz vibration by about 99%, but it doesn't eliminate it. The peaks at 1kHz, 3kHz, and 5kHz are probably due to acoustic noise, as these peaks moved when we made additional measurements.

Figure 4 shows the FFT of the internally generated velocity signal obtained during the same measurement as the position plot of Figure 3. In this case the anti-aliasing low-pass filter was a first order IIR filter with a pole at 100Hz. The standard deviation of velocity was 3.55nm/s and would be lower if we used a better anti-aliasing filter. (For reference, the hair on your head grows at a rate of about 5nm/s.)

Velocity estimators that average data over more than one sample are often used to reduce the noise caused by simple differentiation, at the expense of data latency because the velocity estimate is delayed by additional cycles of the motion controller sampling rate. In our case, we used a finite impulse response (FIR) filter of eight position samples because it was easy to implement. That velocity signal is shown in Figure 6.
The shape of Figure 6 is the same as Figure 5 at low frequencies but drops off at higher frequencies, due to the FIR filter. The standard deviation of the velocity signal is a little lower but not nearly as low as obtained from the internally generated velocity signal. In the case of the FIR velocity estimator, the phase delay is increased, due to taking data from 8 samples, but it may still be dominated by a low-pass filter.

We also investigated the output of a simulated position encoder with lower resolution than the ModuRay encoder by truncating the four least significant bits of position output of the raw position data and then applying the same velocity estimator as used in Figure 6. Figure 7 shows the FFT of the velocity signal created by applying the same 8-sample FIR velocity estimator to the truncated position data. The velocity noise of 9.01nm/s is a little worse than the velocity noise obtained from the higher resolution output, indicating a benefit of ModuRay’s resolution. The position noise is increased slightly from 25.7pm to 31.3pm.

TABLE 1. Summary comparison of velocity signals obtained via various means from ModuRay encoder.

<table>
<thead>
<tr>
<th></th>
<th>Std Deviation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal @20KS/s</td>
<td>3.55nm/s</td>
<td>low noise; high bandwidth</td>
</tr>
<tr>
<td>d(pos)/dt @20KS/s</td>
<td>14.9nm/s</td>
<td>higher noise; even with ultra pos resolution</td>
</tr>
<tr>
<td>Vel est @20KS/s</td>
<td>7.87nm/s</td>
<td>good noise; but higher delay</td>
</tr>
<tr>
<td>Vel est(tr) @20KS/s</td>
<td>9.01nm/s</td>
<td>higher noise; using lower resolution position data</td>
</tr>
</tbody>
</table>

REFERENCES

LINEAR MICRO-ACTUATION SYSTEM FOR PATCH-CLAMP RECORDING

Ilya Kolb1*, Gregory L. Holst2*, Max A. Stockslager2, Suhasa B. Kodandaramaiah3, William Stoy1, Edward S. Boyden3,4, Craig R. Forest2
1 Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta GA, 30332 USA
2 George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta GA, 30332 USA
3 Media Lab, Massachusetts Institute of Technology, Cambridge MA, 02139 USA
4 McGovern Institute, Massachusetts Institute of Technology, Cambridge MA, 02139 USA
*authors contributed equally

ABSTRACT
Measuring the electrical activity of neurons is essential for understanding how they encode and transmit information in the brain. Using a technique known as patch-clamping, the electrical activity of single neurons can be reliably recorded by pressing a small glass pipette filled with electrically conductive and pneumatically controlled solution against the neuron’s membrane. This requires accurate and repeatable mechanical control of pipette position, typically necessitating a bulky actuation system and thus making it difficult to position several pipettes around a tissue specimen to record from multiple neurons at once. We have developed a linear micro-actuation system for patch-clamping that exhibits high positional accuracy (<150 μm on-axis error over full travel), high repeatability (on-axis σ = 33 μm for full travel; σ = 0.71 μm for 15 μm travel) and low drift (0.61 μm/hour). The system was designed and fabricated to patch-clamp onto neurons in a mouse brain slice. The miniaturized device presented here makes it possible to position up to 21 actuators around a 5 x 5 mm tissue sample and eventually record intracellularly from a large number of neurons.

INTRODUCTION

Neurons are electrically active due to the controlled flow of ions through pores in their membranes. Patch-clamping, the gold standard technique for measuring trans-membrane voltages and currents, involves delicately resting a 1 μm diameter pipette against a cell to create...
an intimate electrical and mechanical connection between the pipette tip and the neuronal membrane. One can then apply suction to ‘break-in’ to the neuron to attain a ‘whole-cell’ configuration in which the contents of the cell are directly accessible [1]. From there, it is possible to record single-neuron electrical activity with a very high signal-to-noise ratio. Different features of this activity are important for elucidating brain function – for instance, high-amplitude “spikes” of the membrane voltage are the primary method of inter-neuronal communication in the nervous system.

The size of conventional pipette micro-actuators is the current limiting factor when attempting to record from many neurons simultaneously in a small region of interest in the brain. Commercial systems have been outfitted to support up to 12 independent pipette actuators [2] but due to their large size, this is near the physical limit.

Here we present a novel linear micro-actuation system (Fig. 1a) that exhibits mechanical characteristics sufficient to perform patch-clamping. Our system has a volume that is less than 1% and a weight that is only 1.4% of a conventional actuator and holder (Fig. 1b). This miniaturization of actuation systems will enable the use of many closely packed electrodes (Fig. 1c) that can simultaneously access many neurons, as is desirable for high-channel probing of neural circuits [3].

MATERIALS AND METHODS

Detailed design

The linear micro-actuation system in Fig. 2a is based on the M3-L Motor (New Scale Technologies; Victor, NY, USA). The motor has a travel range of 6 mm and a motion resolution of 500 nm. The motor pushes a custom-made aluminum shuttle mounted on a miniature linear ball bearing carriage. The carriage rides on a 60 mm long guide rail (McMaster-Carr 8381k27).

A custom pipette holder (Fig. 2b) was machined out of cast acrylic and mounted on the shuttle. Three ports were drilled in the pipette holder: (1) a port to house an Ag/AgCl pellet for electrical connectivity with the pipette, (2) a pressure port to connect to an air pressure controller, and (3) a port to constrain the pipette. The three ports are interconnected and are filled with physiological saline to ensure electrical connectivity between the Ag/AgCl pellet and the pipette. The guide rail and the motor are mounted on a custom-made base plate. The base plate and shuttle were machined out of 6061 aluminum plate using a HAAS OM-1A CNC office mill. The pipette is pulled from 1 mm OD / 0.5 mm ID capillary glass using a Flamming/Brown P-97 micropipette puller (Sutter Instrument Company; Novato, CA) to a ~1 μm diameter tip (Fig. 2c).
Benchtop testing

The accuracy, repeatability and drift of the micro-actuation system was evaluated. A pipette was fit into the pipette holder and clamped to the shuttle with an o-ring. The motor was mounted flat on a motorized XY stage (resolution = 100 nm) under a microscope equipped with a motorized 40x objective (UPLFLN 40X, NA = 0.75, Olympus; Center Valley, PA) and differential interference contrast (DIC) optics (Scientifica Ltd, East Sussex, United Kingdom). This metrology system has a resolution of approximately 500 nm. Pipette position in three dimensions was determined by reading out motor encoder values of the XY stage and the objective when the pipette tip is centered and focused over a stationary on-screen crosshair.

Actuator accuracy is important when it is necessary to target specific structures in the brain. For instance, layers of the mouse cortex are tens to hundreds of micrometers deep in the brain [4], making positioning within ~10 μm necessary for reliably targeting them. To test accuracy, the motor was first moved over 15 μm in 500 nm increments and subsequently over its full range of travel (6 mm) in 500 μm increments. The movement error was the difference between the actual pipette position and the commanded position as measured using the XY stage encoder averaged over n = 3 trials.

Repeatability of actuator motion is vital for algorithmic finding of cells based on electrical resistance [5]. It is also important for the ability to repeatedly target a brain structure for patch-clamping. The repeatability of motion was evaluated by commanding the motor to approach the middle of its travel (3 mm mark) from both directions in 1 mm increments. It was quantified by computing the standard deviation (σ) of the differences between the commanded position and actual position of the pipette tip over n = 30 trials.

Positional drift of the pipette tip after a whole-cell configuration has been established is detrimental to the stability of the membrane-pipette interface and ultimately worsens the signal-to-noise ratio of the intracellular recording. Therefore a system with minimal drift (< 1 μm/hour) is required. Motor drift was measured with the pipette acting as the load. Measurements were taken every 30 minutes for 2.5 hours.

In-vitro testing

We performed patch-clamp experiments in mouse brain slices [6] under DIC optics (Fig. 2c) by mounting the micro-actuation system on a
three-axis manipulator. Electrical signals were recorded using a standard patch-clamp amplifier and data acquisition software (Molecular Devices; Sunnyvale, CA). Power to the motor was disconnected during the recording to minimize electrical interference.

RESULTS AND DISCUSSION

Mechanical performance

In benchtop testing, the micro-actuation system exhibited on-axis accuracy down to 2 μm in small movements and 150 μm in full-travel movements (Fig. 3a,b). The large full-travel on-axis error was systematic and linear ($R^2 = 0.96$) and can therefore be predicted and compensated with a linear slope correction of $m = 0.01639 \mu m$ adjustment per 1 μm of on-axis travel to satisfy the 10 μm accuracy requirement for patch-clamping.

The off-axis accuracy of the system reached 14 μm in the y direction and 93 μm in the z direction (Fig. 3c,d). This is insufficient for targeting specific areas in the brain so additional motion constraints will need to be placed if highly accurate motion is needed.

After linearization, the repeatability of small actuator displacements (up to 15 μm) is $\sigma = 0.71 \mu m$ which is sufficient for algorithmic finding of cells based on electrical resistance. The on-axis repeatability over the full range of travel was within $\sigma = 33.1 \mu m$. This is sufficient for repeatable targeting of brain structures such as distinct neuronal layers in the cortex of a mouse. The off-axis repeatabilities over the full range of travel were within $\sigma = 203 \mu m$ and $\sigma = 154 \mu m$ in the y and z directions, respectively.

The pipette mounted on the micro-actuation system drifted a total distance of 4.22 μm over 4 hours. The average drift was 0.61 μm/hour. Based on average recording times of ~ 1 hour, this drift is negligible.

In-vitro experiment

We tested the usability of a single micro-actuation system by performing patch-clamp experiments in mouse brain slices. Representative intracellular electrophysiology traces (Fig. 4) are qualitatively indistinguishable from those obtained using commercially available pipette holders and actuators.

CONCLUSION

We have designed, manufactured, and tested a linear micro-actuation system that has sufficient mechanical characteristics for performing patch-clamp experiments. It was subsequently validated in an in-vitro patch-clamp experiment.

The system presented here uses many off-the-shelf components and can therefore be easily replicated in order to increase the number of signals that can be simultaneously obtained from brain tissue. The angular profile of the entire assembly is only 17º, which potentially allows for a circular arrangement of, conceivably, up to 21 single-axis actuators around a tissue sample. This would theoretically enable simultaneous recording of up to 21 intracellular signals, and eventually more after additional miniaturization. These technical advances can open the door for performing simultaneous high signal-to-noise recordings from larger groups of neurons than previously possible.

REFERENCES

EFFECTIVE CALIBRATION AND IMPLEMENTATION OF GALVANOMETER SCANNERS AS APPLIED TO DIRECT METAL LASER SINTERING

William S. Land II¹, ²
¹The University of North Carolina at Charlotte
Charlotte, North Carolina, USA
²Aerotech Inc.
Pittsburgh, Pennsylvania, USA

INTRODUCTION
Direct metal laser sintering (DMLS) is the most common process by which metal parts are presently being produced through an additive manufacturing approach. These laser processing systems generally utilize 2-axis galvanometer scanners as a means of manipulating the planar position of a laser spot to produce sintering of the powder bed. The dynamic positioning performance of the laser spot directly impacts the dimensional accuracy of each sintered layer and the final part dimensions. As the scanner is the primary means of creating relative motion between the laser spot and powder bed, calibration and characterization of the scanner’s ability to position the laser spot is the best way of improving the dimensional accuracy of the finished sintered part.

Current methods used in the calibration of two-axis galvanometer laser scanners include several novel techniques, but the most effective and readily validated method involves the measuring of a part marked by the system. The “mark-and-measure” approach is the most reliable of current calibration methods because the output of the given process, a part marked in-situ, is the artifact onto which metrology is carried out.

This paper summarizes the findings of a case study on effective means of 2-D galvanometer scanner calibration performed at Aerotech Inc. The study explored the use of 2-D laser scanners used in combination with field flattening optics, F-Theta lenses, and the findings and results are not necessarily applicable to other laser scanner arrangements. The study was able to produce micron-level static laser spot positioning accuracy over a large majority of the scanner’s field of view.

MARK & MEASURE CALIBRATION
The mark-and-measure calibration technique is widely used in laser processing systems. The general procedure is to mark patterns on a material, measure the pattern in the global space, and to use the difference between each mark’s desired and measured location as a correction factor in future commanded moves. In the specific procedure followed during the case study described herein, two separate systems were used. One was a marking station fitted with a particular Aerotech scanner to imitate its integration into a laser processing system, and the second was a separate machine vision inspection station used to measure the parts produced by the marking station. Both systems are shown below in Figure 1. Grid patterns were burned into substrates at the marking station, and then the substrates were moved to the machine vision system for inspection. The data taken by the inspection station were appropriately post processed and turned into a two dimensional error array for the purpose of implementation into a calibration file in the scanner’s controller. A subsequent substrate was marked and measured to determine the effectiveness of the calibration file. This process was repeated iteratively to produce the best results.

Several factors associated with the consistency of the spatial relationship between the scanner, the laser, and the substrate, as well as aspects related to the interaction of the laser and the substrate during the marking process were found to affect the success of a scanner’s calibration via this mark-and-measure methodology.
ERROR SENSITIVITIES IN SCANNER SYSTEMS
The accurate and precise marking of substrates was found to be affected by several factors involving the physical setup of the marking station. Marking field to focal plane parallelism, working (marking) height consistency, process flatness, and input beam alignment consistency all influenced the calibration, resultant accuracy, and marking consistency of the marking station. Unfortunately, these factors are not mutually exclusive, and their independent effects on the marking process are not easily differentiated, and often combine. As a result, each is specifically defined and its impacts on the marking process described below, in order to clarify their individual importance to the calibration and implementation of scanner units.

All effects of the error sensitivities discussed in this section vary in severity with the choice of F-Theta lens, focal length of the system, and field of view, but all can also be readily corrected through a mark-and-measure calibration procedure, as long as the aspects of the system’s alignment which produce them remain constant. Therefore, the major concern regarding accurate and precise laser marking is the consistency of each spatial relationship discussed below. Deviation in any of the below alignments from the state in which the scanner was calibrated will invalidate the calibration of the marking system to some extent.

Marking Field & Focal Plane Parallelism
As used in this document, the “marking field” is defined as the planar surface on which the laser beam is intended to mark; it is bounded by the geometry of the part to be marked. Additionally, the “focal plane,” as used herein, is defined as the virtual plane over which the optical elements of the system focus the laser beam; it is bounded by the available scan area of the particular scan head/lens combination in use. The parallelism of these two planar surfaces is defined here as the magnitude of the angle between the normal vectors of each plane, and when referring to the effects of this parallelism, it is assumed that the centroid of each plane is coincident with one another and that both are perfectly flat. Through testing, the alignment of the two was found to have an impact on the marking accuracy, and therefore, the calibration of the scanner. As the input beam is directed through travel by the scan head, it inherently has an incident angle greater than zero as it falls on the focal plane (except for where the beam enters the lens coincident, and parallel to the lens’ axis.) Any misalignment between the marking field and focal plane causes the beam to be projected a distance that is different than the intended working height, and, as a result of the non-zero incident angle at the focal plane, a mark placement error is induced on the marking field. The total (pk-pk) induced error over the marking field from a parallelism error is linearly dependent on the total scan length, and is non-linearly affected by the nominal incident angle of the laser beam on the part and the parallelism error between the marking field and focal plane. In instances where a non-telecentric focusing optic is used (non-zero nominal incident angles,) the peak-to-peak induced laser placement error can be on the order of microns per 100 micro-radians of parallelism error.

Marking Height Consistency & Process Flatness
Similar to errors caused by marking field and focal plane misalignment, errors can be induced when the marking field is placed at a different distance from the lens along its axis than the...
placement error is linearly affected by variation in marking field height variation. This easily be on the order of microns per five microns of marking field height, and is dependent on the optics are used, induced peak-to-peak laser placement error across the scan length can be a result of the parts flatness with respect to the focal plane or a combination of the two. Errors induced by this height variation are solely a result of non-zero incident angle of the laser beam at the focal plane. Therefore, the use of telecentric focusing optics effectively eliminates this error source; however, if non-telecentric optics are used, induced peak-to-peak laser placement error across the scan length can easily be on the order of microns per five microns of marking field height variation. This placement error is linearly affected by variation in marking field height, and is dependent on the beam’s incident angle at a given position within the focal plane.

Laser Alignment Consistency (Zero Offset)

The final error sensitivity of major concern when calibrating laser scanners is that associated with laser alignment. The largest part of the laser placement error to be corrected in scanner systems is injected from the focusing optic’s distortion of the focal plane’s coordinate frame produced from field flattening. The exact manner in which this distortion is manifested over the focal plane depends on the boundaries of the laser beam’s entrance into the lens. The lens’ distortion of the beam’s projected position on the focal plane is a function of the incoming beam’s distance from the axial center of the rear lens objective. The center point of the focal plane, or “zero” location of commanded moves, ideally corresponds with the laser beam passing coincident and parallel to the lens’ axis. In this ideal condition, the theoretical lens distortion of the focal plane has two axes of symmetry, which coincide with the (X) and (Y) axes of the focal plane, as defined by the scanners’ motion.

Realistically, the beam incoming to the scanner is never perfectly aligned, and as a result, the laser beam being projected to the commanded center point of the focal plane is linearly offset from the axial center of the lens as it enters the rear objective. This is what’s referred to herein as a “zero offset.” Due to this zero offset, the actual lens distortion imparted on the focal plane is asymmetrical.

Any change in either the linear or angular alignment of the input beam to the scan head will induce significant laser placement errors, in this case, at the focal plane itself (independent of the previously mentioned error sensitivities.) The level of this induced error is significantly more sensitive to angular changes in the alignment of the input beam. Angular changes in the input beam are projected through the scan head over a long enough distance that even a small change can create a substantial change in zero offset at the lens’ rear objective.

The manner in which a change in the zero offset of a scanner system induces error is through the shift between the location of the lens and the incoming laser beam, and the associated shift in the focal plane’s distortion. For example, when applying a correction table via a calibration file, each value in the correction table is associated with a commanded position in the focal plane. However, the magnitude of each value is associated with where the laser beam passes through the lens relative to its axis when at its associated command position. Therefore, when a change in zero offset occurs, there is a relative shift between the commanded locations in the focal plane, and the location of the laser beam with respect to the lens. This shift destroys the validity of the connection between the magnitude of a correction in the table and the location it’s associated with. As depicted in Figure 2, a zero offset shift from (X0, Y0) to (X’0, Y’0) changes every position of the laser beam throughout the focal plane the same amount relative to the lens’ axis, thereby changing the magnitude by which the lens distorts each commanded position’s global location on the focal plane. This relative shift between the focal plane and the lens’ distortion map is depicted by the shift in (X1, Y1) to (X’1, Y’1) and (X2, Y2) to (X’2, Y’2). As a result of this shift, the correction counts intended to correct the lens’ distortion at (X1, Y1) over correct for the distortion that exists at (X’1, Y’1) because it is now closer to the lens’ axis and is distorted a lesser amount. Likewise, the correction counts intended to correct the lens’ distortion at (X2, Y2) are now not enough to fully correct the distortion seen by (X’2, Y’2) because it is farther from the lens’ axis and is thereby further distorted. Therefore, the amount of error induced by a change in input beam alignment is dependent on the magnitude and type of the change, the size of the AGV unit in use, and the slope of the correction table being employed by the calibration file (which is primarily a factor of the F-Theta lens in use.)

Lastly, while the effects of even large zero offsets, when left unchanged, can be effectively calibrated, their impact on spot distortion cannot. A shift in zero offset also changes the distortion imparted focused laser spot.
FIGURE 2. Depiction of a relative shift between commanded locations in the focal plane and a map of the ideal theoretical distortion created by an F-Theta field flattening lens, referred to as a change in zero offset.

Lens manufacturers offer theoretical software simulations of spot size deviation and focus quality as a function of position within the focal plane. As a result of non-ideal laser alignment, spot size deviation will be larger and patterned differently than what is predicted by the manufacturer. This can have a drastic effect on the quality of marks used for calibration as well as weld quality and stability related to where the laser spot is in the focal plane while performing a sintering operation.

SUBSTRATE VIABILITY & MARK QUALITY

As a result of good spatial control of the laser marking station studied, uncertainty in the measurement of calibration artifacts was found to be the primary limitation to the scanner’s calibration. Measurement uncertainty and therefore the effectiveness of a calibration are dependent on the substrate as well as the quality of marks being made on that substrate when used in the mark-and-measure procedure outlined above. As previously mentioned, the calibration in the study employed the use of a machine vision system. As such, the level to which the mark-and-measure procedure was able to calibrate a scan head was directly affected by the camera’s ability to accurately measure each mark in the grid patterns created. The marked substrate needed to produce a high level of contrast in the camera image; it needed to have exceptional surface finish to provide a solid background; lastly, the marks needed to be thin and had to have crisp edges in order to produce the highly repeatable marking and measuring necessary for high accuracy calibration.

Measurement Repeatability & Marking Repeatability

Two major limiting factors in scanner calibration are the consistency with which the camera determines the center of a given mark, and the consistency with which the laser makes marks on the substrate. The nomenclature coined to represent these two factors is “measurement repeatability” and “marking repeatability.” Measurement repeatability is defined herein as the maximum peak-to-peak difference in the measurement of a single mark’s center between subsequent measurements of the same grid of marks. Conversely, marking repeatability is defined as the maximum peak-to-peak difference in the measurement of subsequently marked grids, assuming an identical setup and marking field to focal plane relationship. As such, marking repeatability can never be exclusively determined because it is inherently inclusive of measurement repeatability and the effects of the aforementioned error sensitivities. It must be estimated. An illustration of measurement and marking repeatability is provided in Figure 3. Combined, the measurement repeatability and marking repeatability establish the effective resolution of the calibration, and, therefore, must be minimized to obtain high levels of marking accuracy.

Making High Quality Laser Marks

Through the case study, it was found that thin marks produce the best results in both measurement and marking repeatability. Thinner marks produce better results because they fundamentally do the least amount of damage to the substrate, and thereby impart the least amount of heat into the substrate. This causes very thin marks to have minimal heat affected areas and insignificant mark growth relative to the theoretical focused spot size. Mark growth due to excess heat and/or a large heat affected area are major causes of mark randomness in addition to the substrate surface consistency. Minimizing excess heat input is the key to increasing the repeatability of a mark’s shape (marking repeatability.)

Also, minimizing damage and heat input makes the contrast transition band between marked area and background very narrow in the camera image. The abrupt contrast change is what is described here as “crisp” marking. Having very crisp marks provides fewer inputs to the
camera’s edge search algorithms, reducing the total number of influences on its opinion of a mark’s center. Limiting the amount of pixels involved in the camera’s search algorithm, therefore, gives it fewer items to change its opinion over, and showed to improve measurement repeatability substantially.

The ability to make the small, crisp, high quality marks described above is dependent on two factors, substrate selection and the laser parameters used for marking. Both are important to achieving high quality marks, but the ideal laser marking parameters for making a high quality mark can differ from substrate to substrate, making them difficult to specifically define.

As mentioned above, high accuracy calibration using machine vision requires that the substrate have superb surface finish, produce crisp marks with good contrast, and be strictly dimensionally controlled. As such, it was found that glass substrates with optical quality thin film coatings made good substrate candidates. However, using a coated substrate required certain considerations in the selection of laser parameters. When a laser has to burn through any thickness of coating to make a mark readable, it will impart more energy to the surface layer than is required to do damage as the beam passes through the coating’s thickness. This naturally causes an increase in heat affected area and mark growth at the surface layer, which, in this case, was the camera’s image plane. Not only is the mark, therefore, inherently bigger in the image plane than the laser spot, but also it inherits randomness in its size, edge, and overall shape. All three reduce overall calibration resolution (marking & measuring repeatability.) It is imperative to impart as little thermal energy as possible to the area of surface layer surrounding the laser spot while fully burning or ablating the area underneath the spot to achieve quality marks. These thermal effects, mark growth and heat affected area, are not unique to marks made on coated substrates; they are only magnified by the coating. High accuracy mark-and-measure calibration demands that these effects be minimized regardless of the materials and processes used for marking. This minimization is achieved through the selection of the laser marking parameters.

Typically, the operator of a laser marking system has control of certain explicit laser marking parameters, such as average output power or pulse energy, pulse width or modulation frequency, marking speed, etc. However, it is the implicit marking parameters that determine the overall quality of a mark, specifically average power density, pulse power density, and average power seen by the substrate. The key to making quality marks that approach the theoretical laser spot size without producing the undesired thermal effects is to achieve high average and pulse power densities while reducing the average power dumped into the substrate. Examples of poor and high quality laser marks are shown below in Figure 3.

![Figure 3](image-url)
CALIBRATION RESULTS & CONCLUSIONS

Below are the documented results of the forementioned case study on mark-and-measure calibration. The purpose of the study was to determine and document the readily achievable marking accuracy of an Aerotech AGV-14HP-1064-100T scanner system when calibrated using Aerotech’s High Precision Inspection Station via the mark-and-measure technique.

The study was not meant to define the absolute limit for marking accuracy in scanner based systems, nor was it directly a representation of the rotational accuracy of scanners within Aerotech’s AGV-14HP model scan heads. The experiment was meant only to act as an example of the output accuracy that a similarly fitted laser processing system might be able to attain when attention is given to the principles and considerations discussed above.

Results

After mark-and-measure calibration, the AGV-14HP-1064-100T scanner unit achieved 2D marking accuracies on the order of singular micrometers of error. The total calibration took two calibration iterations (three marked grids) to return no improvement in accuracy. Table 1 shows a summary of the measurements taken from the final grid marked by the scanner. It is important to note that the achieved accuracy is roughly equal to the approximate measurement uncertainty of the grid. Thus, the achieved accuracy has reached the effective calibration resolution for this particular system.

Conclusions

In this case study, an AGV-14HP-1064-100T galvanometer scanner was calibrated using a mark-and-measure methodology to give insight into the levels of marking accuracy achievable with this type of calibration approach. It was learned that the effectiveness of a mark-and-measure calibration procedure is largely dependent on the combination of substrate and laser parameters used for marking. The combination of these two factors determines the overall mark quality of the fiducials made in terms of measurability and measurement repeatability. The mark quality, in this study, was the majority contributor to measurement uncertainty, and therefore was the limiting factor in the calibration outcome.

For marking accuracy to be limited by the repeatability of the galvanometer motors themselves along with the impacts of one’s ability to control the spatial relations of the marking station, measurement uncertainty must be minimized. Regardless, the achievable accuracy of the laser marking system will be the combination of the galvanometer motor’s repeatability, the effects of spatial non-repeatabilities in the system setup, and the uncertainty in the measurement process. Therefore, this summation should be at or lower than the accuracy goals of the process at hand, in this instance DMLS.

REFERENCES

Note: This paper is a direct modification of reference [1] with practically no addition of new material. It is merely a resubmission of [1] with a reduction of its size and scope.

TABLE 1. Measurement summary of the final grid made during the Mark-and-Measure calibration of an AGV-14HP-1064-100T scanner unit.

<table>
<thead>
<tr>
<th>Summary of Achieved 2D Marking Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metallic Coated Glass Substrates</td>
</tr>
<tr>
<td>Calibrated Field Size = 40 x 40 [mm]</td>
</tr>
<tr>
<td>Camera Resolution = 0.86 [μm/pixel]</td>
</tr>
<tr>
<td>Scanner: AGV-14HP-1064-100T</td>
</tr>
<tr>
<td>Measurement Uncertainty [μm pk-pk]: 2.50</td>
</tr>
<tr>
<td>X-Axis</td>
</tr>
<tr>
<td>X Marking Accuracy [μm pk-pk]: 2.65</td>
</tr>
<tr>
<td>X Avg. Linearity [%]: 99.997</td>
</tr>
<tr>
<td>Y-Axis</td>
</tr>
<tr>
<td>Y Marking Accuracy [μm pk-pk]: 2.33</td>
</tr>
<tr>
<td>Y Avg. Linearity [%]: 99.998</td>
</tr>
<tr>
<td>X-Y Orthogonality [arc-sec]: 0.01</td>
</tr>
<tr>
<td>Vector Sum Error [μm pk-pk]: 1.40</td>
</tr>
</tbody>
</table>
OPTIMAL ZERO PHASE ERROR TRACKING FEEDFORWARD CONTROL FOR AN ULTRA-PRECISION DUAL-STAGE ACTUATED WAFER STAGE

Min Li\(^1,2\), Kaiming Yang\(^1,2\), Yu Zhu\(^1,2\) and Chuxiong Hu\(^1,2\)

\(^1\)State Key Laboratory of Tribology
\(^2\)Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control
Department of Mechanical Engineering
Tsinghua University
Beijing 100084, China

INSTRUCTIONS
Zero phase error tracking feedforward controller (ZPETFC) has a clear advantage to improve the tracking performance of non-minimum phase systems. The traditional ZPETFC ensures the magnitude-frequency response is unity at only zero frequency, which is undesired for high precision motion systems. Therefore, an optimal ZPETFC with a concise gain compensation filter is proposed to improve the magnitude-frequency characteristics and thus the tracking performance.

In general, ZPETFC is used in 2-DOF tracking control system of close-loop inverse structure (CLIS)\(^[3]\) in most literatures, leading to higher order and more complex implementation than the plant inverse structure (PIS). However, because ZPETFC isn’t the exact model-inverse of the controlled plant, PIS suffers from reduced settling performance due to excitation of the closed-loop dynamics\(^[2]\). 2-DOF tracking control system of modified plant inverse structure (MPIS) provides a means to deal with the trade-off between the lower order of ZPETFC and shorter settling time.

Comparative simulations are conducted on the model of our developed wafer stage which employs a dual-stroke principle. The results show that the proposed optimal ZPETFC in MPIS can significantly improve the moving average (MA) of the tracking error and the standard deviation (MSD) of the tracking error, and the settling time is reduced from 11.6ms to 0ms.

OPTIMAL ZPETFC IN MPIS
In order to simultaneously achieve the low order of ZPETFC and shorter settling time, 2-DOF tracking control system of MPIS shown in figure 1 will be adopted, where \(G(z^{-1})\) represents the plant, \(F(z^{-1})\) represents ZPETFC aiming at approximating the model-inverse of \(G(z^{-1})\), and \(C(z^{-1})\) represents the feedback controller. Given the reference command \(r(t)\) and the output \(y(t)\) of the plant \(G(z^{-1})\), the tracking error \(e(t)\) is constructed using the relation \(e(t)=r(t)-y(t)\). Compared with PIS, a prefilter \(M(z^{-1})\) is added in MPIS.

![FIGURE 1. 2-DOF tracking control system of MPIS.](image)

The plant \(G(z^{-1})\) is denoted as

\[
G(z^{-1}) = \frac{z^{-d}B(z^{-1})}{A(z^{-1})} = \frac{z^{-d}B_1(z^{-1})}{A(z^{-1})}
\]

(1)

where \(B_1(z^{-1})\) is polynomial with unstable zeros, \(B_1(z^{-1})\) is with stable zeros and \(d\) is time delay.

The optimal ZPETFC \(F(z^{-1})\) adds a gain compensation filter \(F_g(z^{-1},z)\) ahead of the traditional ZPETFC and is designed as\(^[3]\)

\[
F(z^{-1}) = F_g(z^{-1},z) \cdot \frac{B_1(z)}{B_1(1)} \cdot \frac{z^{-d}A(z^{-1})}{B_1(z^{-1})}
\]

(2)

with \(F_g(z^{-1},z)\) designed as

\[
F_g(z^{-1},z) = \sum_{i=0}^{N} (a_i(z^{-i} + z'))
\]

(3)

where \(N\) is the order and \(a=[a_0, a_1, ... a_N]^T\) is the parameter vector of \(F_g(z^{-1},z)\). Due to the same coefficient with respect to \(z^{-i}\) and \(z^j\) in (3), \(F_g(z^{-1},z)\) is a zero-phase filter.

Let

\[
R(z^{-1}) = R(z^{-1})G(z^{-1}) = F_g(z^{-1},z) \cdot \frac{B_1(z)}{B_1(1)} \cdot \frac{z^{-d}A(z^{-1})}{B_1(z^{-1})}
\]

\[
= \left[\sum_{i=0}^{N} (a_i(z^{-i} + z')) \right] \cdot \left[\sum_{j=0}^{N} (b_j(z^{-j} + z')) \right]
\]

(4)
where γ_i is the coefficient of the polynomial $B_i(z)$ $B_i(z^{-1})/B_i(1)^2$ corresponding to z^i and z^{-i}, and P is the order.

If $M(z^{-1})=1$, i.e. PIS, the transfer function $H(z^{-1})$ from the tracking error $e(t)$ to the input $r(t)$ is described as

$$H(z^{-1}) = \frac{1-R(z^{-1})}{1+G(z^{-1})C(z^{-1})}$$

Because $F(z^{-1})$ isn’t the exact model-inverse of $G(z^{-1})$, i.e. $R(z^{-1}) \neq 1$, PIS suffers from reduced settling performance due to excitation of the closed-loop dynamics. However, settling time is tightly associated with the throughput of wafer stage and thus an important performance index. MPIS is aimed at reducing settling time.

The transfer function $T(z^{-1})$ from $e(t)$ to $r(t)$ in MPIS is described as

$$T(z^{-1}) = \frac{(1-R(z^{-1}))(1-M(z^{-1}))G(z^{-1})C(z^{-1})}{1+G(z^{-1})C(z^{-1})}$$

Selecting $M(z^{-1})=R(z^{-1})$, $T(z^{-1})$ is rewritten as

$$T(z^{-1}) = 1-R(z^{-1})$$

Thus, the closed-loop dynamics will not be excited in MPIS even though $R(z^{-1}) \neq 1$.

If $R(z^{-1})=1$ in MPIS, the tracking error will be completely eliminated. Here the parameter vector α of $F_\delta(z^{-1},z)$ is obtained by minimizing the objective function $J(\alpha)$ as follows.

$$\min J(\alpha) = \frac{1}{2\pi} \int_0^{2\pi} \left| R(e^{-j\theta}) - 1 \right|^2 d\theta$$

where $\theta = wT_s$, and T_s is the sample interval. The constraint that ensures the magnitude-frequency response of $R(z^{-1})$ is unity at zero frequency can be denoted as

$$R(e^{-j\theta}) \bigg|_{\theta=0} = 1$$

Furthermore, a general weighting function $M(\theta)$ can be introduced in Eq.(8) to emphasize some frequency range.

The constrained L2-norm optimal problem described in Eq. (8) and Eq. (9) can be solved via the Lagrange method and the optimal parameter vector α of $F_\delta(z^{-1},z)$ is obtained as

$$\alpha = \frac{1}{2} \left(\Gamma^T \Lambda \Gamma \right)^{-1} \left(2\Gamma^T \Omega - \lambda \beta \right)$$

where the definitions and the detailed derivations are elaborated at the appendix.

The above method of obtaining the optimal parameter vector α is similar to that proposed by Syh-Shih, Y. and H. Pau-Lo[3], but the present calculation is considerably simplified because of a clever transformation of the objective function. The integrals of the trigonometric function matrix and vector in [3] are associated with the coefficient γ_i of the polynomial $B_i(z)$ $B_i(z^{-1})/B_i(1)^2$, i.e. the parameters of the controlled plant, while the integrals in this paper are not. Thus, the computation of the present method is considerably decreased in the case of dealing with different plants or combining the optimal ZPETFC with on-line identification to achieve adaptive feedforward control, because the integrals can be solved in advance.

The prefilter $M(z^{-1})$ is FIR filter(see Eq.(4)). Thus the introduction of $M(z^{-1})$ doesn’t affect the original close-loop stability. As the closed-loop dynamics will not be excited in MPIS even though $R(z^{-1}) \neq 1$, the proposed optimal ZPETFC in MPIS realizes the same settling time performance as in CLIS and the same order as in PIS. However, errors in the acceleration/deceleration phase in MPIS are larger than those in PIS because of the absent filtering by $1/(1+G(z^{-1})C(z^{-1}))$.

SIMULATION RESULTS

In this section, the proposed algorithm is assessed with comparative simulations on the identification model of our developed wafer stage shown in figure 2. The developed wafer stage employs a dual-stroke principle with a short-stroke stage (SS) for accurate positioning (nanometer scale) and a long-stroke stage (LS) for coarse positioning (micron scale). SS is driven by eight voice coil motors to achieve 6-DOF motion and the magnetic gravity compensator is to balance the gravity of SS. LS is a planar actuator suspended above the surface of a Halbach permanent magnet array by air bearings. The scanning direction of SS is considered in this paper as it reflects the final tracking performance of wafer stage.

![FIGURE 2. Schematic of the developed wafer stage.](image-url)
The measured frequency response of SS in the scanning direction shown in figure 3 reveals that it is characterized by double integrator behavior in the low-frequency range along with higher order dynamics. The measured unstable zeros of SS in the scanning direction are -1.7407 ± 2.3091i, 0.6045 ± 1.2476i, in the left-half plane (LHP) and the right-half plane (RHP) respectively.

The frequency responses of $R(z^{-1})$ obtained by the traditional ZPETFC and the optimal ZPETFC (selecting $N=10$, $\theta_1=0$, $\theta_2=\pi$ and $N=20$, $\theta_1=0$, $\theta_2=\pi$) are shown in figure 4. Due to existence of both LHP zeros and RHP zeros, magnitude of $R(z^{-1})$ by the traditional ZPETFC firstly decreases to -16.8dB at 910Hz and then increases gradually. However, magnitude of $R(z^{-1})$ obtained by the optimal ZPETFC is within ±0.7dB if $N=10$ and within ±0.02dB if $N=20$. It is obvious that the larger N, the better magnitude-frequency characteristics of $R(z^{-1})$, but the more complex implementation.

The fourth order reference profile with a cruising speed of 0.25m/s and a maximum acceleration/deceleration of 10 m/s² shown in figure 5 is adopted. The sample interval T_s is 200μs.

In general, the main performance indexes for wafer stage are MA of the tracking error, MSD of the tracking error and settling time. Indicative of the overlay error contribution is MA representing the low-frequency part of the tracking error, while a measure for contrast loss in the imaging process is MSD representing the high-frequency part of the tracking error. Settling time represents the time period for the tracking error converging to a specified accuracy after acceleration phase, which is tightly linked with the throughput of wafer stage. MA and MSD are described as follows.

$$MA(k) = \frac{1}{N}\sum_{i=-[n/2]}^{[n/2]} error(k)$$

$$MSD(k) = \sqrt{\frac{1}{N}\sum_{i=-[n/2]}^{[n/2]} (error(k) - MA(k))^2}$$

The comparison of the tracking error between the traditional ZPETFC in PIS and the optimal ZPETFC ($N=20$) in PIS is shown in Figure 6. The simulation results demonstrate that the proposed optimal ZPETFC considerably improves the tracking performance and decreases settling time. The larger N, the better performance (not elaborated here). However, due to excitation of the closed-loop dynamics in PIS, the settling time is larger than the desired value 10ms even when $N=20$ and larger N is undesired.

Figure 7 presents the comparison of the tracking error between the optimal ZPETFC ($N=20$) in PIS and the optimal ZPETFC ($N=20$) in MPIS. The proposed optimal ZPETFC in MPIS realizes
smaller settling time and the comparative level of tracking performance in constant speed phase compared with the proposed optimal ZPETFC in PIS. However, the tracking error in the acceleration/deceleration phase in MPIS are larger than those in PIS (but less than the traditional ZPETFC in PIS or MPIS, not elaborated here) because of the absent filtering by $1/(1+G(z^{-1})C(z^{-1}))$. Note that the illumination starts during the constant speed phase. This is the region where the tracking performance of wafer stage should be achieved. Therefore, the increased tracking errors in the acceleration/deceleration phase in MPIS will not notably affect the performance of the wafer stage. Table 1 presents the detailed tracking performance indexes. The settling time is calculated on the criterion that MA is less than 3nm and MSD is less than 6nm.

FIGURE 6. The Comparison of the tracking error between the traditional ZPETFC in PIS and the optimal ZPETFC (N=20) in PIS.

FIGURE 7. The Comparison of the tracking error between the optimal ZPETFC (N=20) in PIS and the optimal ZPETFC (N=20) in MPIS.

Table 1. The detailed tracking performance indexes.

<table>
<thead>
<tr>
<th>Performance indicators</th>
<th>Traditional in PIS</th>
<th>Optimal in PIS</th>
<th>Optimal in MPIS</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settling time</td>
<td>21.0</td>
<td>11.6</td>
<td>0</td>
<td>[ms]</td>
</tr>
<tr>
<td>$|\text{error}|_\infty$</td>
<td>115.7</td>
<td>14.5</td>
<td>77.1</td>
<td>[nm]</td>
</tr>
<tr>
<td>$|\text{MA}|_\infty$</td>
<td>110.8</td>
<td>11.4</td>
<td>73.4</td>
<td>[nm]</td>
</tr>
<tr>
<td>$|\text{MSD}|_\infty$</td>
<td>61.4</td>
<td>6.1</td>
<td>14.7</td>
<td>[nm]</td>
</tr>
</tbody>
</table>

Conclusion

An optimal ZPETFC for a non-minimum phase ultra-precision dual-stage actuated wafer stage has been studied in this paper. By applying the Lagrange method to solve a constrained L_2-norm optimal problem a concise gain compensation filter of the proposed optimal ZPETC is obtained. Due to a clever transformation of the objective function, the calculation of the parameter vector of the gain compensation filter is greatly simplified, leading to dramatic decrease of computation especially in the case of dealing with different plants or combining the optimal ZPETFC with on-line identification to achieve adaptive feedforward control. The proposed optimal ZPETFC maintains the characteristic of zero-phase and significantly enhances the tracking performance of the tracking control system (see table 1 for detailed info.). Moreover, MPIS provides a means to deal with the trade-off between the low order of ZPETFC and non-excitation of the closed-loop dynamics. The proposed optimal ZPETFC in MPIS realizes smaller settling time (reducing from 11.6ms to 0ms) and the comparative level of tracking performance in constant speed phase compared with that in PIS, which are desired for wafer stage.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China under Grant 51175296 and 51105226

REFERENCES

Appendix

We adopt the Lagrange method to solve the constrained L₂-norm optimal problem described in Eq. (8) and Eq. (9) and the Lagrange function \(L(\alpha, \lambda) \) is defined as

\[
L(\alpha, \lambda) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| R(e^{-i\theta}) - 1 \right|^2 d\theta + \lambda \left(R(e^{-i\theta}) \bigg|_{\theta=0} - 1 \right)
\]

(A-1)

where \(\lambda \) is the Lagrange factor. According to the following equation

\[
e^{-i\theta} + e^{-i\theta} = 2 \cos \theta
\]

(A-2)

\(R(e^{i\theta}) \) is rewritten as

\[
R(e^{i\theta}) = \left[\sum_{n=0}^{N} \alpha_n (z^{-1} + z') \right] \cdot \left[\sum_{p=0}^{P} \gamma_p (z^{-1} + z') \right]
\]

\[
= \left(2 \cos(\theta) \ 2 \cos(2\theta) \ 2 \cos(3\theta) \ \cdots \ 2 \cos((N + P)\theta) \right) \cdot \begin{pmatrix}
2\gamma_0 & \gamma_1 & \gamma_2 & \gamma_3 & \cdots & \gamma_N \\
2\gamma_1 & 2\gamma_0 + \gamma_2 & \gamma_1 + \gamma_3 & \gamma_2 + \gamma_4 & \cdots & \gamma_N + \gamma_{N+1} \\
2\gamma_2 & \gamma_1 + \gamma_3 & 2\gamma_0 + \gamma_4 & \gamma_1 + \gamma_5 & \cdots & \gamma_{N-2} + \gamma_{N+2} \\
2\gamma_3 & \gamma_1 + \gamma_4 & \gamma_1 + \gamma_5 & 2\gamma_0 + \gamma_6 & \cdots & \gamma_{N-3} + \gamma_{N+3} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
2\gamma_N & \gamma_{N-1} + \gamma_{N+1} & \gamma_{N-2} + \gamma_{N+2} & \gamma_{N-3} + \gamma_{N+3} & \cdots & \gamma_0 + \gamma_{2N} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
2\gamma_{N+P} & \gamma_{N+P-1} + \gamma_{N+P+1} & \gamma_{N+P-2} + \gamma_{N+P+2} & \gamma_{N+P-3} + \gamma_{N+P+3} & \cdots & \gamma_P + \gamma_{2N+P}
\end{pmatrix}
\]

(A-3)

\(= \Theta^T \Gamma \alpha \)
With \(\gamma_{P+1}, \gamma_{P+2}, \ldots, \gamma_{N+P} = 0 \) and
\[
\Theta = \begin{pmatrix}
2 & 2 \cos(\theta) & 2 \cos(2\theta) & 2 \cos(3\theta) & \cdots & 2 \cos((N + P)\theta) \\
\end{pmatrix}_{(N+P+1)\times 1}
\]
\[
\Gamma = \begin{pmatrix}
\gamma_0 & \gamma_1 & \gamma_2 & \gamma_3 & \cdots & \gamma_N \\
2\gamma_1 & 2\gamma_0 + \gamma_2 & \gamma_1 + \gamma_3 & \gamma_2 + \gamma_4 & \cdots & \gamma_{N-1} + \gamma_{N+1} \\
2\gamma_2 & \gamma_1 + \gamma_3 & 2\gamma_0 + \gamma_4 & \gamma_1 + \gamma_5 & \cdots & \gamma_{N-2} + \gamma_{N+2} \\
2\gamma_3 & \gamma_2 + \gamma_4 & \gamma_1 + \gamma_5 & 2\gamma_0 + \gamma_6 & \cdots & \gamma_{N-3} + \gamma_{N+3} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
2\gamma_N & \gamma_{N-1} + \gamma_{N+1} & \gamma_{N-2} + \gamma_{N+2} & \gamma_{N-3} + \gamma_{N+3} & \cdots & \gamma_{N+2} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
2\gamma_{N+P} & \gamma_{N+P-1} + \gamma_{N+P+1} & \gamma_{N+P-2} + \gamma_{N+P+2} & \gamma_{N+P-3} + \gamma_{N+P+3} & \cdots & \gamma_P + \gamma_{2N+P} \\
\end{pmatrix}_{(N+P+1)\times (N+1)}
\]
Therefore,
\[
\alpha = \begin{pmatrix}
\alpha_0 \\
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_N \\
\end{pmatrix}
\]
Where
\[
A = \frac{1}{2\pi} \int_{\theta_0}^{\theta_N} \Theta \Theta^T d\theta \\
\Omega = \frac{1}{2\pi} \int_{\theta_0}^{\theta_N} \Theta d\theta
\]
Let
\[
\frac{\partial L}{\partial \alpha} = 2\Gamma^T A \alpha - 2\Gamma^T \Omega \alpha + \lambda (\beta^T \alpha - 1) = 0
\]
\[
\frac{\partial L}{\partial \lambda} = \beta^T \alpha - 1 = 0
\]
Via solving the equation set (A-9), the Lagrange factor \(\lambda \) is obtained as
\[
\lambda = 2 \frac{\beta^T \left(\Gamma^T A \Gamma \right)^{-1} \Gamma^T \Omega - 1}{\beta^T \left(\Gamma^T A \Gamma \right)^{-1} \beta}
\]
Finally, Substituting (A-10) into the first equation of (A-9), the optimal parameter vector \(\alpha \) of \(F_{g}(z^{1}, z) \) is obtained as
\[
\alpha = \frac{1}{2} \left(\Gamma^T A \Gamma \right)^{-1} \left(2\Gamma^T \Omega - \lambda \beta \right)
\]
UNCERTAINTY ESTIMATION OF A FIVE-AXIS MACHINE TOOL CALIBRATION USING THE ADAPTIVE MONTE CARLO METHOD

Anna Los and Rene Mayer
Department of Mechanical Engineering
Ecole Polytechnique Montreal
Montreal, Quebec, Canada

INTRODUCTION
Calibration of a five-axis machine tool allows verifying its ability to machine with the required accuracy and, if deemed necessary, correcting it. Numerous methods, using different kinds of devices and artefacts, are applied to estimate the machine error parameters [1].

In order to be able to compare those methods, the results of calibration must also be evaluated. That can be obtained through different approaches. Bringmann et al. [2] used the Monte Carlo method (MCM) to predict workpiece feature errors with and without calibration with the objective of choosing the most optimal calibration method. In [9] the uncertainties on the machine geometric errors parameters of the model-based calibration method were estimated using general MCM. Other researchers also applied MCM based on The Guide to the Expression of Uncertainty in Measurement Supplement 1 (GUM S1) [7]. Andolfatto et al. [8] used the adaptive MCM to estimate uncertainty on machine tool axis location errors with confidence intervals. Santolaria et al. [3] conducted robot kinematic calibration and through simulation estimated the uncertainty on the calibration results.

All of these methods allow estimating many geometric errors simultaneously. That is why the covariance between them should also be considered when the uncertainties are calculated. The uncertainty estimation of a multi-output method is proposed in The Guide to the Expression of Uncertainty in Measurement Supplement 2 (GUM S2) [4].

In this paper the uncertainties for two calibration methods, the reconfigurable uncalibrated master balls artefact (RUMBA) method [5] and scale enriched master balls artefact (SAMBA) method [6] are estimated for different numbers of master balls. Since both of them are based on multistage and iterative calculations, the adaptive MCM is followed.

CALIBRATION METHOD
FIGURE 1 shows the SAMBA artifact used for the study. It consists of four master balls 12.7 mm in diameter mounted on rods and a scale bar with a length of 304.6686 mm (which is not used for a RUMBA).

Calibrating the machine tool using the RUMBA or SAMBA methods requires probing a number of master balls (for SAMBA, also probing a scale bar at least once) at different machine rotary axis indexations (input data).

FIGURE 1. SAMBA artefact being probed using the Renishaw probe MP700 on a Mitsui Seiki HU40-T machine tool.

For each indexation, each of the four balls is probed in five points, which allows calculating the X-, Y- and Z-axis readings corresponding to positioning the stylus tip at the ball center and comparing it with its nominal position. The difference between those two sets of coordinates provides the initial model prediction error.

The identification of the geometric error parameters requires building the kinematic error model of the machine. That allows calculating the predicted stylus tip position relative to the probed ball center position.
The Newton-Gauss approach is used to estimate the required changes to the machine geometric error parameters in order to reduce the error between the prediction of the model and the observation and so better explain the difference with the prediction of those positions.

MEASUREMENTS AND SIMULATION

The investigated five-axis machine is the Mitsui Seiki HU40-T. Its topology is depicted in FIGURE 2. The analyzed machine is modeled using thirteen joint link errors with values estimated during previous calibration [5]. These machine geometric errors parameters, listed in TABLE 1, constitute the output data.

![Five-axis CNC machine model with the topology WCBXFSYMT; W – workpiece, T – tool, F – machine foundation, B, C – rotary axes around the Y and Z axes respectively, X, Y, Z – machine linear axes and S – spindle.](image)

The probing is simulated for seven different rotary axis indexations ([B, C] = [90, 270], [60, 180], [30, 90], [0, 0], [-90, -270], [-60, -180], and [-30, -90] deg) using n=1,2,3,4 balls for both SAMBA and RUMBA. When the former is applied the scale bar is measured once for B=C=0 deg.

In order to estimate the distribution and associated uncertainty of the input data repeated SAMBA measurements are performed on the analyzed machine. That allows calculating a covariance matrix of the input data, its probability density functions (PDFs) and the joint PDF.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_{AOB})</td>
<td>out-of-squareness of the B-axis relative to the Z-axis (μrad)</td>
</tr>
<tr>
<td>(E_{COB})</td>
<td>out-of-squareness of the B-axis relative to the X-axis (μrad)</td>
</tr>
<tr>
<td>(E_{XOC})</td>
<td>distance between the B and C axes (μm)</td>
</tr>
<tr>
<td>(E_{AOC})</td>
<td>out-of-squareness of the C-axis relative to the Z-axis (μrad)</td>
</tr>
<tr>
<td>(E_{BOC})</td>
<td>out-of-squareness of the C-axis relative to the X-axis (μrad)</td>
</tr>
<tr>
<td>(E_{BOZ})</td>
<td>out-of-squareness of the Z-axis relative to the X-axis (μrad)</td>
</tr>
<tr>
<td>(E_{AOY})</td>
<td>out-of-squareness of the Y-axis relative to the Z-axis (μrad)</td>
</tr>
<tr>
<td>(E_{COY})</td>
<td>out-of-squareness of the Y-axis relative to the X-axis (μrad)</td>
</tr>
<tr>
<td>(E_{XOS})</td>
<td>X offset of the spindle relative to the B-axis (μm)</td>
</tr>
<tr>
<td>(E_{YOS})</td>
<td>Y offset to the spindle relative to the C-axis (μm)</td>
</tr>
<tr>
<td>(E_{XX})</td>
<td>positioning linear error term of the X-axis (μm/m)</td>
</tr>
<tr>
<td>(E_{YY})</td>
<td>positioning linear error term of the Y-axis (μm/m)</td>
</tr>
<tr>
<td>(E_{ZZ})</td>
<td>positioning linear error term of the Z-axis (μm/m)</td>
</tr>
</tbody>
</table>

UNCERTAINTY ESTIMATION

The MCM described in [7] allows estimating uncertainties without defining the partial derivatives of the measurement model. In order to calculate the uncertainty using MCM \(M\) arrays of the \(N\) input data are created by sampling their joint PDF. For each of the \(M\) input arrays the \(m\) output quantities are calculated. \(M\) vectors of the output quantity are used to calculate the output value vector by calculating its average. Associated covariance matrix \(U_{y}\) (with squares of the output quantity uncertainties on its diagonal), coverage factor \(k_{p}\) for hype-ellipsoid and \(k_{q}\) hyper-rectangular coverage regions for the coverage probability \(p\) are also calculated.

Although the number of MCM trials can be set before conducting calculations, in this paper the adaptive MCM is performed, thus the final number of MC trials depends on the results of a stability assessment.

The first step of the adaptive MCM is performing \(h=10\) times \(M=10^3\) MC trials. For each \(r=1, ..., h\)
subsets of the output quantity estimate \(y(r) \) and its standard deviation \(s_{y}^{(r)} \), maximum eigenvalue \(\lambda_{\text{max}}^{(r)} \) of the correlation matrix \(R_{y}^{(r)} \), \(k_{q}^{(r)} \) and \(k_{q}^{(r)} \) are calculated. The \(h=10 \) estimates subsets of the output quantities are used to calculate their standard deviations (for each of the \(m \) output quantity) as one of the stability parameters. In a similar way, the remaining stability parameters standard deviations (of results variances \(s_{yy}^{(r)} \), maximum eigenvalue \(s_{\text{max}}^{(r)} \) and coverage factors \(s_{kp} \) and \(s_{sq} \)) are estimated. The obtained values are multiplied by two and compared with their corresponding required numerical tolerances. If at least one of the doubled standard deviations is greater than its numerical tolerance, the value of \(h \) is increased by 1 and a new set of \(M \) output data is calculated. The procedure is repeated until the results reach the demanded stability.

Then all the \(hM \) results are used to estimate the output quantities averages, the associated covariance matrix, the coverage factors and finally the uncertainties.

RESULTS

The parameters and their uncertainties have been calculated for 1,2,3 and 4 master balls. The identification results and their expanded uncertainties for \(p=0.95 \) are listed in TABLE 2. The coverage factor \(k_{q} \) varies between 2.9 and 3.0. The average time of performing adaptive MCM is around 20 hours and depends on the number of master balls used. Both, RUMBA and SAMBA, give similar estimated results. In all the presented adaptive MCM cases the results reached the required stability after \(hM=10^5 \) MC trials.

TABLE 2. Five-axis CNC machine tool calibration results and their uncertainties for RUMBA and SAMBA (* MCM with \(M=10^4 \) trials).

<table>
<thead>
<tr>
<th>Parameter Calibr.</th>
<th>Expanded uncertainty ((p=0.95))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RUMBA</td>
</tr>
<tr>
<td></td>
<td>(n=1^*)</td>
</tr>
<tr>
<td>(E_{AOB}) ((\mu \text{rad}))</td>
<td>0.9</td>
</tr>
<tr>
<td>(E_{COB}) ((\mu \text{rad}))</td>
<td>-1.5</td>
</tr>
<tr>
<td>(E_{XOC}) ((\mu \text{m}))</td>
<td>-102.2</td>
</tr>
<tr>
<td>(E_{AOC}) ((\mu \text{rad}))</td>
<td>3.9</td>
</tr>
<tr>
<td>(E_{BOC}) ((\mu \text{rad}))</td>
<td>19.9</td>
</tr>
<tr>
<td>(E_{BOZ}) ((\mu \text{rad}))</td>
<td>-37.5</td>
</tr>
<tr>
<td>(E_{AOY}) ((\mu \text{rad}))</td>
<td>-8.8</td>
</tr>
<tr>
<td>(E_{COY}) ((\mu \text{rad}))</td>
<td>23.9</td>
</tr>
<tr>
<td>(E_{XOS}) ((\mu \text{m}))</td>
<td>-97.1</td>
</tr>
<tr>
<td>(E_{YOS}) ((\mu \text{m}))</td>
<td>15.7</td>
</tr>
<tr>
<td>(E_{XX}) ((\mu \text{m/m}))</td>
<td>-45.2</td>
</tr>
<tr>
<td>(E_{YY}) ((\mu \text{m/m}))</td>
<td>50.5</td>
</tr>
<tr>
<td>(E_{YX}) ((\mu \text{m/m}))</td>
<td>5.3</td>
</tr>
<tr>
<td>(E_{Z}) ((\mu \text{m/m}))</td>
<td>25.0</td>
</tr>
</tbody>
</table>

The uncertainties calculated when one master ball is used do not differ a lot between the SAMBA and RUMBA results. For some of the analyzed parameters the uncertainties are lower when more master balls are used. The biggest decrease of the uncertainty, when the second master ball is added, is observed for \(E_{BOC} \), \(E_{BOZ} \) and \(E_{COY} \) (60%, 50% and 40% for RUMBA and 55%, 59% and 68% for SAMBA). Lowering uncertainty due to the higher number of master balls used is also seen for \(E_{AOC} \), \(E_{COB} \) and for the difference \(E_{YY}-E_{XX} \). The opposite situation can be observed for \(E_{AOB} \), \(E_{XOS} \) (with the maximum value reached for \(n=3 \)). For \(E_{AOY} \) the uncertainty decreases after adding the second master ball and increases when the third and fourth one.

For some of the parameters the uncertainties of results obtained with SAMBA are smaller when compared with RUMBA (\(E_{COB}, E_{AOC}, E_{COY} \)). The uncertainty of the \(E_{XOC} \) almost does not differ between all four configurations and two calibration methods used. The X-axis scale error \(E_{XX} \) (which cannot be estimated for RUMBA due
to the lack of scale bar) does not differ significantly for different number of master balls included in the SAMBA artefact. This is consistent with the calculation method of this error, which is a function of the scale bar probing and its true length, thus it is not influenced by the master balls probing.

The lowest relative uncertainty is observed for E_{XOC} and is not higher than 1%. This value is also low for E_{XOS} and does not exceed 8%. For some of the errors the relative uncertainty can reach even 640% (E_{YY}), 240% (E_{COB}) and 190% (E_{AOC}).

CONCLUSION

Two calibration methods were evaluated by calculating their results uncertainties as a function of the number of master balls used through the adaptive MCM. This uncertainty estimation method, although time-consuming, proves to be very useful when an iterative measurement model is being analyzed.

Although not all the uncertainties are becoming lower when more balls are used, using 2 master balls instead of 1 gives a significant improvement of most of the estimated uncertainties for both the RUMBA and SAMBA methods.

Unexpectedly, the results show that increasing the number of master balls used (to more than 2), although providing more probing results, may cause an increase of some uncertainty values.

The presented uncertainty estimation method can be used as one of the factors when the SAMBA and RUMBA method strategies (e.g. number and configuration of SAMBA balls, number and order of the rotary axis indexations combination) are being evaluated and optimized.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and Engineering Research Council of Canada CANRIMT Strategic Network.

REFERENCES

SIMPLE AND ADAPTIVE DISCRETE-TIME ERROR CORRECTION FOR THE ULTRA-PRECISION S-CURVE MOTION PROFILE GENERATION

Haihua Mu, Han Chen, Yu Zhu, and Chuxiong Hu
State Key Laboratory of Tribology, Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipment and Control, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

INSTRUCTIONS
In the practical point-to-point motion control field, the S-curve motion profile is one of the simplest and most widely-used motion profiles [1], [2], [3], [4], [5]. It produces S-shaped velocity profile with limited velocity, acceleration, and jerk to achieve fast movement as well as low vibration. The typical S-curve profile is shown in Figure 1. For such profile, one of key issues of improving endpoint accuracy has attracted much attention and a lot of sound works have been developed from the dynamic perspectives such as residual vibration reduction. Deviating from the dynamic methods, our paper considers a practically inevitable static position accuracy loss which is caused by digital implementing of the position profile generation in the discrete-time domain. This discrete-time error of endpoint position (DEEP) is always ignored in most applications where the sampling period is short enough to make the calculated endpoint position error much smaller than the required accuracy. However, in ultra-precision motion applications, this error may need to be carefully considered and precisely corrected. In this paper, the DEEP is studied and a simple and adaptive algorithm to correct the DEEP is presented.

PROBLEM FORMULATION
S-curve is realized using a two-step procedure:
S-curve profile planning in continuous-time domain: calculate switching time \(t_i (i = 1, \ldots, 7) \) to determine the continuous profile \(x^s(t) \), according to the given parameters: target distance \(x_d \), jerk limit \(J_{\text{lim}} \), acceleration limit \(a_{\text{lim}} \) and velocity limit \(v_{\text{lim}} \).

S-curve profile generation in discrete-time domain: round-off the switching time based on the given sampling interval \(t_{sp} \) towards the next higher or equal integer multiples of \(t_{sp} \) (so-called the ceil-round-off), or towards the last lower or equal integer multiples of \(t_{sp} \) (so-called the floor-round-off), as

\[
t_i' = \text{round-off} \left(\frac{t_i}{t_{sp}} \right) \times t_{sp},
\]

and then calculate the discrete profile sequence \(x^e(t) \) in discrete-time domain.

This time discretization always causes the aforementioned DEEP. An intuitive example is shown in Figure 2. It is seen that \(t_1 \) which is about \(3.5t_{sp} \) needs to be rounded-off towards \(4t_{sp} \) or \(3t_{sp} \), which leads to an undesired profile deformation (the position error) especially in the endpoint. This DEEP may be unacceptable in precision.
motion applications. To address this problem, an additional correction step is crucial for achieving the required accuracy.

Objective: correct DEEP.

Constraints: keep velocity, acceleration, and jerk profiles within their predefined limits.

ADAPTIVE DEEP CORRECTION ALGORITHM

In this section, we develop a quite simple and adaptive DEEP correction algorithm by using a three-step procedure:

Continuous-time Profile Planning

The plan of S-curve in continuous-time domain can be referred in [1]. The unified mathematical calculations of the S-curve are determined by $t_i (i = 1, \ldots, 7)$ as

$$
\ddot{x}(t) = \begin{cases}
J_{\text{lim}}(t - t_0) & \text{for } t_0 \leq t \leq t_1 \\
a_{\text{lim}} & \text{for } t_1 \leq t \leq t_2 \\
-J_{\text{lim}}(t - t_3) & \text{for } t_2 \leq t \leq t_3 \\
0 & \text{for } t_3 \leq t < t_4, \\
-J_{\text{lim}}(t - t_4) & \text{for } t_4 \leq t \leq t_5 \\
-a_{\text{lim}} & \text{for } t_5 \leq t < t_6 \\
J_{\text{lim}}(t - t_7) & \text{for } t_6 \leq t \leq t_7
\end{cases}
$$

(2)

Depending on the values of the parameters x^d, J_{lim}, a_{lim} and v_{lim}, the shape of the S-curve acceleration profile $\ddot{x}(\cdot)$ takes one of four cases shown in Figure 3, and the formulations of $t_i (i = 1, \ldots, 7)$ can be calculated respectively. To simplify the analytic formulations, the authors [1] have introduced three critical time durations, i.e. the max jerk duration t_j, max acceleration duration t_a, and max velocity duration t_v as shown in Figure 3. And the switching times can be determined as

$$
t_1 \triangleq t_j, t_2 \triangleq t_a, t_3 \triangleq t_j + t_a, t_4 \triangleq t_v, \\
t_5 \triangleq t_j + t_v, t_6 \triangleq t_a + t_v, t_7 \triangleq t_j + t_a + t_v,
$$

(4)

where

Case A ($x^d \leq \min\left\{ \frac{2a_{\text{lim}}J_{\text{lim}}}{J_{\text{lim}}}, \frac{2a_{\text{lim}}J_{\text{lim}}}{J_{\text{lim}}}, \frac{2a_{\text{lim}}J_{\text{lim}}}{J_{\text{lim}}}, \frac{2a_{\text{lim}}J_{\text{lim}}}{J_{\text{lim}}} \right\}$):

$$
t_1 \triangleq \left\{ \frac{x^d}{2J_{\text{lim}}} \right\}^{1/3}, t_2 \triangleq t_j, t_3 \triangleq 2t_j,
$$

(5)

Case B ($\frac{x^d}{J_{\text{lim}}} \leq \min\left\{ \frac{a_{\text{lim}}J_{\text{lim}}}{J_{\text{lim}}}, \frac{x^d}{J_{\text{lim}}}, \frac{v_{\text{lim}}}{J_{\text{lim}}} \right\}$):

$$
t_1 \triangleq \left\{ \frac{x^d}{2J_{\text{lim}}} \right\}^{1/2}, t_2 \triangleq t_j, t_3 \triangleq \left\{ \frac{x^d}{v_{\text{lim}}} \right\}^{1/2},
$$

(6)

Case C ($\frac{x^d}{J_{\text{lim}}} \leq \min\left\{ \frac{a_{\text{lim}}J_{\text{lim}}}{J_{\text{lim}}}, \frac{x^d}{a_{\text{lim}}J_{\text{lim}}}, \frac{v_{\text{lim}}}{J_{\text{lim}}}, v_{\text{lim}} \right\}$):

$$
t_1 \triangleq \frac{a_{\text{lim}}J_{\text{lim}}}{J_{\text{lim}}}, t_2 \triangleq \left\{ \frac{x^d}{a_{\text{lim}}J_{\text{lim}}} \right\}^{1/2}, t_3 \triangleq t_j + t_a, t_4 \triangleq t_v,
$$

(7)

Discrete-time Acceleration Profile Sequence Generating

In this paper, we round-off critical time durations t_j, t_a, t_v to t'_j, t'_a, t'_v, by using ceil-round-off (The reason of selection will be presented in the next section). By this, we have

$$
t'_1 \triangleq t'_j + t'_a, t'_2 \triangleq t'_a, t'_3 \triangleq t'_j + t'_a, t'_4 \triangleq t'_v, \\
t'_5 \triangleq t'_j + t'_v, t'_6 \triangleq t'_a + t'_v, t'_7 \triangleq t'_j + t'_a + t'_v.
$$

(13)

The generated discrete-time acceleration profile sequence is

$$
\ddot{x}(n) = \begin{cases}
J_{\text{lim}}(nt_{sp}) & \text{for } 0 \leq nt_{sp} \leq t'_1 \\
J_{\text{lim}}t'_1 & \text{for } t'_1 \leq nt_{sp} \leq t'_2 \\
-J_{\text{lim}}(nt_{sp} - t'_3) & \text{for } t'_2 \leq nt_{sp} \leq t'_3 \\
0 & \text{for } t'_3 \leq nt_{sp} \leq t'_4 \\
-J_{\text{lim}}(nt_{sp} - t'_4) & \text{for } t'_4 \leq nt_{sp} \leq t'_5 \\
-J_{\text{lim}}t'_1 & \text{for } t'_5 \leq nt_{sp} \leq t'_6 \\
J_{\text{lim}}(nt_{sp} - t'_7) & \text{for } t'_6 \leq nt_{sp} \leq t'_7
\end{cases}
$$

(14)

where $x^d(\cdot)$ is the discrete-time profile sequence, $t'_i (i = 1, \ldots, 7)$ is the rounded-off switching
times, and \(n \) is the serial number of the sampling time instance.

Obviously, the relation between the rounded-off profile eigenvalues \(\tilde{x}^{d}, J'_{\text{max}}, a'_{\text{max}}, v'_{\text{max}} \) and the rounded-off switching times still holds as (9)-(12), and can be given as

\[
J'_{\text{max}} = J_{\text{lim}}, \quad a'_{\text{max}} = J_{\text{lim}} \cdot t'_j, \quad v'_{\text{max}} = J_{\text{lim}} \cdot t'_a, \quad x'_{\text{max}} = J_{\text{lim}} \cdot t'_v. \tag{15}
\]

Here, the calculations of (15)-(18) are omitted.

The mathematical model of DEEP is given as

\[
\dot{\tilde{x}}^{d} = \left(t'_j t'_a t'_v - t_j t_a t_v \right) \frac{J_{\text{lim}}}{t_{\text{sp}}} \tag{19}
\]

where \(\lfloor \cdot \rfloor \) denotes the ceil-round-off function. It can be seen from (19) that DEEP is proportional to \(J_{\text{lim}} \), but has a complicated nonlinear property versus \(t_j, t_a, t_v \) and \(t_{\text{sp}} \) due to the nonlinear ceil-round-off function.

Adaptive Correcting of DEEP

To satisfy the discrete-time endpoint position accuracy, we propose an adaptive method to correct DEEP by introducing a single adaptive factor \(\xi \). This factor \(\xi \) should satisfy

\[
\xi = \prod_{i=j,a} \left(\frac{t_i}{t_{\text{sp}}} \right), \quad (i = j, a, v). \tag{20}
\]

By this factor, the acceleration profile sequence can be adaptively scaled as

\[
\ddot{x}^{c}(n) = \tilde{x}^{c}(n) \times \xi, \tag{21}
\]

where \(x^{c}(-) \) is the corrected discrete-time profile sequence. Then the discrete-time velocity and position profile sequences can be calculated by forward-direction integrating (21), as

\[
\dot{x}^{c}(n) = \sum_{k=0}^{n-1} (\ddot{x}^{c}(k) t_{\text{sp}}), \tag{22}
\]

\[
x^{c}(n) = \sum_{k=0}^{n-1} (\dot{x}^{c}(k) t_{\text{sp}}). \tag{23}
\]

In the following, two propositions are given to proof that the obtained corrected discrete-time profile sequences (21)-(23) satisfy the objective and constraints given in Section-II.

Proposition 1: The corrected DEEP noted as \(\Delta^* x^{d} \) is ideal zero, as \(\Delta^* x^{d} = 0 \).

Proof 1: From (21), we have the corrected target distance

\[
x^{ed} = x^{c}(n_f) = \xi x^{d}(n_f) = \xi x^{d}. \tag{24}
\]

Figure 4. DEEP correcting algorithm.
Proof 2: The proof is similar to the proof of Proposition 1 and is omitted here.

Discussion
The full S-curve profile generation method with DEEP correction is summarized in Figure 4. The given three-step procedure leads to an adaptive but precise correction of the endpoint position accuracy loss and the given physical limits are strictly satisfied. It also can be seen that the correcting procedure is quite simple and would be suitable for real-time industrial applications.

NUMERICAL EXPERIMENTAL RESULTS
To verify the effectiveness of the proposed DEEP correction algorithm, four configurations of parameters, which correspond to the four cases in Figure 3, are given in Table I. The sampling period is 0.4ms, and the used floating point is 64-bit.

<table>
<thead>
<tr>
<th>TABLE 1. Configurations of parameters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conf.</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td>C4</td>
</tr>
</tbody>
</table>

TABLE 2. Experimental results of profile eigenvalues

<table>
<thead>
<tr>
<th>TABLE 2. Experimental results of profile eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conf.</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>pos. error (mm)</td>
</tr>
<tr>
<td>ideal</td>
</tr>
<tr>
<td>orig.</td>
</tr>
<tr>
<td>corr.</td>
</tr>
<tr>
<td>endpoint pos. (mm)</td>
</tr>
<tr>
<td>max. vel. (m/s)</td>
</tr>
<tr>
<td>max. acc. (m/s2)</td>
</tr>
<tr>
<td>max. jerk (m/s3)</td>
</tr>
</tbody>
</table>

FIGURE 5. Profiles for C4.
Comparative experimental results of the profile eigenvalues under configurations C1-4 are summarized in Table 2, and the motion profiles of C4 is shown in Figure 5 as an example. In all cases, the proposed algorithm greatly improved the accuracy of endpoint position only with the error of less than millionth of a nanometer. And the calculated J_{max}, a_{max}, v_{max} are stay within their given physical limits J_{lim}, a_{lim}, v_{lim}.

CONCLUSION

Summary
In this paper, a method to correct the endpoint position error of reference profile caused by time discretization for the S-curve profile is proposed. By introducing an adaptive factor, the endpoint position error of the reference profile is greatly reduced. Besides, the maximal jerk, the maximal acceleration and the maximal velocity are still stay within the given physical limits. Moreover, the proposed algorithm is simple and adaptive, which is quite suitable for real-time applications.

Future Work
The results from Table 2 show that there is still some endpoint position imprecision that results from the calculation quantization error. It will be further considered in our future work.

ACKNOWLEDGMENT
This work was supported in part by the National Natural Science Foundation of China under Grant 51105226, and by the National Natural Science Foundation of China under Grant 51175296.
CORRESPONDENCE
Haihua Mu is the corresponding author (e-mail: muhh@tsinghua.edu.cn; Tel: +86 01062798293).

REFERENCES
HYBRID CONTROLLER TO COMPENSATE FOR FRICTIONS IN BALLSCREW FEEDDRIVES AT LOW AND HIGH SPEED TRACKING

Kwangje Oh1, Chun-Hong Park2, and Sung-Chong Chung1

1Hybrid System Design and Control LABoratory
School of Mechanical Engineering
Hanyang University, Seoul 133-791, KOREA
2Intelligent Manufacturing System Division
KIMM, Daejeon 305-343, KOREA

ABSTRACT
Mechanical property of a feed drive system subjected to friction effect is sensitive to their operating conditions. The static and dynamic friction models are required to reject undesirable effects by feedforward methods. Inaccurate friction models degrade tracking performance as the feed drive system has time-variant characteristics. In this paper, a hybrid controller is proposed to improve tracking performance. It is composed of the friction model based feedforward compensator and the modified Kalman filter with the inner loop. The control performance has been verified through experiments.

INTRODUCTION
Precision machinery equipped with ballscrews is widely used in the manufacturing, machine tool and semiconductor industries. Friction is very nonlinear at velocity reversals. Tracking errors due to friction deteriorate positioning accuracy regarding operating speeds. At low speed operation, the friction force is a hysteresis function of position in the presliding regime. For high speed motion, the friction is a nonlinear function of velocity in the sliding regime.

To compensate for friction forces, model-based feedforward compensators, adaptive control, disturbance observers (DOB) and repetitive control have been studied in linear servos \cite{1~3}. For good feedforward control using the control structure shown in Fig. 1, exact estimation of friction is required first. However, inaccurate friction estimation degrades control performance. Unmodeled friction components and the hysteresis change degenerate the control performance as well. An inner loop controller with torque estimators shown in Fig. 2 was applied for the disturbance rejection \cite{4}.

HYBRID CONTROLLER

At very low speed, friction of the presliding regime depends upon junction deformation. It consists of time varying hysteresis loop. Dynamic friction compensation through the feedforward controller is required. On the other hand, Coulomb and viscous frictions are dominant at the high speed region. Static friction model with Coulomb, viscous and Strubeck effects should be identified accurately. Then, they should be compensated completely through the controller in the low and high speed regions.

In this paper, the static and dynamic friction models are identified at the whole speed range. Generalized Maxwell-slip model \cite{5} is used for the dynamic friction model. A hybrid controller composed of the model based feedforward friction compensator and the model free internal loop controller linked with the modified Kalman filter shown in Fig. 3 is proposed for the friction compensation in ballscrew servos. For accurate identification of friction models at low and high speed regions effectively, a special experimental setup shown in Fig. 4 have been fabricated. An automatic friction parameter gathering linked with the hybrid controller is devised through interface between the xPC target and the experimental setup. In addition, accurate servo modeling is conducted for better friction identification. Performance of the proposed hybrid friction controller is verified at low/high-speed tracking and velocity reversals.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig1.png}
\caption{Model based feedforward friction control system.}
\end{figure}
FIGURE 2. Observer based inner loop friction control system.

FIGURE 3. Hybrid friction control system with modified Kalman filter.

FIGURE 4. Experimental setup of the ballscrew servo.

EXPERIMENTAL SETUP
Fig. 4 shows a ballscrew-driven feeddrive servo. Torque sensor is mounted between the servo motor and the ball screw to measure friction torque generated at the feeddrive. Double-nut type ball screw with shaft diameter 36mm and lead 10mm is used for experiments. Linear encoder with 20nm resolution is installed to observe dynamic characteristics in presliding regime motion. Real-time xPC Target is interfaced to control the experimental setup as shown in Fig. 5.

FIGURE 5. xPC-target based servo system.

MODIFIED KALMAN FILTER COMPENSATOR
In the position control servo, tracking error comes from friction torque. It is modeled as a disturbance. Using state variables, a discrete state equation is obtained as follows:

\[
x_{k+1} = Ax_k + w_k \\
z_k = Hx_k + \kappa_k
\]

(1)

Defining the tracking error and the estimated friction torque observed through the Kalman filter, following state equation is obtained

\[
[Err]_{k+1} = \begin{bmatrix} 1 & \Delta t \\ B_{eq} & M_{eq} \end{bmatrix} [\dot{\alpha}]_{k} + \begin{bmatrix} 0 \\ w_k \end{bmatrix}
\]

(2)

where \(Err\), \(\dot{\alpha}\), \(\alpha\) and \(w\) are tracking error, estimated torque, acceleration and white noise, respectively. \(\Delta t\), \(B_{eq}\) and \(M_{eq}\) are sampling time, equivalent viscous and mass of the system, respectively. Measured output is given by

\[
z_k = [1 \\ 0] [\dot{\alpha}]_{k} + \kappa_k
\]

(3)

where \(z\) and \(\kappa\) are measured velocity and noise.
In order to observe frictional torque of the servo, modified Kalman filter (MKF) [6] is applied to estimate the friction torque as follows:

\[
\dot{x}_k^- = A \dot{x}_{k-1}^- \\
P_k^- = AP_{k-1}^+ A^T + Q \\
K_k = P_k^+ H^T \left(HP_{k+1} H^T + R \right)^{-1} \\
\dot{x} = \dot{x}_k^- + K_k \left(z_k - H \dot{x}_k^- \right) \\
P_k = P_k^- - K_k H P_k^-
\]

(3)

where \(P \) and \(K \) are error covariance matrix and Kalman gain. Superscripts '^' and '-' are estimated and predicted values.

FRICITION MODELS

Friction occurs from relative motion between two surfaces and has strong nonlinearity. It divides into the static friction generated at the sliding regime and the dynamic friction generated at the presliding regime.

Static Friction Model

Static friction model is described by a function of velocity in the sliding regime as follows:

\[
F(v) = \text{sign}(v) \left(F_c + (F_s - F_c) \exp \left(-\frac{v}{V_s} \right) \right) + F_v \cdot v
\]

(4)

where \(F_c \), \(F_s \), \(V_s \), \(\delta \) and \(F_v \) are Coulomb friction, static friction, Striebeck velocity, Striebeck shape factor and viscous friction coefficients, respectively.

Generalized Maxwell-Slip Model (GMS)

Lampaert et al. [5] proposed the Generalized Maxwell-Slip (GMS) friction model. It is a further development of the Leuven model to account for hysteresis function in the presliding regime. It is composed of Striebeck curve for constant velocity, hysteresis function with non-local memory in the pre-sliding regime and frictional memory in the sliding regime. Its friction force is given by

\[
F_i(t) = \sum_{i=1}^{N} \dot{F}_i(t) + F_v \cdot v(t)
\]

(5)

Elementary friction force of a slip-block \(F_i \) behaves a dynamic spring model with stiffness during slipping and sticking motion. \(F_v \) means viscous term. During sticking, elementary friction force is given by

\[
\frac{dF_i}{dt} = k_i v
\]

(6)

In the sliding regime, \(F_i \) is given by

\[
\frac{dF_i}{dt} = \text{sgn}(v) \cdot C \left(\alpha_i - \frac{F_i}{S(v)} \right)
\]

(7)

\(\alpha_i \) is the normalized sustainable maximum friction force in the pre-sliding regime, \(S(v) \) is the Striebeck curve, and \(C \) is the constant parameter following the Striebeck effect in the sliding regime.

FRICTION MODEL IDENTIFICATION

To identify parameters of the friction models, static experiment is performed at each constant velocity as shown in Fig. 6. Experiments for GMS model are conducted by using a sinusoidal signal with 0.025Hz and amplitude of 0.007mm. Fig. 7 shows measured data and fitting results for the GMS model. Identified parameters are shown in Tables 1 and 2.

![FIGURE 6. Measured friction and static model.](image1)

![FIGURE 7. Measured friction and GMS model.](image2)
EXPERIMENTAL RESULTS

Sinusoidal signals with frequency 0.025Hz and amplitude of 1, 0.1 and 0.05mm are applied to verify control performance as reference inputs. No compensation (NC), GMS friction compensation (GMSC), modified Kalman filter compensation (MKFC), and hybrid control models are applied for comparisons. Figures 8 ~ 10 show experimental results for NC, GMSC and MKFC cases. Among them, the GMSC and MKFC provides good tracking performance at slow motions where the presliding friction is dominant. Fig. 11 shows experimental results for hybrid controller. Using both feedforward and inner loop control with GMS friction model, tracking performance has better performance than other controllers in slow and high speed motions. Table 3 shows summary of friction compensation results.

TABLE 1. Static model: friction parameters.

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
</tr>
<tr>
<td>F_c</td>
<td>0.9897 Nm</td>
</tr>
<tr>
<td>F_i</td>
<td>1.5204 Nm</td>
</tr>
<tr>
<td>F_s</td>
<td>0.00067 Nm</td>
</tr>
<tr>
<td>V_s</td>
<td>2.8511 m/s</td>
</tr>
<tr>
<td>δ</td>
<td>0.7497</td>
</tr>
</tbody>
</table>

TABLE 2. GMS model: friction parameters.

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>k_1</td>
</tr>
<tr>
<td></td>
<td>k_2</td>
</tr>
<tr>
<td></td>
<td>k_3</td>
</tr>
<tr>
<td></td>
<td>k_4</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

FIGURE 8. Tracking performance regarding $\sin(\pi t / 20)$ (mm) reference input.

(a) No Compensation
(b) GMS Friction Model Compensation
(c) Modified Kalman Filter Compensation

FIGURE 9. Tracking performance regarding $0.1 \sin(\pi t / 20)$ (mm) reference input.

(a) No Compensation
(b) GMS Friction Model Compensation
(c) Modified Kalman Filter Compensation

FIGURE 10. Tracking performance regarding $0.05 \sin(\pi t / 20)$ (mm) reference input.

(a) No Compensation
(b) GMS Friction Model Compensation
(c) Modified Kalman Filter Compensation

TABLE 3. Summary of friction compensation results.

<table>
<thead>
<tr>
<th>Controller</th>
<th>Tracking Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>Poor</td>
</tr>
<tr>
<td>GMSC</td>
<td>Good</td>
</tr>
<tr>
<td>MKFC</td>
<td>Excellent</td>
</tr>
<tr>
<td>Hybrid</td>
<td>Best</td>
</tr>
</tbody>
</table>

244 2014 ANNUAL MEETING VOLUME 59
CONCLUSIONS

Hybrid controller combining the GMS friction model feedforward and the inner loop MKFC has been designed and tested on the ballscrew driven servo. By using dynamic and static friction compensation in the presliding and sliding regimes through the hybrid controller, better tracking performance in slow and high speed motions has been obtained than other feedforward and feedback controllers. Using the inner loop control characteristics of the MKFC, uncertainty due to inaccurate modeling of the servo and frictions has been improved as well. Experiments have confirmed the tracking performance of the devised hybrid controller.

TABLE 3. Comparisons of maximum tracking errors. (Unit: μm)

<table>
<thead>
<tr>
<th>Amplitude</th>
<th>1000</th>
<th>100</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>24</td>
<td>34</td>
<td>20</td>
</tr>
<tr>
<td>GMSC</td>
<td>11</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>MKFC</td>
<td>11</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Hybrid Controller</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENT

This research is supported by KIMM, and Ministry of Science, ICT and Future Planning, Korea.

REFERENCES

IDENTIFICATION OF STATIC AND DYNAMIC FRICTIONS IN BALLSCREW SERVOS

Kwangje Oh¹, Chun-Hong Park², and Sung-Chong Chung¹
¹ Hybrid System Design and Control LABoratory
School of Mechanical Engineering
Hanyang University, Seoul 133-791, KOREA
² Intelligent Manufacturing System Division
KIMM, Daejeon 305-343, KOREA

ABSTRACT
Frictions in mechanical systems deteriorates tracking performance. This friction induces unwanted oscillation such as hunting, steady-state errors and limit cycles. To reduce and remove these unstable effects, accurate friction models including both static and dynamic characteristics are required for feedforward compensators. In this paper, accurate identification processes of static and dynamic friction models such as Dahl, LuGre and Generalized Maxwell-Slip (GMS) are described. Experiments are performed on ballscrew servos.

INTRODUCTION
In precision servos, friction is described with presliding and sliding regimes. Adhesive force is dominant at junctions in the presliding regime. Friction depends upon displacement rather than velocity. As the displacement increases, all asperity junctions are broken. Friction force becomes a function of sliding velocity. A static friction model composed of Coulomb, viscous and Stiebeck frictions applies to the sliding regime. A dynamic friction model consists of stick-slip, friction lag, break-away, presliding and Stiebeck effects. Generalized Maxwell-Slip (GMS), Dahl and LuGre models have used for describing accurate friction of servos [1-4].

Friction in machine tool feeddrives and precision machinery generates unwanted errors, hunting and limit cycles. To reduce friction effect, friction force should be modeled accurately and then be compensated with feedforward and/or internal loop controller. In this paper, accurate and quick identification methodology of static and dynamic frictions in the ballscrew servo is studied.

FRICTION MODELS
Parameters required for the static and dynamic friction models in the ballscrew driven feeddrive system are as follows:

Static model
Static model describes steady-state behavior in the sliding regime, and only depends on the velocity \(v \). Friction force \(F_f \) is given by

\[
F_f(v) = \text{sign}(v) \left(F_c + (F_s - F_c) \exp\left(-\frac{v}{V_s}\right) \right) + \sigma_2 \cdot v
\]

where \(F_c, F_s, V_s, \delta \) and \(\sigma_2 \) are Coulomb friction, static friction, Stribeck velocity, Stribeck shape factor and viscous friction coefficients, respectively.

Dahl model
Eq. (2) is the Dahl model [3] for representing junction deflections in the presliding regime.

\[
\frac{dF_f}{dx} = \sigma \left(1 - \frac{F_f}{F_c} \text{sgn}(\dot{x}) \right) \text{sgn}\left(1 - \frac{F_f}{F_c} \text{sgn}(\dot{x}) \right)
\]

where \(F_f, \sigma, F_c \) and \(n \) are friction force, initial stiffness at the velocity reversal, Coulomb friction and shape of hysteresis, respectively.

LuGre model
Canudas de Wit et al. [4] added average deformation of contacting bristles at the junction to the Dahl model. It combines the presliding behavior of the Dahl model with steady-state friction characteristics in the sliding regime. Friction force as a function of the state variable \(z \) and the velocity \(v \) is given by

\[
F_f = \sigma_0 \dot{z} + \sigma_1 \frac{dz}{dt} + \sigma_2 v
\]

where \(F_f, \sigma_0, \sigma_1 \) and \(\sigma_2 \) are friction force, average bristle stiffness, micro-viscous friction
coefficient and viscous friction coefficient, respectively. Average deflection of the bristles z is given by

$$\frac{dz}{dt} = v - \sigma_s \frac{|v|}{s(v)} z$$ \hspace{1cm} (4)

At steady state, the Stribeck effect is given by

$$s(v) = F_c + (F_s - F_c) \exp\left(-\frac{v}{V_s}\right)$$ \hspace{1cm} (5)

where F_c, F_s, V_s and δ are Coulomb friction, static friction, Stribeck velocity and Stribeck shape factor, respectively.

Generalized Maxwell-Slip model

Al-Bender et al. [1] proposed the generalized Maxwell-Slip (GMS) friction model given by

$$F_i(t) = \sum_{i=1}^{N} F_i(t) + \sigma_2 v(t)$$ \hspace{1cm} (6)

Friction force is formulated as a summation of N elementary state models plus an extra viscous term. Dynamic behavior of the GMS model in the presliding region is given by

$$\frac{dF}{dt} = k_i v$$ \hspace{1cm} (7)

In the sliding region, the state equation is given by

$$\frac{dF}{dt} = \text{sgn}(v) \cdot C \left(\alpha_i - \frac{F_i}{S(v)} \right)$$ \hspace{1cm} (8)

BALLSCREW SERVO

Fig. 1 shows a ballscrew servo for parameter identification of the friction models. Fig. 2 shows a schematic diagram of the experimental setup. Driving torque of the servo motor is measured through the servo pack. High-resolution 20nm resolution linear encoder is applied for hysteretic behavior measurement in the presliding regime.

FRICTION IDENTIFICATION EXPERIMENTS

Friction depends upon surface asperity, materials of the contact bodies, displacement and relative velocity of the bodies, and lubricant. To measure and identify static and dynamic friction models, two kinds of experiment called the constant velocity and the breakaway measurements are conducted on the ballscrew servo.

Breakaway Experiment

Static friction is the friction when two bodies are sticking. Force required to overcome the static friction and initiate motion is called the breakaway force. To identify this sticking phenomenon in ballscrew servos, breakaway experiments are required by selection of the velocity control mode first. Then, to eliminate influence of the dwell time effect, a warm up procedure is performed for a minute. After the warm up procedure, the servo pack is switched to the torque control mode. Then, the breakaway torque is measured in the open loop state where a ramp force is applied to the rest servo system.

Fig. 3 shows measured breakaway torque and presliding behavior when the applied torque level is less than 2 Nm. To measure dynamic friction terms in the presliding regime, sinusoidal excitation is required below the breakaway torque level. To minimize inertia effect and to obtain a hysteretic function of displacement, the frequency and amplitude of the sinusoidal input is applied carefully. Fig. 4 shows a measured hysteretic friction and displacement behavior in the presliding regime.
Constant Velocity Experiment
A constant velocity experiment is performed to identify parameters of the static friction model during the constant velocity motion. Control mode of the servo pack is selected to the velocity control mode. Then, the servo system is driven to measure friction torque generated at the servo motor during each constant velocity input from low to high speed.

IDENTIFICATION RESULTS OF FRICTION MODELS
Parameters of the static friction model are identified through the constant velocity experiment. Fig. 5 shows the measured and curve fitted static friction model data. Table 1 lists identified static friction model parameters.

In addition, parameters for dynamic friction models are identified from the hysteresis curve. Fig. 6 shows identification results of dynamic friction models with 4 slip-blocks. Table 2 lists identified dynamic friction parameters.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_c</td>
<td>0.9897 Nm</td>
</tr>
<tr>
<td>F_s</td>
<td>1.5204 Nm</td>
</tr>
<tr>
<td>F_r</td>
<td>0.00067 Nm</td>
</tr>
<tr>
<td>V_s</td>
<td>2.8511 mm/s</td>
</tr>
<tr>
<td>δ</td>
<td>0.7497</td>
</tr>
</tbody>
</table>
FIGURE 7. Control system with a feedforward friction compensator.

FRICTION COMPENSATION
To validate performance of the friction models, sinusoidal inputs with amplitude of 1, 0.1 and 0.05mm, and with frequency of 0.025Hz are applied to the servo system. Fig. 7 shows a feedback control structure with a feedforward friction compensator. Gains of the PI controller are turned manually.

EXPERIMENTAL RESULTS
Figures 8-10 show position tracking errors for cases with and without friction feedforward compensators. Using the feedforward friction compensators, better tracking performance has been obtained. Table 3 lists root mean square (RMS) position errors according to each friction model. In case of the static friction model, tracking performance is degraded a lot when the input amplitudes are 0.1 and 0.05mm. These are induced from dynamic friction effect at the presliding regime. It is confirmed that the GMS model shows the best tracking performance.

TABLE 2. Dynamic friction model parameters.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_1</td>
<td>772.06 N</td>
<td>α_1</td>
<td>0.594</td>
</tr>
<tr>
<td>k_2</td>
<td>520.38 N</td>
<td>α_2</td>
<td>0.400</td>
</tr>
<tr>
<td>k_3</td>
<td>81.30 N</td>
<td>α_3</td>
<td>0.063</td>
</tr>
<tr>
<td>k_4</td>
<td>7.90 N</td>
<td>α_4</td>
<td>0.006</td>
</tr>
<tr>
<td>C</td>
<td>400 Nμm/s</td>
<td>δ</td>
<td>1.720</td>
</tr>
<tr>
<td>σ_2</td>
<td>360.28 Ns</td>
<td>σ_0</td>
<td>136 N</td>
</tr>
<tr>
<td>σ_1</td>
<td>0.0415 Ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 8. Tracking performance regarding $\sin(\pi t/20)$ (mm) reference input.
FIGURE 9. Tracking performance regarding $0.1 \sin(\pi t/20)$ (mm) reference input.

(d) LuGre Model Compensation

(e) GMS Model Compensation

FIGURE 10. Tracking performance regarding $0.05 \sin(\pi t/20)$ (mm) reference input.

TABLE 3. RMS position tracking errors for 0.1Hz sinusoidal input. (Unit: μm)

<table>
<thead>
<tr>
<th>Amplitude</th>
<th>No Compensation</th>
<th>Static Model</th>
<th>Dahl Model</th>
<th>LuGre Model</th>
<th>GMS Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>10.92</td>
<td>3.72</td>
<td>6.63</td>
<td>5.00</td>
<td>2.79</td>
</tr>
<tr>
<td>100</td>
<td>11.15</td>
<td>7.19</td>
<td>7.66</td>
<td>7.23</td>
<td>5.85</td>
</tr>
<tr>
<td>50</td>
<td>5.50</td>
<td>10.22</td>
<td>3.13</td>
<td>2.98</td>
<td>2.16</td>
</tr>
</tbody>
</table>

CONCLUSIONS
Identification procedures of static and dynamic friction models in the ballscrew servo are proposed in this paper. To verify the accuracy of the identification processes, a feedforward friction compensator has been applied to the position tracking servo. In the presliding regime, static model has much error due to the overcompensation of the friction torque. To improve tracking performance at low speed and velocity reversal, dynamic friction models are required. It is confirmed that the GMS model shows the best performance than other friction models.

ACKNOWLEDGEMENT
This research is supported by KIMM, and Ministry of Science, ICT and Future Planning, Korea.

REFERENCES
DEVELOPMENT OF SIMPLE POWER SUPPLYING SYSTEM IN MULTI-WIRE EDM SLICING METHOD

Yasuhiro Okamoto¹, Akitoshi Suzuki¹, Atsushi Kimura¹, Akira Okada¹, Haruya Kurihara², and Masataka Kido²
¹ Nontraditional Machining Laboratory
Okayama University
Okayama, Japan
² EDM R&D Division
Makino Milling Machine Co., Ltd.
Kanagawa, Japan

INTRODUCTION

Monocrystalline and polycrystalline silicon are widely used in semiconductor and photovoltaic industries. In addition, silicon carbide and gallium nitride have been expected as a material of power semiconductor. These materials are hard and brittle, and it is required to slice these materials efficiently and accurately. A multi-wire saw method is widely applied to slicing of these ingots. However, this method has some problems such as cracks generated on sliced surface and a large kerf loss. On the other hand, a wire EDM method has a possibility to reduce a kerf loss, since a thin wire electrode can be used owing to its small machining force without mechanical contact. In this method, the removal of material can be performed by electrical discharge pulses regardless of material’s hardness. Therefore, a multi-wire EDM slicing method was developed to overcome problems of a multi-wire saw method in order to increase the efficiency and the accuracy of slicing with wire EDM technologies [1]. It was reported that a multi-wire EDM slicing method was applied for the manufacturing process of silicon carbide [2, 3], and a multi-slicing with 40 wires was also discussed [4]. Moreover, a wire electrode with a track-shaped section could be expected to reduce a kerf loss even in the case of thin wire electrode [5, 6]. However, a multi-wire EDM slicing equipment becomes very complicated, when many power supplying units are arranged by corresponding the number of processing wire electrode. In an individual power supplying method as shown in Figure 1 (a), the same number of conductivity piece set are required with increasing the number of processing wire electrode. This complicated setup leads to a high initial cost, difficulties of the preparation and a heavy load on the maintenance for a multi-wire EDM slicing equipment.

Therefore, a group power supplying method as shown in Figure 1 (b) is newly proposed to satisfy both a simple equipment and a high efficiency slicing. In this method, discharge pulses to all processing points are supplied by only one conductivity piece set, even if the number of processing wire electrode increased. A resistance of wire electrode between a conductivity piece and a processing point could play as a limiting resistance of EDM power supplying unit to control a peak current of a discharge pulse. In this study, a newly proposed group power supplying method was discussed, and its fundamental characteristics were experimentally investigated.

EXPERIMENTAL METHOD

Figure 2 schematically shows the wire driving part of the multi-wire EDM slicing equipment. The wire sub guides were prepared at the nearest sides to workpiece to stabilize positions of wire electrodes. Conductivity pieces for supplying discharge pulse to wire electrodes were set at the positions between wire guides and wire sub guides in the case of individual power supplying method. On the other hand, conductivity pieces were set at outer positions of lower wire
FIGURE 2. Schematic diagram of wire driving part in multi-wire EDM slicing equipment.

TABLE 1. Machining conditions.

<table>
<thead>
<tr>
<th></th>
<th>Monocrystalline silicon (\rho_s = 2 - 3 \ [\Omega \cdot \text{cm}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workpiece</td>
<td></td>
</tr>
<tr>
<td>Wire electrode</td>
<td>Brass coated steel (\phi = 120 \ [\mu\text{m}])</td>
</tr>
<tr>
<td>Wire tension</td>
<td>(W_T = 9 \ [\text{N}])</td>
</tr>
<tr>
<td>Polarity</td>
<td>Electrode ([-])</td>
</tr>
<tr>
<td>Wire speed</td>
<td>(W_s = 700 \ [\text{m/min}])</td>
</tr>
<tr>
<td>Open circuit voltage</td>
<td>(u_{iH} = 300 \ [\text{V}]) (u_{iL} = 120 \ [\text{V}])</td>
</tr>
<tr>
<td>Discharge duration</td>
<td>(t_e = 5 \ [\mu\text{s}])</td>
</tr>
<tr>
<td>Duty factor</td>
<td>(\tau = 20 %)</td>
</tr>
<tr>
<td>Dielectric working fluid</td>
<td>Deionized water (\rho_w = 25 \ [\text{kΩ \cdot cm}]) (\theta_f = 20 \ [\text{°C}])</td>
</tr>
</tbody>
</table>

Figure 3 shows the change of removal rate per one wire electrode and total peak-discharge-current with the number of processing wire electrodes, when one conductivity piece was used with both the individual and the group power supplying methods. In the case of individual power supplying method with one conductivity piece set as shown in Figure 3 (a), the total peak-discharge-current to a workpiece must be constant in order to avoid the breakage of wire electrode. If the total energy increased with increasing the number of processing wire electrodes in order to keep slicing efficiency, a discharge current concentrated in one wire electrode, which resulted in the breakage of wire electrode due to excessive high peak discharge-current. Therefore, the removal rate per one wire electrode decreases.
electrode can but decrease with increasing the number of processing wire electrodes under a constant peak-discharge-current condition in the individual power supplying method.

On the other hand, in the group power supplying method as shown in Figure 3 (b), the total peak-discharge-current to a workpiece could be increased with increasing the number of processing wire electrodes without the breakage of wire electrode. This phenomenon indicates that the energy of electrical discharge pulse could be homogeneously distributed to each processing wire electrode, although the energy of electrical discharge pulse increased with only one conductivity piece set. Therefore, the group power supplying method could keep similar removal rate with only one conductivity piece set in a multi-wire EDM slicing method, even if the number of processing wire electrodes increased.

Figure 4 shows comparison of discharge current waveform area and total removal rate, when single, double and triple wire EDM slicing were carried out with the group power supplying method. The area of discharge current waveform S_1 and the removal rate V_{s1} with single wire EDM slicing was defined as a standard value, and the total area of discharge current S_n and the total removal rate V_{sn} with double and triple wire EDM slicing were divided by that with single wire EDM slicing. Their ratio were calculated in Figure 4. Even in the case of group power supplying method, the removal rate per one wire electrode slightly decreased with increasing the number of processing wire electrodes, as mentioned in Figure 3. Because the total peak-discharge-current could not be increased with similar increasing ratio to the number of processing wire electrodes. When the ratio of total area of discharge current S_n and total removal rate V_{sn} was compared, the total removal rate V_{sn} proportionally increased with increasing the total area of discharge current S_n, as shown in Figure 4.

Kerfs for single, double and triple wire EDM slicing are shown in Figure 5, when the group power supplying method was used. As shown in the figure, almost constant kerf widths could be obtained at each processing point, even if the number of processing wire electrodes increased. Normally, a gap distance increases with increasing a total peak-discharge-current in the case of individual power supplying method with one conductivity piece set. On the other hand, the group power supplying method could keep a constant gap distance between a wire electrode and a workpiece, although the total peak-discharge-current to a workpiece increased with one conductivity piece set. This result clarified that input energies were almost constant at each processing wire electrode, and electrical discharge pulses could be homogeneously distributed to each processing wire electrode in the group power supplying method, although the number of conductivity piece set was one for three processing wire electrodes.

Figure 6 shows the comparison of power supplying method in multi-wire EDM slicing with one conductivity piece, when the energy E is suitable electrical discharge energy with sufficient large removal rate without the breakage of wire electrode for one processing wire electrode. In the individual power supplying method as shown in Figure 6 (a), when the total input energy is $3E$, almost all input energy concentrates one processing wire electrode, which is the first start point of electrical discharge. It is considered that the kerf width increases due to a large discharge...
pulse energy, which leads to the risk of wire electrode breakage. Therefore, it is difficult to keep the similar removal rate per wire electrode in the individual power supplying method with one conductivity piece, when the number of processing wire electrodes increased. On the other hand, the group power supplying method with one conductivity piece can distribute the energy of electrical discharge to each processing wire electrode homogeneously as shown in Figure 6 (b), since the sufficient long wire electrode works as a resistance of electrical discharge circuit. Therefore, it is expected that a similar removal rate per wire electrode could be kept with increasing the energy of electrical discharge pulse by using the group power supplying method with one conductivity piece.

Figure 7 shows the change of peak-discharge-current with the distance between a conductivity piece and a processing point. This proportional variation of the peak-discharge-current also indicates that a sufficient long wire electrode could play as a limiting resistance of electrical discharge circuit to control a discharge current in the group power supplying method.

Summary

In this study, a newly proposed group power supplying method was discussed in a multi-wire EDM slicing technique. The total peak current of electrical discharge pulse to a workpiece increased with increasing number of processing wire electrodes without an enlargement of kerf width, and the energy of electrical discharge could be homogeneously distributed to each processing wire electrode without the breakage even by using only one conductivity piece set. The discharge current could be controlled by adjusting the length of wire electrode between the conductivity piece and the processing point. Therefore, it is expected that a newly developed group power supplying method can simplify a construction of multi-wire EDM slicing equipment only by one conductivity piece without a large reduction of removal rate.

REFERENCES

INSTRUCTIONS
Control and dynamic system simulator gives a chance to system designers to estimate what kind of dynamic performance can be achieved from design parameters and selected devices without doing real experiments. Initially our simulator was built only with common Simulink blocks to model dynamic components in control systems of machinery equipment. To cover a number of commercial mechanical and electrical parts, a set of database for motors, drives, bearings, etc. was also developed and included in our simulator. To describe 6 degrees-of-freedom motion of a moving table, the equations of motion can be derived from Figure 1 by Lagrangian equation.

Even though a state-space representation of the 6 d.o.f. equations of motion of the moving table in Simulink is handy, the derivation is lengthy and complicated when it is assumed that sensor and motor locations are arbitrary and there are four horizontal and four vertical spring-damper rollers at each corner of the table as shown in the figure. The situation gets worse when mechanical models of multi-axis machine tools need to be built. Furthermore the maintenance and expandability of the equations of motion are quite poor. Thus, the equations of motion represented by common Simulink blocks were dropped out from our simulator and mechanical parts were modeled by SimMechanics blocks. Designers can model the multibody system using blocks representing bodies, joints, constraints, and force elements without deriving the equations of motion for the complete mechanical system. Using SimMechanics, we successfully extend the capability of our simulator to handle multi-axis machine tools. As a demonstration, we present a dynamic model and simulation result of a 4-axis machine tool in this paper.

A 4-AXIS MACHINE TOOLS AND ITS MODEL
Figure 2 shows the 4-axis machine tools and its solid model. All axes in the 4-axis machine tool have hydrostatic bearings. The C-axis is driven by a direct drive motor and other axes adopt linear motors.

To make the moving table have 6 d.o.f. motion, a mechanical guide block in the vertical direction is modeled as shown in Figure 3 using an in-plane joint, a prismatic joint, a spherical joint, and a spring-damper. Note that a moving table has eight sets of blocks shown in Figure 3: four sets for the vertical direction and additional four sets for the horizontal direction. A busing joint is used to model a rotational axis. The bushing joint has three translational and three rotational degrees and it allows unconstrained, combined 3D translation and rotation.
When a linear axis modeled by SimMechanics blocks, was compared with the equations of motion represented by a state-space block, it was found that the outputs from two models produced less than 0.01% difference in their values in our test. The SimMechanics model for the 4-axis machine tool’s mechanical moving parts is shown at Figure 4. As expected, the Z-axis is stacked on top of the X-axis and the C-axis is on the Y-axis. Other configurations of multi-axis machine tools can be easily modeled in this way. Simple copy-and-paste can produce different multi-axis machine tool models.

Other model blocks for motors, motor drives, and a controller are connected to the SimMechanics multi-axis mechanical model. The whole model of the 4-axis machine tool was simulated and some of its outputs are shown in Figure 5. In Figure 5, the output from the X-axis was compared with the measured experimental data. The simulation results matches well with the experimental data. The circular response consisted of X- and Y-axis motions shows good agreement between the simulation and the experiment.

A COMMERCIAL MACHINE TOOL AND ITS MODEL
To confirm the utility of the modeling method, experiments were carried out with respect to the other machine tool. Figure 6 shows the commercial 3-axis machine tool (Doosan Infracore NX 6500 II) and its solid model. This machine controlled by commercial CNC controller (Fanuc 31i) and all axes in the machine tool have linear motion guides and servo motors.

The SimMechanics model for the 3-axis machine tool’s mechanical moving parts is shown at Figure 7.

The whole model of the 3-axis machine tool was simulated and some of its outputs are shown in Figure 8. In Figure 8, the step response from the
X-axis was compared with the measured experimental data. The simulation results matches well with the experimental data.

FIGURE 7. Mechanical system model for the commercial machine tool using SimMechanics blocks.

FIGURE 8. Step response comparison of simulation and experiment.

A LEAD SCREW DRIVEN 2-AXIS STAGE MODEL

A 2-axis XY stage which has ball screws and DC servo motors were built and experiments were carried out. Figure 9 and Figure 10 are XY stage and its SimMechanics model, respectively and Figure 11 and 12 are experimental results. The experimental results show that SimMechanics model for the XY stage is quite good matches.

FIGURE 9. Step response comparison of simulation and experiment.

FIGURE 10. SimMechanics Model for the XY stage.

FRF response comparison of Y-axis

FIGURE 11. FRF response comparison of the XY stage.

FIGURE 12. Circular interpolation response comparison of the XY stage.
CONCLUSIONS
We presented models and simulation results of multi-axis machine tools. The complete multi-axis mechanical parts were modeled using blocks representing joints and constraints from SimMechanics and other parts are modeled by common Simulink block. Experiments were carried out for a 4-axis machine tool and for a commercial machine tool and for a XY stage. In all 3-case, simulation and experimental results showed good matches. The physical modeling approach for multi-axis machine tools is expandable to other configurations with ease of use.

REFERENCES
MODELING AND PARAMETER IDENTIFICATION OF GEOPHONE

Aisikaer Yasen1,2,3, Wensheng Yin1,2,3, and Yu Zhu1,2,3

1Department of Mechanical Engineering, Tsinghua University, Beijing, China
2State Key Laboratory of Tribology, Tsinghua University, Beijing, China
3Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing, China

INSTRUCTIONS
Accurate absolute velocity sensing is critical for active vibration isolation (AVI) purposes [1]. Geophone is the most commonly used absolute velocity sensor in the field of AVI, where geophone resonance frequency should be as low as possible in order to measure low frequency vibration. Geophones with low resonance frequency always have large dimensions and need external power supply, which are not cost-effective. The resonance frequency of commercially available geophone that suitable for AVI application is typically at 4~12Hz. Therefore extension of geophone linear response range at low frequency is necessary, which is based on accurate model and parameters of geophone [2]. Manufacturers provide geophone parameters with an error interval, which makes parameter identification of geophone necessary. Shake-table method is one of the classic identification techniques, which needs a collocated, previously identified velocity sensor as reference sensor [3]. And it needs mechanical exciting equipment that limits its application in the field. Masahiro [4] and Frank [5] use impedance method to identify the parameters of a geophone. But geophone is a mechatronics system, thus injecting current can’t excite its mechanical characteristics completely, which make impedance method less accurate than Shake-table method [3].The step release method is a simple, fast and very accurate method for calibrating geophones when used with a system identifier [6].But its precision is low when the geophone has high damping ratio [7].

In this paper both electromagnetic and mechanical principles of geophone are described and the geophone is modeled as a second order system. A new method for parameter identification of geophone is introduced. In the proposed parameter identification method the geophone to be identified and an accelerometer, which has linear frequency response down to DC, placed closely enough together that it can be assumed that they record the same ground motion. With an accelerometer used as reference sensor the geophone frequency response to input acceleration can be measured, which is the key to the proposed parameter identification method. Geophone parameters can be identified by curve fitting.

GEOPHONE MODELING
Geophone is a highly sensitive electromagnetic velocity sensor. Generally, a geophone consists of a permanent magnet, a coil and a mechanical spring. There are two topologies of geophone, i.e., moving coil and moving magnet. This paper concerned with moving coil geophone. When the ground vibrates, the motion of the coil with respect to the magnet induces an EMF in the coil, which is proportional to the absolute velocity to be measured above the resonance frequency of the geophone.

Mechanical principles
As is shown in Figure 1, a geophone can be considered as a mass-spring-damper vibration system with single degree of freedom in its measurement axis.

![Geophone mechanical model](image)

FIGURE 1: Geophone mechanical model

The equation of geophone mechanical part is given by

$$m_g \ddot{x}_g = -c_g (\dot{x}_g - \dot{x}_h) - k_g (x_g - x_h) + F$$ \hspace{1cm} (1)

Where x_h and x_g are the vibration displacement of the ground and the coil respectively, F stands for Lorentz force generated by the induction current across the coil.

Electromagnetic principles
When the geophone housing accelerates with ground motion, the coil moves relative to the fixed permanent magnet that fixed to the
geophone housing, and induces a voltage across the coil, which is proportional to the relative velocity between the coil and the permanent magnet

\[U = G(\dot{x}_g - \dot{x}_p) \]

(2)

Where \(G \) is the constant of proportionality which is the generator constant that determined by geophone coil characteristics.

\[\omega_g = \sqrt{\frac{k_g}{m_g}} \]

(7)

Geophone manufacturers usually provide open-circuit parameters. With a damping resistor \(R \) connected to the output leads of geophone, the damping ratio and the sensitivity constant change.

\[G_g = \frac{R}{R_g + R} \]

(8)

\[\zeta_g = \zeta_g + \frac{1}{2m_g \omega_g (R_g + R)} \]

(9)

TABLE 1: Parameters of SM6 4.5Hz geophone provided by manufacturer

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonant frequency [Hz]</td>
<td>4.5±0.5</td>
</tr>
<tr>
<td>Open-circuit damping ratio</td>
<td>0.56±5%</td>
</tr>
<tr>
<td>Proof mass [g]</td>
<td>11</td>
</tr>
<tr>
<td>Open-circuit velocity sensitivity [V/(m/s)]</td>
<td>28.8±5%</td>
</tr>
<tr>
<td>Coil resistance [Ω]</td>
<td>375±5%</td>
</tr>
</tbody>
</table>

The magnitude frequency response of output voltage to input velocity with and without damping resistor evaluated for a 4.5Hz SM6 geophone with the parameters described in Table 1.

\[G(s) = \frac{U_{out}(s)}{X_b(s)} = \frac{-Gs^2}{s^2 + 2\zeta_g \omega_g s + \omega_g^2} \]

(6)

It can be seen from Eq. 6 that geophone transfer function of output voltage to input velocity is a high pass filter, which is determined by the sensitivity constant \(G \), the damping ratio \(\zeta_g \) and the resonance frequency \(\omega_g \).

\[R_g = R \]

If the geophone output leads are unconnected, no current flows and only mechanical damping exists. In practice the geophone would be parallel connected with an external resistor \(R \), damping resistor, to add electrical damping. Then the equation of geophone electrical part, taking into account the voltage generated across the coil, is given by

\[U = i(R_g + R) - L_g \frac{di}{dt} \]

(3)

For a ground movement at frequency \(\omega \), the rate of the change of the current is \(di/dt \approx \omega i \). The coil inductance will be negligible if \(\omega L_g << (R_g + R) \). Usually the damping resistor is large enough for making the coil inductance negligible at the interested frequency band.

The current flows through the coil will generate a Lorentz force on it, which has the opposite direction with the coil motion.

\[F = -Gi \]

(4)
shown in Table 1. In applications like active vibration isolation, where velocity sensing is critical, the knowledge of geophone accurate parameters is essential. More importantly, linear frequency response range extension at low frequency of geophone is based on its accurate parameters.

GEOPHONE PARAMETER IDENTIFICATION

For a geophone whose resonance frequency is ω_g and damping ratio is ζ_g, a convenient method to extend its linear frequency response range at low frequency is to use a stretcher filter, with double poles at ω_c and double zeros at ω_g, where $\omega_c < \omega_g$. The filter transfer function is given by

$$C(s) = \frac{s^2 + 2\zeta_g\omega_g s + \omega_g^2}{s^2 + 2\zeta_s\omega_s s + \omega_s^2}$$ (10)

With the stretcher filter series connected to the geophone, the zeros of the filter cancel the poles of the geophone transfer function. Then the new transfer function of the geophone is obtained as

$$G_s(s) = G(s) \cdot C(s) = \frac{-G_s^2}{s^2 + 2\zeta_s\omega_s s + \omega_s^2}$$ (11)

The key to low frequency extension of geophone is the knowledge of its accurate parameters, based on which the zeros of the stretcher filter are designed. Assume the exact damping ratio of geophone is known, but the resonance frequency is known with an error interval such as 4.5 ± 0.5 Hz. When the stretcher filter is designed according to 4.5Hz regardless of the uncertainties of geophone resonance frequency, different extension results will be obtained, which are shown in Figure 4. Only when the parameters of geophone are matched well with that of the stretcher filter, it is possible to realize linear frequency response at low frequency. Therefore parameter identification of geophone is necessary.

The geophone is modeled as a second order system that model identification is unnecessary for geophone. As long as the input velocity signal is measured with a reference velocity sensor and the output voltage of the geophone is recorded simultaneously, geophone frequency response of output voltage to input velocity can be calculated. Then geophone parameters can be acquired by curve fitting. However, the parameters of the reference velocity sensor itself must be previously identified, which makes this kind of method based on measuring geophone frequency response to input velocity inappropriate in many applications.

![Figure 4: Results of linear frequency response extension of geophone at low frequency with a stretcher filter with double poles at f=4.5Hz and double zeros at f=0.5Hz](image)

The transfer function of output voltage to input acceleration, which is given by Eq.12, is evaluated for geophone using the parameters described in Table 1.

$$G(s) = \frac{U_{ou}(s)}{X_s(s)} = \frac{-G_s}{s^2 + 2\zeta_s\omega_s s + \omega_s^2}$$ (12)

![Figure 5: Geophone predicted magnitude frequency response to input acceleration](image)

Eq.6 and Eq.12 noting that both transfer functions of geophone to input velocity and input acceleration are determined by the same parameters, which means that the geophone parameters can be obtained by measuring its response to input acceleration.

Substituting $s=j\omega$ into Eq.12, it yields the magnitude and phase frequency response.
Acquirement of geophone frequency response to input acceleration is the key to the proposed parameter identification method. Once it is measured, the resonance frequency, the damping ratio and the sensitivity constant can be obtained by curve fitting for its magnitude frequency response. The accuracy of the parameter identification can be validated according to the coincidence degree between the measured and fitted phase frequency response.

Generally, acceleration sensors have low pass characteristics, with excellent linearity, which are able to measure vibration acceleration from DC to thousands of Hertz theoretically. Therefore, the input acceleration signal of the geophone can be measured with an accelerometer and the output voltage of the geophone should be recorded simultaneously.

Figure 6 shows the setup scheme to proposed parameter identification method. The geophone to be identified and the accelerometer should be placed closely enough together that it can be assumed that they record the same ground motion. Utilizing the input acceleration signal and the output voltage signal, geophone frequency response to input acceleration can be calculated by FFT. The model of the transfer function of output voltage to input acceleration is known, so parameter identification of geophone can be carried out by curve fitting.

| TABLE 2: Results of parameter identification with and without damping resistor |
|---|-----------------|
| Resonant frequency [Hz] | 4.876 | 4.875 |
| damping ratio | 0.5611 | 0.6867 |
| Sensitivity constant [V/(m/s)] | 30.02 | 28.88 |

The coincidence degree between the measured and fitted phase frequency response can be used to verify the accuracy of the identification. It can be seen from Figure 7 and Figure 8 that the identification process with and without damping resistor \(R \), whose value is known, geophone parameters can be identified in both circumstances. And utilizing the relationships given by Eq.8 and Eq.9, the coil mass and coil resistor value also can be obtained by simple calculation.

EXPERIMENTS

In proposed parameter identification method introduced in this paper, the input acceleration signal of accelerometer and geophone can be the ground vibration acceleration. Of course, external excitation is recommended in order to fully excite the mechanical properties of the geophone, which also can improve the signal to noise ratio of the input signal. The geophone and the accelerometer placed closely enough so that they record the same ground motion. With PCB 393B31 accelerometer, whose sensitivity is 1.024 V/(m/s²), the input acceleration signal is measured. Data acquisition is fulfilled by a 24bit AD device. Its resolution is 1.920928 × 10^{-6} V for ± 10V range. Utilizing the geophone output voltage and the accelerometer output acceleration signal, geophone frequency response of output voltage to input acceleration is calculated by FFT with a hundred times linear average with 50% overlap.

Results of parameter identification experiment and curve fitting with and without damping resistor are shown in Figure 7 and Figure 8 respectively. The geophone parameters are obtained by curve fitting. The identified parameters with and without damping resistor are given in Table 2.

The coincidence degree between the measured and fitted phase frequency response can be used to verify the accuracy of the identification. It can be seen from Figure 7 and Figure 8 that the
identified parameters describe the geophone’s characteristics very well.

FIGURE 7: Open circuit geophone frequency response to input acceleration. Dotted line: measured frequency response using proposed identification method. Solid line: result of fitting

FIGURE 8: Frequency response to input acceleration of geophone with damping resistor $R=10k\Omega$. Dotted line: measured frequency response using proposed identification method. Solid line: result of fitting

CONCLUSION

Geophone linear frequency response range extension at low frequency is based on accurate model and parameters of the geophone. In this paper both electromagnetic and mechanical principles of the geophone are introduced. The geophone is modeled as a second order system. In order to obtain the exact parameters of geophone, a new parameter identification method is established. In proposed method, geophone frequency response to input acceleration is measured. And the parameters of geophone are identified by curve fitting. The effectiveness of proposed identification method is validated by identification experiments.

REFERENCES

INTRODUCTION

This paper presents a coordinated feedback and feedforward control design approach for the developed wafer stage, which employs a dual-stroke principle with a short-stroke stage for fine positioning and a long-stroke stage for coarse positioning [1]. Given the repetitive nature of wafer stage, iterative learning control (ILC) is utilized to realize precision motion control.

ILC refers to the iterative process of obtaining the optimal feedforward signal under repetitive motion. Previous information such as tracking error and learned feedforward is incorporated to form the feedforward signal of the next execution of motion [2]. However, as a feedforward technique in time domain, ILC has the character of amplifying the nonrecurring disturbances during the process of attenuating the recurring. Therefore, for improved the performance of ILC, it is essential to decrease the nonrecurring contents in the tracking error and improve its ability to eliminate the recurring disturbances simultaneously.

In terms of the aspect of decreasing the nonrecurring contents in the tracking error, as an alternative [3],[4], we propose the use of nonlinear feedback controller instead of a linear one. Since nonlinear feedback controller will not subject to the Bode’s sensitivity integral theorem. So low-frequency disturbances attenuation can be combined with high-frequency noise suppression, enhancing the reproducibility of the tracking error both in low-frequency and high-frequency.

While in terms of the aspect of attenuating recurring disturbances, an cascaded learning scheme is developed to further decrease the residual error resulting from a limited bandwidth of Q-filter. Once the tracking error converges to the predefined threshold, the learned feedforward signal is frozen and injected to the control loop as a constant feedforward force. Based on the updated initial effort, a new learning process begins until no more improvement can be achieved.

To summarize, the nonlinear feedback controller guarantees the system stability and addresses the nonrecurring, low-frequency disturbances in the time domain, while the cascaded ILC compensates for the recurring disturbances in the iteration domain. And the proposed control scheme is demonstrated on the developed wafer stage with the settling time decrease from 100ms to 4ms.
other hand, an cascaded learning scheme is developed to further decrease the residual error, improving the ability of ILC in eliminating the recurring disturbances.

\[\delta \]

\[\epsilon \]

Nonlinear Feedback Control

For many motion systems, linear feedback controller are used. However, the linear feedback control is subjected a fixed trade-off between low-frequency disturbances attenuation and high-frequency noise amplification. One of the alternatives is to utilize the nonlinear feedback controller for the linear system, see Heertjes [5]. In this paper, nonlinear controller is incorporated to improve the reproducibility of the tracking error, which is the premise of the implementation of ILC.

In the Fig.1, \(C \) and \(P \) denotes the linear feedback controller and plant, respectively. In the feedback control loop, a nonlinear controller is added before the nominal linear feedback controller \(C \) with the expression given by

\[
N = (1 + F_1 F^{-1}_1 \phi(\cdot) F_1) \tag{1}
\]

\[
\phi(\cdot) = \begin{cases}
\alpha(1 - \delta/|\epsilon|), & |\epsilon| > \delta \\
0, & |\epsilon| \leq \delta
\end{cases} \tag{2}
\]

with \(\epsilon \) denotes the tracking error, \(u_n \) the output of the nonlinear controller, \(F_1 \) is a loop shaping filter to select the interested frequency range to be attenuated, while \(F_2 \) is used to eliminate the possible high-frequency noise resulting from the gain mutation.

Within a frequency range of interest, the gain is continuously updated to suppress the external disturbances. Based on the frequency contents of error signal, for error-levels beyond the threshold \(\delta \), additional learning gain will be effectively used to diminish the low-frequency error. Below the threshold, the original low-gain value is maintained to avoid high-frequency noise amplification.

The parameter \(\alpha \) is tuned through data-based optimization methods [6]. While the threshold \(\delta \) and the bandwidth of the filter \(F_1 \), which determines the frequency range of nonrecurring disturbances, are identified based on the tracking error reproducibility analysis. Under the linear feedback controller \(C \), the tracking error \(\epsilon \) can be written as

\[
\epsilon = S y - S n - S d \tag{3}
\]

where \(y_d \) is the trajectory input which is trial-invariant, \(n \) are stochastic noise and \(d \) are external disturbances which consists of recurring disturbances \(d_r \) and nonrecurring \(d_{nr} \). Based on the assumption that the nonrecurring disturbances are zero means, the recurring part of tracking error \(\epsilon' \) can be approximated by averaging the tracking error of \(h \) sequential trials.

\[
\epsilon' = S y_d - S p d_r \approx \sum_{j=1}^{h} \epsilon_j \tag{4}
\]

where \(S \) is the sensitivity function and \(S_p \) the process sensitivity function. Then it yields the corresponding nonrecurring part of tracking error of each trial as

\[
\epsilon'' = \epsilon_j - \epsilon' \tag{5}
\]

With the nonrecurring error of each trial, the energy distribution in frequency domain can be examined by means of cumulative spectrum square.

Cascaded ILC

For the feedforward control, ILC is utilized with the tracking error \(\epsilon_k \) and feedforward signal \(f_k \) stored and then updated by the learning filter \(L \), obtaining the feedforward signal of next trial \(f_{k+1} \).

\[
f_{k+1} = Q(f_k + L\epsilon_k) \tag{6}
\]

And

\[
e_k = \frac{1}{1 + NCP}(y_d - n_k - P d_k) - \frac{P}{1 + NCP} f_k \tag{7}
\]

Then it yields the tracking error of next trial

\[
e_{k+1} = Q(1 - S_p L)e_k + \hat{S}(Qr_{k+1} - r_k) \tag{8}
\]

When \(k \) tends to be infinite, the asymptotic error is deduced as
\[e_{\infty} = \frac{(r_{k+1} - Q r_k)}{1 - Q (1 - \hat{S} r_k L)} \hat{S} \]

(9)

As the trajectory input dominates over other disturbances, and assume that \(L \) approximate the reverse of process sensitivity in low-frequency, the asymptotic error can be simplified as

\[e_{\infty} \approx (1 - Q) \hat{S} y_d \]

(10)

From Eq. 10 it can be seen that the Q-filter determines the attainable convergence accuracy. Only if the value of Q-filter is equal to one, the tracking error can be completely eliminated. However, in order to guarantee the robustness against higher order dynamics and suppress the noise amplification, Q usually is a zero-phase low-pass filter with a limited bandwidth. Fig. 2 shows its bode magnitude characteristics.

![Figure 2. Magnitude characteristics of the zero-phase low-pass Q-filter with a cut-off frequency of 200Hz.](image)

The bode magnitude representation shows two important properties. Firstly, the magnitude of the zero-phase Q-filter is close to zero in high-frequency, which means that the high-frequency contents of \(e_0 \) will not be eliminated. Secondly, the magnitude under the cut-off frequency is not entirely equal to one. As the practical trajectory contains more energy in low frequencies, this part of tracking error will contribute more to the residual error.

To obtain robustness without sacrificing the tracking performance, a cascaded learning scheme is proposed. The key of the method is the feedforward frozen mechanism, as illustrated in Fig. 3. The update law is modified as

\[u_{k+1} = f_{k+1} + \Gamma_m \]

(11)

where \(u_{k+1} \) is the learned feedforward signal for the next trial, \(\Gamma_m \) denotes the previous learned feedforward signal with \(m \) as the index number. Once the tracking error attenuation is lower than the predefined threshold \(\eta \), the learned feedforward signal \(f_k \) is frozen and added to \(\Gamma_m \), which is injected to the control loop as a constant feedforward signal. Meanwhile, \(f_k \) is emptied to zero.

![Figure 3. The illustration of cascaded ILC](image)

Assume after \(M \) trials, the learning converges to its limit, the tracking error becomes

\[e_M = (1 - Q) \hat{S} y_d \]

(12)

Then the learned feedforward signal is frozen and injected to the control loop as a constant feedforward. Based on the frozen feedforward signal, new iterative learning process begins with the initial error of \(e_M \). Therefore, after \(M \) trials the tracking error will not decrease again, and the residual error will evolve as

\[e_{2M} = (1 - Q) e_M = (1 - Q)^2 \hat{S} y_d \]

(13)

The same operations are repeated until no more improvement can be obtained. Therefore, after the learning process repeated \(m \) times, the residual error will be

\[e_{nM} = (1 - Q)^{n-1} e_{(n-1)M} = (1 - Q)^n \hat{S} y_d \]

(14)

when \(n \) tends to be infinite, it yields to the asymptotic error

\[e_{\infty} = \lim_{n \to \infty} e_{nM} = \lim_{n \to \infty} (1 - Q)^n \hat{S} y_d = 0, \quad Q \leq 1 \]

(15)
It can be concluded that the tracking error resulting from the trajectory input can be completely eliminated by employing cascaded iterative learning control scheme.

EXPERIMENTS

In this section, the performance of proposed control scheme is assessed on our developed wafer stage. The goal is to achieve constant velocity as quickly as possible to reach a specified accuracy so that scanning process can be performed.

The Developed Wafer Stage

The developed wafer stage includes a short-stroke stage for fine positioning and a long-stroke stage for coarse positioning. Fig. 4 depicts the exploded view of a computer-aided design (CAD) model of the developed wafer stage, and Fig. 5 displays the actual assembly of the wafer stage.

![Figure 4. The schematic of the designed wafer stage](image)

![Figure 5. The photograph of developed wafer stage](image)

The short-stroke stage is a magnetic levitated stage driven by eight voice coil motors (VCM). The characteristics, such as light weight and no thrust force, allows for higher bandwidth and 6-DOF fine positioning. The long-stroke stage is a planar actuator which moves along the surface of a Halbach permanent magnet array without generating friction due to being elevated with air bearings. By stacking the short-stroke stage on the long-stroke stage, nano-positioning accuracy is combined with large travel range.

Trajectory Planning

To begin with, fourth order trajectory is designed which can be seen in Fig. 6. The trajectory has a cruising speed of 250mm/s and a maximum acceleration/deceleration of 10 m/s². The servo period is 200µs, and the resolution of the laser interferometer is 0.6nm.

![Figure 6. The planned fourth order trajectory](image)

Implementation of Standard ILC

In this subsection, standard ILC is implemented for the wafer stage. Fig. 7 shows the convergence curve of the tracking error. After 6 trials, the tracking error converges to its limit and the learned feedforward signal stops increasing.

![Figure 7. Tracking error under standard ILC in scanning direction](image)

Then, the reproducibility of the residual tracking error is examined by repeating 10 trials with the same trajectory and learned feedforward, as shown in Fig. 8. The upper plot is the recurring error by averaging the tracking error of 10 trials, while the lower is the nonrecurring error. It can
be found that after 10 trials, the amplitude of the recurring error is still larger than the one of nonrecurring, leading to the conclusion that the recurring error still dominates over the nonrecurring and the tracking error is not sufficiently eliminated by standard ILC.

![Graph showing recurring and nonrecurring tracking error](image)

Figure 8. The recurring (upper plot) and nonrecurring (lower plot) tracking error after 10 trials under standard ILC.

Tracking Performance Comparison

To further improve the tracking performance, the cascaded ILC is applied. Figure 9 shows the tracking error of 30th trial. Table 1 presents the detailed tracking performance, demonstrating its effectiveness in reducing settling time and eliminating tracking errors.

![Graph showing tracking error comparison](image)

FIGURE 9. The comparison of tracking error between initial trial and 30th trial.

<table>
<thead>
<tr>
<th>Performance indicators</th>
<th>Initial trial</th>
<th>30th trial</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. tracking error</td>
<td>210</td>
<td>22</td>
<td>[nm]</td>
</tr>
<tr>
<td>Settling time</td>
<td>100</td>
<td>4</td>
<td>[ms]</td>
</tr>
</tbody>
</table>

TABLE 1. The tracking performance comparison between initial trial and 30th trial

CONCLUSIONS

Aimed at improved convergence accuracy of ILC, a nonlinear feedback control based cascaded learning scheme is put forward. Specifically, the nonlinear feedback control balances the trade-off between low-frequency disturbances attenuation and high-frequency noise amplification, improving the reproducibility of the tracking error. Furthermore, the cascaded learning scheme is proposed to improve the ability of ILC to diminish the recurring disturbances. The experiments on the developed wafer stage demonstrate that the proposed algorithm can remarkably improve the tracking performance with the settling time reduced from 100ms to 4ms.

ACKNOWLEDGEMENT

This work was supported by the National Natural Science Foundation of China under Grant 51175296 and 51105226.

REFERENCES

DESIGN OF AN INVERSE MODEL FEEDFORWARD CONTROLLER BASED ON IDENTIFICATION MODELS OF A VIBRATION ISOLATOR

Hexiang Zeng¹, Wensheng Yin¹ ,and Yu Zhu¹
¹State Key Laboratory of Tribology, Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Department of Mechanical Engineering
Tsinghua University
Beijing 100084, China

INTRODUCTION
Low frequency vibration can affect the accuracy, repeatability and throughput of precision equipment. Various active vibration isolation control strategies, such as PID control, pole assignment, fuzzy control, and sliding control have been proposed and have already been used in many applications [1-4]. Moreover, feedforward control strategy has been widely used in active vibration isolation control and has achieved good performance [5]. The most-used Fx-LMS feedforward strategy ensures stability of the system, while the dynamic performance of the system can only be approximated by zeroes. However, for a system with a complex dynamic performance, the Fx-LMS feedforward strategy sometimes does not convergence [6]. Also, Fx-LMS feedforward strategy is efficient if the input signal of a system changes significantly, but is not as good as desired if the input signal is steady. An inverse model feedforward controller is obtained by models which include poles and can approximate the dynamic response of a system more accurately. Moreover, it can be easily realized by circuit or computer programs. However, the ideal inverse model feedforward controller cannot be applied in active vibration isolation directly, because it is not always stable. Aimed at improving the active vibration isolation performance, a new inverse model feedforward controller design based on identification models is proposed in this paper. To design a stable and realizable feedforward controller, compensation and parameter design method are discussed. The effectiveness of the feedforward control strategy is demonstrated by simulation and experimental results and is compared with absolute velocity feedback.

PRINCIPLE OF ACTIVE VIBRATION CONTROL
Consider a vibration isolation system as shown in Figure 1.

![Figure 1. Basic model of a vibration isolation system](image)

The system is determined by the primary path:

$$G_p(s) = \frac{X_p(s)}{X_a(s)}$$

and the secondary path:

$$G_r(s) = \frac{X_r(s)}{F(s)}$$

Assuming the system is linear and two transfer paths are independent, the vibration of platform can be expressed as:

$$\hat{X}_r(s) = G_p(s)\hat{X}_a(s) + G_r(s)F(s)$$

Using active vibration control, the actuators generate vibration control forces F. The vibration G_r(s)F(s) generated by the primary path and the vibration G_p(s)X_a(s) generated by secondary path counteract with each other to achieve vibration reduction.

Absolute velocity feedback control strategy can eliminate the resonance peak by increasing system damping and can reach an attenuation of -20dB at 10Hz [7]. Feedforward control is more efficient in compensating external disturbances. When disturbances happen, the active forces generated by feedforward controller can control the system before the disturbances affect it. It can improve the vibration isolation performance to meet the
Figure 2 shows an active control scheme with feedback and feedforward strategy.

\[
\begin{align*}
\dot{X}_d(s) &\rightarrow \dot{X}_f(s) \\
A(s) &\rightarrow G_d(s) \\
0 &\rightarrow C(s) + F(s) + G_f(s) \\
&\rightarrow X_f(s)
\end{align*}
\]

Figure 2. Active control scheme with feedback and feedforward strategy

The transmissibility \(I(s)\) is used to evaluate the performance of a vibration isolation system in general. \(I(s)\) is defined as:

\[
I(s) = \frac{\dot{X}_f(s)}{X_d(s)} = [I + G_f(s)C(s)]^{-1} [G_d(s) + G_f(s)A(s)]
\]

\[
= [I + G_f(s)C(s)]^{-1} G_d(s) [I + G_f(s)^{-1}G_f(s)A(s)]
\]

\[
= G_{fd}(s)G_{pf}(s)
\]

In the expression above, the feedback function \(G_{fd}(s)\) and the feedforward function \(G_{pf}(s)\) are independent since they contain the feedback controller \(C(s)\) and the feedforward controller \(A(s)\) respectively. On this account, \(C(s)\) and \(A(s)\) can be designed separately, namely, a feedforward controller can be added to an active vibration system \(G_{fd}(s)\) with a feedback controller which is already designed. In order to improve the performance of a vibration isolation system, a feedforward controller design based on identification model is proposed.

DESIGN OF INVERSE MODEL FEEDFORWARD CONTROLLER
An inverse model controller is obtained by models which include poles in comparison with Fx-LMS strategy. It can approximate the dynamic response of a system more accurately. For an ideal vibration isolation system, the vibration of the platform is zero. Therefore, the ideal inverse model feedforward controller can be obtained by \(G_{fd}(s)\) and \(G_{df}(s)\) as:

\[
A(s) = -G_{fd}(s)^{-1}G_{df}(s)
\]

When designing the controller, identification models or estimation models of \(G_{fd}(s)\), \(G_{df}(s)\) are used. However, the ideal inverse model feedforward controller cannot be applied directly mainly because \(A(s)\) is not always stable. In other words, \(A(s)\) has poles in the right-half of the s-plane. To solve the problem, a method to modify \(A(s)\) is proposed to ensure stability of the controller.

The ideal inverse model feedforward controller can be written as:

\[
A(s) = \frac{A_d(s)}{A_{dt}(s)A_{dt+1}(s)}
\]

\(A_d(s)\) is the numerator polynomial:

\[
A_{dt}(s) = K_d(s-p_1)(s-p_2)\cdots(s-p_k)
\]

is polynomial of poles in the left-half of the s-plane, and

\[
A_{dt+1}(s) = (s+p_k+1)\cdots(s+p_l)
\]

is polynomial of poles in the right-half of the s-plane. The form of the modified feedforward controller \(A'(s)\) is proposed as:

\[
A'(s) = \frac{A_d(s)B(s)}{A_{dt+1}(s)}
\]

The controller \(A'(s)\) will also be stable if the function \(B(s)\) is stable. \(B(s)\) compensates the poles to ensure that the denominator order is larger than the numerator order of the controller [3]. Moreover, different forms and parameters of \(B(s)\) lead to different vibration isolation performance. The optimal parameters design for \(B(s)\) is necessary for performance improvement and is given in the next section.

PARAMETER DESIGN OF COMPENSATION FUNCTION
Substituting \(A'(s)\) into \(G_{fd}(s)\) gives the expression for the feedforward function:

\[
G_{ff}(s) = 1 - A_{dt+1}(s)B(s)
\]

To determine parameters of \(B(s)\), an optimization function in the frequency range \((\omega_0, \omega_1)\) is proposed as:

\[
g[B(s)] = \left(g[B(s)] \right)_{\text{min}} = \left(\int_0^\omega |G_{ff}(j\omega)|^2 d\omega \right)_{\text{min}}
\]

The function \(g[B(s)]\) describes the isolator's performance in \((\omega_0, \omega_1)\). \(g[B(s)]\) achieves the minimum value when \(B(s)\) gets the optimization result \(B^*(s)\).

Consider a system which has poles in the right-half of the s-plane:

\[
A_{dt+1}(s) = (s+p_k+1)\cdots(s+p_l)
\]

\(B(s)\) is proposed as:
\[
B(s) = \frac{1}{(s + 1)^n} \frac{1}{K(s - p_{i+1}^{\prime}) \cdots (s - p_i^{\prime})^{r}}
\]

The low pass filter in \(B(s) \) is:

\[
LF(s) = \frac{1}{(s + 1)^n}
\]

It compensates the poles to ensure that the denominator order is larger than the numerator, in which the cutoff frequency \(\tau = 5\omega - 10\omega \) is chosen.

\[
r = \text{deg}(A(s)) - \text{deg}(A_{\text{pp}}(s)A_{\text{pp}}(s))
\]

is the difference between the denominator order and the numerator order of \(A(s) \). Parameters \(K, p_1, \ldots, p_i \) are determined by the optimization function.

Consider a system which has a real pole \(-p_0\) in the right-half of the s-plane:

\[
A_{\text{pp}}(s) = s + p_0, p_0 < 0
\]

Then

\[
B(s) = \frac{1}{(s + p_0)} \frac{1}{K(s - a)} \frac{1}{(s + 1)^n}, \quad a < 0.
\]

In the frequency range of interest 1 - 100 Hz or the circular frequency range 2\(\pi \) - 2000 rad/s, the optimization function can be written as:

\[
g(K, a) = \int_{2\pi}^{200\pi} \frac{(K - 1)^2 + (p_0 + Ka)^2}{K^2(\omega^2 + a^2)} d\omega, \quad a < 0
\]

If we only consider two cases, \(K = 1 \) or \(p_0 + Ka = 0 \), \(G_{\text{FF}}(s) \) and \(B(s) \) can be obtained according to the optimization function:

\[
B(s) = \frac{1}{s + 1} G_{\text{pp}}(s) = 1 - \frac{s + p_0}{s - \frac{1}{(s + 1)}} \quad \text{if } |p_0| < 20\pi
\]

\[
B(s) = \frac{1}{p_0} \frac{1}{s + 1} G_{\text{pp}}(s) = 1 - \frac{s + p_0}{p_0 \frac{1}{s + 1}} \quad \text{if } |p_0| > 116\pi
\]

Similarly, when the poles in the right-half of the s-plane are conjugate poles, \(A_{\text{pp}}(s) = s^2 + 2\zeta\omega_0 s + \omega_0^2 \). \(G_{\text{FF}}(s) \) and \(B(s) \) are determined as:

\[
B(s) = \frac{1}{s^2 + 2\zeta\omega_0 s + \omega_0^2} G_{\text{pp}}(s) = 1 - \frac{s^2 - 2\zeta\omega_0 s + s^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2} \quad \text{if } 0 < \zeta < 20\pi
\]

\[
B(s) = \frac{1}{s^2 + 2\zeta\omega_0 s + \omega_0^2} G_{\text{pp}}(s) = 1 - \frac{s^2 - 2\zeta\omega_0 s + s^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2} \quad \text{if } \zeta > 20\pi
\]

Also, a system with more than two poles in the right-half of the s-plane:

\[
A_{\text{pp}}(s) = (s + p_{i+1}) \cdots (s + p_i)
\]

The compensation function \(B(s) \) is determined as:

\[
B(s) = \frac{1}{s^{i-1} p_{i+1} \cdots p_i} \frac{1}{s + 1} \frac{1}{s + 1}
\]

\[
|p_{i+1}| < \ldots < |p_i| < 20\pi \quad \text{if } |p_{i+1}| < \ldots < |p_i|
\]

At this point, the feedforward function \(G_{\text{FF}}(s) \) is expressed as:

\[
G_{\text{FF}}(s) = 1 - A_{\text{pp}}(s)B(s) = 1 - \frac{(s + p_{i+1}) \cdots (s + p_i) (s + p_{i+1}) \cdots (s + p_i)}{s^{i-1} p_{i+1} \cdots p_i} \frac{1}{s + 1}
\]

SIMULATION OF INVERSE MODEL FEEDFORWARD CONTROLLER

Consider a vibration isolation system which has the identification model of primary path as:

\[
G_f(s) = -0.0017032(s + 93.52)(s^2 + 14.16 s + 97.56)
\]

\[
(s^2 + 5.04 s + 131.3)(s^2 + 5.175 s + 616.3)
\]

The identification model of secondary path:

\[
G_s(s) = -0.00036613(s - 3.0879)(s^2 + 4.894 s + 674.7)(s^2 - 2996 s + 3597000)
\]

\[
(s^2 + 6.6593 + 542.5 s^2 + 13.18 s - 100)(s^2 + 535.9 s + 140200)
\]

According to the proposed design method, \(B(s) \) is obtained as:

\[
B(s) = \frac{1}{3597000(s^2 + 100\pi s + 1)} = \frac{1}{0.3645s(s + 31.42)^2}
\]

In order to verify the efficiency of the proposed feedforward control strategy, performances by feedback control with and without feedforward control strategy are compared. The velocity transmissibility curves and the platform velocity response are demonstrated in Figure 3 and 4 respectively.

![Figure 3. Velocity transmissibility for different control strategies](image)
The simulation result in Figure 3 shows that the feedback control with feedforward strategy outperforms the feedback control alone at middle frequency which achieves a reduction of 40dB at 8Hz. However, both control strategies perform worse at ultralow frequency and the transmissibility tends to be the same at high frequency. The simulation result of velocity response is shown in Figure 4. Compared to the maximum velocity of 10µm/s at passive isolation mode, the low-frequency components are eliminated, and the vibration is reduced to ±1.2µm/s, or about 15% at maximum in the feedback and feedforward control mode. The simulation results verify that the proposed feedforward control strategy is effective in performance improvement of vibration isolation.

EXPERIMENT WITH INVERSE MODEL FEEDFORWARD CONTROLLER

Figure 5 shows the control and measurement system of the vibration isolator. The 1m×70cm vibration isolation platform supported on four air springs is the object of control. Active control forces are provided to the platforms through four actuators according to the velocity signals from the sensors. The performance of the isolator is measured by a dynamic signal analyzer with two acceleration sensors and an exciter. Random excitation force is generated by the exciter during the measuring and it is regarded as the vibration source to increase the signal to noise ratio of the measurement result.

Figure 6 shows the velocity transmissibility for different control strategies. The system contains four velocity sensors measuring vibration of platform, one velocity sensor measuring vibration of frame and four actuators. A 4 by 1 model matrix of primary path $G_a(s)$ and a 4 by 4 model matrix of secondary path $G_b(s)$ were identified. The feedforward controller $A(s)$ was designed by the method proposed above. The control frequency was 1 kHz and the performances for feedback control with and without feedforward strategy were measured in real time.
vibration enhanced in passive isolation mode was eliminated and the maximum velocity was reduced 90%.

ACKNOWLEDGEMENTS
This work was supported by the National Natural Science Foundation of China under Grant 51175296.

REFERENCES
Design of a Mechanical Actuator for Phase Control of an X-ray Interferometer

Jaden A. Barney, Jeffery D. Thousand, and Stuart T. Smith
Department of Mechanical Engineering, Center for Precision Metrology
University of North Carolina at Charlotte
Charlotte, North Carolina, United States

INTRODUCTION
In 1965, Bonse and Hart introduced the idea of phase-contrast micrography in their paper on the uses of an x-ray interferometer as a new imaging instrument [1]. Adding the phase-contrast process to traditional absorption imaging creates the ability to quantitatively measure x-ray phase shifts that will indicate composition of the medium that the x-rays pass through. Phase-contrast data has the potential to enhance the resolution of tradition absorption x-ray images, particularly for small specimens or when imaging weakly absorbing materials.

Primarily being developed for biological applications, the construction of phase-contrast enabled x-ray interferometers are currently restricted to high energy beam systems (synchrotrons) and have not been implemented for local laboratory measurements. The goal of this research project is to create a local laboratory-based system so that precise and robust measurements can be obtained for potential biological, micro-manufacturing, and forensic applications.

A standard phase control mechanism for use in an x-ray interferometer and micro-CT systems is required for repeatable and accurate measurement of both phase-contrast and absorption-based images. Ultimately, the system designed within the scope of this project will be used for minimally destructive 3-dimensional imaging of sub-millimeter scale structures. The system will also be adaptable to accept x-ray interferometer monoliths manufactured from a variety of materials (i.e. silicon, YAG, or other garnet-based crystals) and geometries. This versatility will enable additional projects to utilize the same subsystem design for implementation of instruments with expanded scope. A solid model of the frame for supporting the single crystal silicon interferometer is shown in Figure 1.

THEORY

FIGURE 1. Silicon x-ray interferometer monolith (spring metal not shown).

FIGURE 2. Schematic of the interferometer showing splitting and mirroring of x-ray beam.

In operation, an object is placed in one of the beam paths between the mirror and analyzer blades. The analyzer blade flexure is then translated. The split x-ray beams (shown green in Figure 2) will converge together at the analyzer blade that modulates outputs to the two detectors. If the object is thicker at one point, the
x-ray waves will experience a larger absorption resulting in weak D$_0$ and D$_1$ outputs as labeled in Figure 2. If a thinner section of the object is scanned, the x-ray waves will generate a wavefield of weak absorption and refracting large D$_0$ and D$_1$ outputs [1].

In this implementation, imaging of specimen will be achieved by scanning a specimen in one of the sub-millimeter diameter beams in the interferometer followed by ‘tiling’ these measurements to obtain image information over larger areas. For each sub-image, phase will be measured by scanning the interferometer and extracting relative phase between that of the crystal lattice and the specimen. This is necessary because specimens will have differing thicknesses and absorption characteristics. The phase of the interferometer can be obtained by translating a single crystal x-ray analyzer blade of a silicon crystal at each measurement point in an image. A phase shift of 360 degrees correlates to the translation of the blade by 0.31356 nm (for a 111 lattice spacing) [2]. The analyzer blade has been machined into the crystal as part of a flexure mechanism so that it can be translated by the application of a small force. The intent is to push the flexure with a thin, compliant fiber. This requires contact detection followed by precisely translating the analyzer blade flexure. To achieve multiple fringe translations with precise phase control, the translation stage is to be capable of a linear motion of the analyzer blade of 3-5 nm so that with control of around 1 part in 1000 the analyzer blade can be translated with picometer resolution.

KINEMATIC MOUNT
For accurate and repeatable placement of the x-ray interferometer monolith, a kinematic mount is utilized. Three groves are cut in the base of the mount and three precision half-spheres are mounted to the base of the interferometer monolith [3]. Because the half-spheres are to be mounted directly to the interferometer monolith, other monolith structures can use the same mounting mechanism.

Custom plastic safety pieces will be placed around each monolith structure to provide additional security. These rapid prototyped pieces, as marked in Figure 3, are installed to prevent the delicate silicon (or other crystal) structure from being knocked from the kinematic mount system.

![FIGURE 3. Detailed CAD of system design.](image)

An adjustable leaf spring will be utilized to apply a controlled force to the monolith while on the kinematic mount. The mount assembly is easily removable, enabling precise replacement of arbitrary monoliths. This requirement of precision replacement is also used to provide coupling of the actuator system to the mount assembly.

ACTUATOR SYSTEM
To produce the 3-5 nm translation motion while also sensing initial contact with the flexure, a tuning fork oscillator will be utilized (Figure 3). The tuning fork is, in turn, mounted to a piezoelectric actuated flexure with a translation range of 15 μm. Hence it is necessary to provide a lever attenuation of around 3000:1. To achieve this, a tungsten or glass fiber will be added to a tine of the tuning fork oscillator with its stiffness designed to be approximately 1/3000 of that of the silicon flexure, see Figure 4.
To position the tuning fork, the longer range piezoelectric actuator is mounted into a ‘four bar’ monolithic flexure. Upon activation of the piezoelectric actuator, the flexure will move the tuning fork actuator towards the monolith while the tuning fork acts as a sensing element to detect when contact is made with the analyzer blade flexure, as seen in Figure 4.

A four-bar flexure was selected so that the specimen mount, as seen in Figure 3, can be safely placed between the splitter and mirror blades on the monolith structure without interference with other mechanisms necessary for specimen positioning and scanning.

The flexure is powered by a 3 mm x 4 mm x 20 mm piezoelectric actuator, which creates a force range of approximately 50-200 N. Using the modeling software’s built-in FEA tool, a 100 N load was applied to the flexure that produced a movement range of approximately 24.5 μm and showed the maximum stress was within yield strength for 6061 aluminum. The flexure design enables the tuning fork to be positioned before the vibration sensing is activated.

A quartz tuning fork, commonly found in wrist watches, will fulfill two roles. Being a piezoelectric material, the tuning fork has the property than when electrically excited, the tines experience a corresponding mechanical deformation. Polarity of the electrical field changes the direction of deformation resulting in expansion or contraction of the tines.

When an AC signal is supplied to the tuning fork, the tuning fork will oscillate. By adjusting the frequency of the AC signal, the tuning fork can

FIGURE 4. Schematic diagram of proposed driven mechanism.
be tuned to oscillate at its first modal frequency. While the tuning fork is used in oscillation mode, monitoring the electrical response will provide active contact detection. As an object comes into contact with the tuning fork while oscillating, the change in work done by the oscillator is seen in the electrical feedback.

Once the fiber is in contact with the analyzer blade flexure, the piezoelectric actuator is used to provide translation. In order to attenuate motion of the piezoelectric actuator to a displacement of 3-5 nm at the analyzer blade, a fiber will be added to the tine of the tuning fork closest to the analyzer blade flexure.

Previous tests have shown that when a heavy fiber is adhered to only one tine, the tuning fork loses sensitivity to the point of providing no contact data. It has been hypothesized that this is due to a loss in the symmetry of the tuning fork, resulting in a low resonant amplitude and correspondingly low sensitivity to contact. To compensate for this effect, a counter-mass will be added to the opposite tine.

RAPID PROTOTYPING
To determine the flexibility of the x-ray interferometer system, rapid prototyping is currently being used to build models of complete drive mechanisms. By having a fully rapid prototyped system, new interferometer designs will be tested prior to manufacturing and installing of the fragile and expensive single-crystal monoliths. New mounts for additional specimen types will also be evaluated on the rapid prototype test bed before implementing into the x-ray interferometer system.

CONCLUSION
To achieve project goals, three major mechanism designs are in development with these being:

- Adjustable mount for placement of the interferometer sub-system into existing x-ray facilities.
- Precision repeatable relocation of crystalline monoliths into the interferometer sub-system.
- Coupled and detachable translation system for replaceable sub-atomic analyzer blade motion control.

The bulk of the research focuses on developing the facility for a commercially viable x-ray interferometer system. Current studies focus on the design and rapid prototyping of the entire interferometer subsystem, the fiber attenuator attachment to the tuning fork actuator, and performance evaluation studies.

ACKNOWLEDGEMENTS
Research funding for this project has been provided by the Center for Precision Metrology’s affiliates program at the University of North Carolina at Charlotte.

REFERENCES
INTRODUCTION
A testing apparatus has been developed to investigate the deformation of tissue during impact and penetration by a medical needle at varying velocities. The apparatus acts as a variable-angle inclined plane, with the needle mounted on a carriage which accelerates towards impact due to gravitational force. As the needle penetrates tissue, the tissue deforms due to forces applied by the needle, which are highly dependent on both the position and velocity of the needle [1]. As a result, it is critical to characterize external forces acting on the carriage in order to isolate and evaluate the tissue reaction forces which will be compared to various theoretical models for needle-tissue interaction force.

BUSHING SYSTEM DESIGN
In order to minimize external forces acting on the carriage during travel, a system of air bushings is employed (NewWay Air Bearings S301201). The bushings travel on a pair of parallel-mounted 0.5 inch diameter stainless steel shafts. The lower shaft supports the primary weight of the carriage through two co-axially mounted bushings, constraining motion in translation along and rotation about both axes radial to the axis of travel. The third bushing travels on the upper rail, acting as an outrigger to constrain rotation about the axis of travel. The third bushing travels on the upper rail, acting as an outrigger to constrain rotation about the axis of travel. Figure 1 shows the carriage mounted on the rails at a substantially horizontal incline angle.

To accommodate shaft bending, minimize shaft diameter and weight, and allow for alignment errors during assembly, a compliant mounting strategy is employed for the bushings. The two primary bushings are mounted to the carriage on elastomeric columns, which are stiff in compression but allow some rotation and shear deformation. The outrigger bushing is mounted to the carriage only by its air supply lines, oriented to provide significant stiffness only in rotation about the travel axis. Figure 1 shows the carriage mounted on the rails at a substantially horizontal incline angle.

As such, frictional forces due to bushing misalignment are averted. However, the bushing system still experiences some frictional losses due to fluid shear within the gap between the bushings and the shafts. Much work has been done to model the complex fluid interactions within porous air bearings [2, 3]. An alternative first-order model has been developed to characterize the proposed bushing system.

Assuming steady flow, the frictional force acting on a bushing may be derived from standard Couette flow as

\[f_b = \frac{\mu l \pi d_b v}{h} \]

Where \(\mu \) is the fluid viscosity, \(l \) is the length of the bushing, \(d_b \) is the inner diameter of the bushing, \(v \) is the velocity of the bushing with respect to the shaft, and \(h \) is the gap thickness equal to the radial bushing clearance. Since the outrigger bushing does not bear the weight of the carriage, its load is substantially less than the other bearings and it is considered to be coaxially aligned with the upper shaft; as such (1) is a suitable expression for the frictional force experienced by this bushing.

As the two primary bushings support the weight of the carriage, the bushings will deflect radially...
out of co-axial alignment with the lower shaft. As such, the air gap between the shaft and the bushings is of non-uniform thickness. The relationship between the minimum radial gap thickness of one bushing and radial load is given by the manufacturer as

$$\delta = 564.286 - \sqrt{18275.5 + 14285.7 \cdot P} \quad (2)$$

Where δ is the radial deflection, measured in micro-inches, and P is the radial load. Both primary bushings deflect under the radial component of half of the carriage load, which changes as a function of incline angle as

$$P = \frac{mg \cos \theta}{2} \quad (3)$$

Where m is the mass of the carriage, g is the gravitational constant, and θ is the incline angle. To determine the force of friction, the fluid shear force is integrated over the varying gap height between the shaft and the bushing. Assuming that the compliant mounting method allows each bushing to remain axially parallel to its shaft despite radial misalignment, the force of friction felt by each primary bushing is given as

$$f_p = \int_0^{2\pi} \frac{\mu \ln d \phi}{2} \left(\delta \cos \phi + \sqrt{r_s^2 - \delta^2 \sin^2 \phi} \right) d\phi \quad (4)$$

Where r_s is the radius of the shaft. As such the total frictional force acting on the carriage during travel is given as

$$F_f = 2f_p + f_b \quad (5)$$

This expression of friction may be included in the differential equation of motion of the carriage, which is acted upon both by gravitational acceleration as well as the velocity-dependent frictional bushing force and is given as

$$m \ddot{x} + \Phi \dot{x} - mg \sin \theta = 0 \quad (3)$$

Where x is the displacement of the carriage in the direction of travel, Φ is the friction coefficient, defined by (2-5) and found to be constant for a given angle of incline. This equation may be solved to determine the velocity of the carriage at the moment of impact, given as

$$\dot{x}(t) = -\frac{\phi t}{m} \left(1 + e^{\frac{\phi t}{m}} \right) mg \sin \theta \quad (5)$$

TESTING
To validate the proposed model, the carriage was released from rest at various incline angles. The velocity was measured at impact by a beam-interruption photogate sensor. Figure 2 shows the theoretical and measured impact velocities at various incline angles.

![Figure 2](image-url)

The average error between the measured and theoretical impact velocities is 1.25%. This is mostly due to the errors at very low incline angles below 1 degree, at which the change in shaft angle due to beam bending significantly affects the acceleration of the carriage. At angles above 1 degrees, the average error is only 0.07%.

CONCLUSIONS
A compliant-mount bushing system allows for low-friction motion of the proposed test apparatus, and may be characterized to determine the effects of fluid shear friction. Although the specific mechanisms of bushing friction are highly complex, this work has discovered a first-order model which allows calculation of impact velocity to within 0.07%.

REFERENCES
LARGE STROKE SCANNING SYSTEM FOR FEMTOSECOND MICROMACHING OF CUSTOM OPTICAL STRUCTURES IN OPHTHALMIC MATERIALS

Daniel R. Brooks1, Nicolas S. Brown1, Daniel E. Savage1, Wayne H. Knox1,2, Jonathan D. Ellis1,3
1The Institute of Optics
2Center for Visual Sciences
3Department of Mechanical Engineering
University of Rochester
Rochester, New York

BACKGROUND
Recently, a technique has been developed to write customizable, three-dimensional refractive index (RI) changes into ophthalmic materials using femtosecond laser micromachining. This was first demonstrated in ophthalmic hydrogels \cite{1} where much larger RI changes were achieved than in other materials, such as glasses and plastics. The RI changes are caused by nonlinear absorption, which only occurs in the focal region of a beam focused using a high numerical aperture (NA) objective (NA \(> 0.6\)). Since the process only occurs in the focal region of a tightly focused beam, changes can be made with a lateral resolution of approximately 1 \(\mu\)m and an axial resolution on the order of 3 \(\mu\)m. The magnitude of the change is dependent on the amount of energy deposited into the focal region, which is a function of the intensity of the laser light in the focal region and the translation velocity of the focal volume through the material.

By varying the translation velocity of the focal volume to create a specific RI profile, it has been demonstrated that it is possible to create lateral gradient index (GRIN) lenses in hydrogels \cite{2}. In addition to ophthalmic hydrogels, femtosecond micromachining to change RI has also been demonstrated in live cornea where it is called Intra-Tissue Refractive Surgery (IRIS) \cite{3}. More recently, it has also been demonstrated that it is possible to write GRIN lenses into the cornea of living cats and that such structures persist for at least 12 months \cite{4}.

The requirements for writing visual quality structures that cover the entire pupil of the eye put high demands on the scanning system that translates the focal volume. The first demand is the high NA that is mentioned above. This leads to the 1 \(\mu\)m diameter spot. To write a full GRIN lens, it is necessary to write lines of RI change as closely spaced as possible without excessive overlap. This places a tight constraint on the positioning accuracy necessary. Also, because the RI change is a function of the intensity in the focal volume and the translation velocity of the focal volume, both those parameters must be controlled. All this must be done over an 8 mm diameter circular area to cover the entire pupil of the eye.

Over the course of the work mentioned above, several different scanning systems have been used to scan the focal region through the samples. One method was a galvanometer, using two mirrors located at the entrance pupil to the optical system to change the angle of the light entering the system, thereby changing the position of the focal region within the focal plane. This method allows for very high position accuracy and velocity control but is limited to the object size of the objective (generally less than 300 micrometers diameter). While such a small object size can still be useful for some tests, such as determining what actually changes in the material, it is more difficult to write a full 8 mm structure because of the complicated stitching necessary to write the 8 mm diameter. Additionally, stitching boundaries may present some scattering, affecting visual quality. Another method was using two orthogonal piezo-stepper stages to translate the sample instead of translating the focal volume. This gave the requisite scanning size but it was discovered that the stages used had significant higher frequency variations in scan speed resulting in high frequency RI fluctuations that significantly diminish the optical quality resulting structures \cite{5}. Also, the setup required the
The most recent method used was a flexure-based system that used an objective attached to a carriage driven by a voice coil (VC) motor and guided by flexures. The first iteration of this scanning modality used a commercial vibration exciter as the flexure-VC assembly. This provided much better velocity consistency at the expense of control due to the low frequency cutoff of the system. This first prototype also did not have the requisite stroke, but greatly improved results were achieved in living cat cornea using that system [4]. To correct the issues with the first prototype but continue with the advantages of a flexure-based system, a custom flexure stage was designed and characterized [5].

CUSTOM SCANNING SYSTEM
The custom scanning system that was designed and built has two major components. The first is the mechanical scanner comprised of the flexure stage and two commercial stages to achieve the remaining two degrees of freedom. The second major component is an intensity control module comprised of an acousto-optic modulator and focusing optics.

Mechanical Scanner
The mechanical scanning head is composed of an objective attached to a moving carriage. The moving carriage is guided by folded parallelogram flexures. The folded parallelogram design was chosen to limit the size of the footprint and provide for a flatter profile that enables easier beam routing. The carriage is driven by four VC motors mounted inside the carriage with two pushing and two pulling at any given time. The flexure and VC assemblies are mounted to a vertical axis stage (Newport GTS30V) which is in turn mounted to a linear stage with its axis of translation perpendicular to that of the moving carriage. The scanner is shown in Fig. 1.

For each mechanical axis, it is necessary to have four degrees of freedom for aligning the laser beam. This results in a pair of kinematic mirror mounts for each turn of the optical axis to ensure that the optical axis remains parallel to all of the respective mechanical axes. This is important to limit beam walk when entering the objective which would result in inconsistent performance throughout the range of motion of each of the mechanical axes.

FIGURE 1. Scanner assembly with attached microscope objective.

FIGURE 2. Interferometer setup used to characterize the flexure.

Using the setup shown in Fig. 2, gain curves of frequencies from 1 Hz to 50 Hz were measured. The natural frequency of the flexure from these gain curves was measured to be 26.6 Hz without the objective attached and 18.0 Hz with the
It was also discovered that when driven at lower frequencies and higher input voltage amplitudes the higher odd harmonics would start to appear in the waveform. As shown in Fig. 3, only the odd harmonics grow over time. If the frequency of the third harmonic is past the -3 dB cutoff then the resulting displacement of the flexure is purely sinusoidal.

We believe that the distortion of the waveform evident in Fig. 3 is caused by thermal distortion of the flexures which comes to steady state after approximately 5-6 minutes of continuous operation. The waveform starts purely sinusoidal when the flexure first starts to oscillate. The thermal distortion is caused by the large amount of heat dissipated into the coils which are attached to the moving carriage. This design was chosen as opposed to attaching the field assemblies to the moving stage because we were trying to maximize the natural frequency and the field assemblies are four times more massive than the coils. For future iterations, either the orientation of the field and coils assemblies must be flipped or a thermal management system must be employed.

We have measured a maximum stroke of 9 mm with no high frequency velocity variations. We have written some preliminary structures in hydrogels, one of which is shown in Fig. 4. The structure shown in Fig. 4 was written using a constant laser intensity and demonstrates the size of structures that can be written with this flexure. There is some evidence of damage at the edges where the flexure must slow down to turn around. This will be eliminated using the laser intensity control system described below.

Figure 3. Sample displacement and velocity response with corresponding Fourier Transform to sinusoidal input of flexure with objective attached. Input is 4 Hz with an amplitude of 1.5 V. Measurement was taken after six minutes of continuous operation.

Intensity Control

Originally, patterns were written using just a shutter to eliminate the turnaround points where the material could be burned due to the accumulated thermal energy. The refractive power from those structures was achieved with just the RI change from the changing translation speed of the first prototype of the flexure. This allowed for a structure with power, but does not allow for control of the structure being written. To completely control the RI changes that are written into the materials, it is necessary to also control the intensity of the laser beam throughout the scanning process. This has been achieved using the first diffracted order from an acousto-optic modulator (AOM).

In either case, the simple shutter or the AOM for complex intensity control, it was necessary to calibrate the timing of the system to account for the mechanical phase delay in the flexure. This was done using a position sensing detector (PSD) and a photodiode setup as shown in Fig 5.

This flexure system is promising for our intended application where a stroke >8 mm is needed.
FIGURE 5. Setup for calibration of shutter/AOM timing relative to flexure motion.

The PSD was used to determine the timing of the flexure while the photodiode measured whether the laser was passing through the objective. The signals from both were measured using an oscilloscope to compare the timing. A sample oscilloscope reading is shown in Fig. 6. The phase delay of the signal passing to the shutter or AOM was then adjusted to such that the times during which no light was passing through the objective were centered on turnarounds of the flexure.

As shown in Fig. 7, we were able to achieve an offset of less than 5 µm. This is sufficient for our current research. In the future, we will likely need to improve this but that should be straightforward since we are not at the sampling limit of our program yet.

CONCLUSION AND FUTURE WORK

With the AOM calibrated to the movement of the flexure, it is possible to write any arbitrary intensity profile across the entire region of writing. This will allow not only the correction of optical power and astigmatism in the eye but also possibly of higher order aberrations as well.

FIGURE 6. PSD and photodiode signals used to calibrate shutter/AOM. The low signal section of the photodiode is shifted using a delay on shutter/AOM to position it over the turnaround points.

Currently the AOM and flexure are operated in open loop, which should be sufficient to write basic patterns. The capability to measure the movement of the flexure in real time was included in the design but has not been implemented due to limitations in signal processing at high frequencies. Once implemented, it will allow closed loop control so that the AOM can correct for any velocity departures from a sinusoid, such as those demonstrated earlier in Fig. 3.

ACKNOWLEDGEMENTS

The work has been supported by Bausch and Lomb with support in part by CEIS, an Empire State Development-designated Center for Advanced Technology and an internal SAC Incubator Program. The authors are grateful to Dr. Krystel Huxlin, Marge DeMagistris, Adam Ivansky, and Gustavo Gandara-Montano for many fruitful discussions regarding this work.

REFERENCES

ANALYSIS OF TEMPERATURE DISTRIBUTION IN BALLSCREW SYSTEMS BY THE FINITE ELEMENT METHOD

Lei Cao\(^1\), Chun-Hong Park\(^2\), and Sung-Chong Chung\(^1\)

\(^1\) Hybrid System Design and Control LABoratory
School of Mechanical Engineering
Hanyang University, Seoul 133-791, KOREA
\(^2\) Intelligent Manufacturing System Division
KIMM, Daejeon 305-343, KOREA

ABSTRACT

Finite element (FE) method is applied to study temperature distribution analysis in ball screw systems. For accurate modeling and analysis, heat generation mechanism of ball screws as well as temperature model is accurately derived through parametric modeling and thermal contact conductance (TCC) analysis at the nut-shaft interface. To verify the developed FE model, experiments are conducted for key temperature measurements.

INTRODUCTION

As ball screws have high efficiency, stiffness and precision, they have been used for precision motion transfer elements in the machine tool and manufacturing industries. However, friction torque at the nut-shaft interface generates heat during working. Thermal deformation error due to the heat deteriorates positioning accuracy of ball screw-driven servos. In order to compensate for the thermal error without using extra linear scales, accurate estimation of the thermal expansion and its thermal stiffness is required for precision positioning [1-4].

To calibrate the thermal expansion of the ball screw accurately without using extra sensors, whole temperature measurement of the ball screw according to assembly and operating conditions are required first. However, it is extremely inefficient and almost impossible to acquire the whole temperature distribution by measuring temperature at every point. Hence, a thermal error model estimating the whole temperature and error from the mathematical model according to assembly and operating conditions is required [2-6]. FE method and finite difference model (FDM) have been studied to solve above problems [2-3, 5].

In this paper, contrary to previous researches [3, 5], a parametric FE model is devised to analyze temperature in the ball screw systems. Heat generation mechanism of ball screws as well as thermal analysis is studied accurately through parametric modeling and TCC consideration at the nut-shaft interface. To verify the developed FE model, experiments are conducted through temperature measurements on the test rig. ANSYS parametric design language (APDL) tool is applied for the FE analysis. Ball slip, viscous friction and rolling contact friction effects, as well as natural and forced convection coefficients of the ball screw are applied through the developed thermal characteristics identification method [4].

THERMAL ANALYSIS

Fig. 1 shows an axisymmetric finite element model of the ball screw system. Thermal and structure coupled 4,500 elements with about 1mm mesh size is applied for FE analysis. To simulate the feed rate, reciprocating motion and stroke, APDL is applied as well. Temperature distribution according to operating conditions is computed on the following assumptions:

i) Screw shaft is a solid cylinder.

ii) Heat flux generated at the nut-shaft interface and support bearings are uniform between sample intervals.

iii) Convection coefficient is uniform during constant feedrate and changes according to moving speed.

FIGURE 1. Axisymmetric finite element model.
iv) Balls and grease between the nut and the shaft are simplified as a heating element. TCC is uniform and depends upon preload and thrust force, and specific heat is 0.

In the ballscrew systems, support bearings generate frictional heat given by Eq. (1). Ballscrew nut-shaft interface generates frictional heat according to assembly and operating conditions by Eq. (2). Convection heat flowrate on the screw shaft is given by Eq. (3).

\[Q_{br} = 1.047 \times 10^{-4} \omega T_f r^2 \]
(1)

\[Q_{ba} = 1.047 \times 10^{-4} \omega T_f r^2 \]
(2)

\[Q_{conv} = hA'\left[\theta(t) - \theta_a(t)\right] \]
(3)

where \(\omega \), \(T_f \), \(h \) and \(A' \) are rotational speed, friction torques, convective heat transfer coefficients and surface areas of the ballscrew shaft, respectively. Ambient temperatures \(\theta_a \) are measurable disturbances.

In the FE model, heating element means rolling contact between grooves and balls of the ballscrew. Across the rolling joints at the nut-shaft interface, heat transfer reveals nonlinear behavior due to the preload and thermal conductance changes during operation. These phenomena means TCC is time-varying and multivariable across the interface. However, in this paper, TCC is time-invariant and constant on the nut-shaft interface. In addition, estimation of these variables is conducted through some modification of the previously developed inverse heat and key thermal characteristics estimation methods [1, 4, 6-7].

ESTIMATION OF KEY PARAMETERS

To obtain key thermal parameters according to the assembly and operating conditions, the experimental setup shown in Fig. 2 is used for the modified inverse analysis procedure [4]. Some thermocouples, torque sensors, heat flux sensors, and a data acquisition system is applied for the inverse heat analysis. To estimate TCC, drilling is used to make holes on the nut and shaft in axial and radial directions. Iterative estimation processes of heat fluxes as well as tuning procedures of the FE model have been conducted to obtain key parameters. Validity of the developed FE model is to be confirmed through experiments.

FIGURE 2. Experimental setup.

FIGURE 3. Measured nut temperatures at federates of (a) 1.25 m/min, (b) 2.5 m/min and (c) 3.75 m/min.

FIGURE 4. Nut temperatures rise.
EXPERIMENTS
Double-nut ballscrew with shaft diameter 16mm, lead 5mm, stroke 100mm and preload 760N is applied for experiments. Fig. 3 shows temperature measurements on the nut at feedrates of 1.25, 2.5 and 3.75 m/min for 3 hours rotation and 3 hours rest. Fig. 4 shows relative temperature rise of nut for 3 hours heating process. Up to 50 minutes, temperatures rise rapidly. After 50 minutes temperatures converge to steady state. This confirms that thermal deformation error is reduced if we use the machine after proper warm-up.

FE ANALYSIS
Fig. 5 shows temperature comparisons between experiments and FE analysis at feedrates of 1.25, 2.5 and 3.75 m/min. They show good agreement. Fig. 6 shows simulated temperature distributions for 3 hours reciprocation. Maximum temperature occurs at the nut-shaft interface during moving in the ballscrew system. These confirm that the devised FE model of the ballscrew system is accurate to simulate temperature distribution of ballscrew systems.

CONCLUSIONS
In this paper, FE temperature distribution analysis of ballscrew systems has been conducted through accurate modeling of frictional heat and TCC at the nut-shaft interface.

FIGURE 5. Measured and computed nut temperatures at feedrate of (a) 1.25 m/min, (b) 2.5 m/min and (c) 3.75 m/min.

FIGURE 6. Temperature distributions in the ballscrew system.
Key thermal parameters such as convection heat coefficient, frictional torque and thermal contact conductance at the nut-shaft interface as well as frictional heat of support bearings are estimated through inverse heat analysis linked with experiments. To describe reciprocating motion in the moving stroke accurately, APDL tool is applied for the FE analysis. Experimental results confirm accuracy and validity of the devised FE modeling method.

ACKNOWLEDGEMENT
This research is supported by KIMM, and Ministry of Science, ICT and Future Planning, Korea.

REFERENCES
ABSTRACT
Transient temperature distribution and thermal deformation of the shape element of a giant floor type boring machine are computed from finite element analysis (FEA). Using time series input and output data obtained from the FEA, thermal deformation transfer function (TDTF) is obtained through a black-box type system identification method. Applying the identified TDTF to the CNC, real-time compensatory error control is to be realized accurately. Validity of the proposed TDTF modeling is confirmed through FEA.

INTRODUCTION
Giant floor type boring machines are widely used in construction, oil field, wind energy, plant and shipbuilding industries. To make giant machining volume, they are made of long floor bed, huge column, boring and milling spindle assembled on the ram as shown in Fig. 1. Its machining accuracy depends upon deviation from the planned relative movement between the tool center point (TCP) and the workpiece. This relative error is called the volumetric error. It comes from joint errors of moving axes and shape deformations from the machine tool structures. As the stroke range is over several meters and the workpiece is huge, machining time takes several hours. Contrary to small and regular machine tools, volumetric error of the mega machine tool degrades machining accuracy severely. This error comes from non-repeatable joint and shape deformation errors according to internal and external heat sources. In previous researches [1-2], to estimate thermal deformation of the mega machine tool, kinematic error models were formulated with first order transfer functions. Thermal gains and time constants of the transfer functions were formulated through heuristic approach [2].

FEA has been applied to thermal design of small-size machine tools. Haitao, et al. applied FEA to study thermal behavior of a turning spindle [3]. Josef Mayr, et al. applied FDM-FEA to analyze thermo-mechanical machine tool behavior [4]. Modeling of thermal behavior of a two-axis tilting rotary table for multi-axis machine tools was studied by the finite element method for predicting machine tool error in heating process [5]. They have used the FEM models for possible change of design and modification of materials.

Contrary to such thermal behavior analysis and design of machine tools using FEM, real-time thermal analysis as well as compensatory control of machine tools through TDTFs and mathematical thermal deformation models are required for CNC machine tools [6-7]. However, to formulate such mathematical error models regarding the giant machine tool through experiments is very difficult, expensive and time consuming. Derivation of TDTFs according to internal and external heat sources analytically in the discrete-time domain is required through data acquisition and fitting of input and output data without experiments.

FIGURE 1. Coordinate systems of the floor type boring machine.
In this paper, to identify accurate TDTFs of the shape error elements according to ambient and internal heat inputs without experiments, derivation procedure of TDTFs for the column element of a giant floor type boring machine is conducted through FE analysis and black-box type system identification methods. ANSYS is applied to compute temperature distribution and thermal deformation of the column unit.

FEA OF SHAPE ERROR ELEMENT

Fig. 1 shows schematic diagram of the giant floor type boring machine. It consists of the floor bed, column, head, ram, etc. As the height of the machine is over 15 meters, thermal deformation behavior of the column is a dominant shape error element. For accurate thermal deformation modeling of the shape element in the column unit, ambient temperatures as external heat inputs are measured every 2m height above the ground level in the factory as shown in Fig. 2. Fig. 3 shows measured ambient temperatures for 96 hours. Temperature difference between bottom and top is 2~3°C. Diurnal range of 6~9°C generates time variant thermal deformation of the column. Heat flux generated from the head unit according to operating conditions acts as internal heat sources.

Fig. 4 shows a FE model of the column. For accurate thermal deformation analysis, it is divided into 20 parts. Ambient temperatures of each part is calculated by linear interpolation between the bottom and top temperatures. Fig. 5 shows transient thermal deformation results due to ambient temperature and operating conditions (12 hours heating and 12 hours cooling), respectively.

IDENTIFICATION OF TDTFs

TDTFs of shape error elements are composed of environmental and operating models. Using single-input and single-output approach, a specific height ambient temperature becomes input variable, and thermal deformation of the coordinate origin of the shape element becomes output variable for the environmental model. For the operating model, input is heat flux generated from the head unit, and output is the corresponding thermal deformation at the coordinate origin. By collecting input and output data according to sampling interval, and using discrete modeling method [8], dynamic thermal error model is obtained as shown in Fig. 6 and Fig. 7. Fig. 6 compares FEA and modeled TDTF...
results regarding ambient temperature. Fig. 7 shows them regarding operating conditions when step type heat flux is generated from the head unit. Identified TDTFs show very similar deformation behavior comparing with the FEA results as shown in Fig. 6 and Fig. 7. Identified environmental TDTFs converted to continuous time domain in each axis are given by

\[
TF_{x}^{e}(s) = \frac{0.002014s + 8.547 \times 10^{-5}}{s^2 + 0.04101s + 5.08 \times 10^{-6}}
\]

\[
TF_{y}^{e}(s) = \frac{0.0123}{s + 0.0006817}
\]

\[
TF_{z}^{e}(s) = \frac{-1.803s^2 - 0.00173s - 4.181 \times 10^{-8}}{s^3 + 0.01535s^2 + 3.321 \times 10^{-5}s + 1.593 \times 10^{-9}}
\]

Operational TDTFs with respect to operating conditions of the machine tool in each axis are given by

\[
TF_{x}^{o}(s) = \frac{0.08966s^2 + 0.00551s + 4.034 \times 10^{-7}}{s^3 + 0.02932s^2 + 0.00901s + 4.31 \times 10^{-9}}
\]

\[
TF_{y}^{o}(s) = \frac{0.0002523}{s + 7.73 \times 10^{-8}}
\]

\[
TF_{z}^{o}(s) = \frac{0.1275s^2 + 5.216 \times 10^{-5}s + 3.921 \times 10^{-9}}{s^3 + 0.00986s^2 + 3.395 \times 10^{-5}s + 1.673 \times 10^{-10}}
\]

VERIFICATION OF TDTFs
To verify the identified TDTFs, a new 24 hours test procedure including both external heat source and internal heat source is proposed. External heat source is 24 hours ambient temperature in the factory. Internal heat source is composed of the 4h heating, 5h cooling, 7h heating and 8h cooling procedures. Fig. 8 shows thermal deformations estimated by the TDTFs and FEA processes. Maximum deviation of 15 μm occurs in X-axis. However, they match very well in each axis. This confirms the verification.

CONCLUSIONS
Formulation process of TDTF for the column unit of a giant floor type boring machine is conducted by using FEA. Ambient temperatures and heat fluxes from the head unit are applied as external and internal heat sources, respectively. Dynamic error models are derived from collected input and output variables through the black-box type discrete modeling technique. It is confirmed that identified TDTFs work very well for estimating time variant thermal deformation. The developed procedure is applicable to not only identification procedure of TDTFs during experiments, but also real-time compensatory control of machine tool thermal errors.
FIGURE 7. Comparisons of TDTFs and FEA results regarding operating conditions in X, Y and Z axes.

FIGURE 8. Verification procedure of identified TDTFs in X, Y and Z axes.

ACKNOWLEDGEMENT
This research is supported by MOTIE, Korea and HNK MACHINE TOOL CO. LTD.

REFERENCES
INTRODUCTION
An investigation into the system level efficiency of flexible hull, undersea vehicles shows values as low as .12%, as estimated on page 114 of “Design of Biomimetic Compliant Devices for Locomotion in Liquid Environments”. (Alvarado) This was found to be the result of resistive power dissipation in the actuators, which dissipated 99.45% of their input power. (Alvarado) The transmission mechanisms that control the motion of the propulsive hull were also estimated to dissipate 43% of their input power (Alvarado). This work investigates actuation schemes to minimize these losses.

To reduce the resistive power dissipation, an open loop, series-elastic drive was designed. This demonstrated 70% efficiency against a viscous load (Sun), however the hydrodynamic efficiency of such a scheme would be limited by its ability to track predefined swimming kinematics.

A direct drive Lorentz force actuation scheme was also studied, and proved to eliminate the need for intermediate power transmission elements. However, without the equivalent of a gearbox these actuators operated outside of their optimum operating point. This resulted in a modest efficiency (~10%) and a torque limit an order of magnitude too low. (Church)

The current configuration under study uses a high power rotary actuator to provide the majority of the power required for locomotion. This power is distributed along the tail through the use of passive elements. Anterior joint motion is supplemented by small, low power actuators at each joint. Experiments will be done to show that such a configuration allows for a reduction of transmission losses, and that the inherent efficiency of geared rotary actuators is maintained. Additionally, this scheme will allow for conventional control system design in order to track the kinematic trajectory of Thunniform swimming.

An efficient, flexible-hull, undersea vehicle would offer many benefits including non-invasive exploration of deep sea habitats, long distance underwater travel, discrete underwater travel, and high maneuverability.

BACKGROUND
To increase the efficiency of the flexible hull machine replicating the motion of Thunniform swimmers, a model of the interaction pressure between the water and the solid body (Eq 2) was integrated along the surface of the robot to derive the expected reaction moment on the rotary joints of the robot. This model was adopted from the analysis of Alvarado in “Design of Biomimetic Compliant Devices for Locomotion in Liquid Environments”.

\[
h = (c_1 + c_2 x + c_3 x) \cdot \sin(w \cdot t - k \cdot x).
\]

\[
L_y = m \cdot \frac{\partial^2 h}{\partial t^2} + 2 \cdot U \cdot m \cdot \frac{\partial^2 h}{\partial t \partial x} + U^2 \cdot m \cdot \frac{\partial^2 h}{\partial x^2}.
\]

Here “m” is the added mass of the surrounding fluid, “U” is the forward speed of the robot, “h” is the lateral displacement of the robot’s spine, “x” is the position along the robot’s spine, “w” is the swimming frequency, “k” is the wave number, and “L_y” is the linear pressure, assuming a uniform profile for the machine to simplify the analysis.

The reaction forces were analyzed using a free body diagram of the system which also accounted for the inertial effects of the four rigid links composing the machine, assuming perfect tracking of the desired motion. This resulted in a system of moment balance equations.

\[
l_t \cdot \alpha_t = M_{2,t} + T_{k3} + T_{b3} + (l_{c,g,3} - l_3) R_y + \frac{(L - l_3)}{2} \sin(\theta_3) T + \int_{l_3}^{l_1} (x - l_{c,g}) L_y \, dx
\]

\[
l_2 \alpha_2 = -M_{2,t} + M_{2,1} + T_{k2} + T_{b2} - T_{k3} - T_{b3} + (l_3 - l_{c,g,2}) R_y + (l_{c,g,2} - l_2) R_y + \int_{l_2}^{l_1} (x - l_{c,g}) L_y \, dx
\]
This system of equations resulted in three expressions approximating the expected torque profile required at each joint to approximate the biological motions of swimming. Based on the phase between the required torques, the link angular positions and their angular velocities, damping and stiffness coefficients were selected for each joint to minimize the RMS power required by the actuators in our design. (See Figure 1)

Based on the initial power estimates, we sized appropriate actuators and designed the structure based on their geometric constraints. The torque profile estimate and fluid-body interaction model will then be improved based on experimental data measured with the initial prototype, to be built shortly.

SERIES ELASTIC ACTUATOR

Results from the semi-passive configuration are forthcoming; however measurements of the efficiency of the series elastic actuator compared to those of the direct drive actuator show its potential superiority. (See Figure 2) (Sun, 2013)

\[l_1 \alpha_1 = -M_{2,1} + M - T_{k2} - T_{b2} + T_{k1} + T_{b1} + (l_2 - l_{2, cg}) R_{y2} - (l_{cg,2} - l_1) R_{y1} + \int_{l_1}^{l_2} (x - l_{cg}) L_y \, dx \]
\[l_1 \alpha_1 = -T_{k1} - M - T_{p1} - (l_1 - l_{cg,1}) R_{y1} + \int_{0}^{l_1} (x - l_{cg}) L_y \, dx. \]

(5)
(6)

Figure 1: Plot of the expected torque profile along with a profile representing the phase of the possible spring torque and damping torque.

Figure 2: Top: This is an image of the experimental setup that Sun used to measure the efficiencies of a series elastic/pulse drive and a direct drive against a variety viscous loads. Bottom: Plots of the energy efficiency for both the pulse gear drive and the conventional gear drive. A single stage gearbox with a ratio of 4.4 was used for both the actuators. The pulse gear drive achieves approximately 70% energy efficiency while the energy efficiency of the conventional drive ranges from 10% to 15%. Taken from (Sun).

This shows that for the same position trajectory, a series elastic drive can potentially have energy efficiency significantly greater than that of a purely rigid drive. This is because the duration of the applied force is shorter for a series elastic drive, resulting in less resistive power loss in the actuator, as seen in Figure 3.

Figure 3: Plot of driver motor instantaneous power. Taken from (Sun).
This shows that the electromagnetic power applied to a series elastic drive has greater amplitude but shorter duration than the power applied to a rigid drive.

LORENTZ FORCE ACTUATOR

A direct drive actuation scheme was investigated as a baseline for future research. (Church, 2014) A highly scalable design for modular Lorentz force actuators was developed. The actuators were designed to directly drive tail foil sections, or vertebrae, in an oscillatory motion to provide thrust. The design process was automated to facilitate implementation in different sized vertebrae. This automated design process was used to define the dimensions of the actuators implemented in the test setup shown in Figure 4, obtained from Church’s “Modular Lorentz Force Actuators for Efficient Biomimetic Propulsion of Autonomous Underwater Vehicles”.

The test stand pictured above was constructed to evaluate both the static and dynamic performance of the actuators. The prototype actuators achieved the required motion and demonstrated modest performance at a variety of load levels, see Table 1. (Church)

<table>
<thead>
<tr>
<th>Damping (N \cdot m \cdot s) (rad)</th>
<th>RMS efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.091</td>
<td>1.4%</td>
</tr>
<tr>
<td>0.050</td>
<td>2.3%</td>
</tr>
<tr>
<td>0.012</td>
<td>10%</td>
</tr>
<tr>
<td>0.0067</td>
<td>16%</td>
</tr>
</tbody>
</table>

Table 1: A table of the viscous loads used to test the dynamic efficiency of the actuators.

The Lorentz force actuators were designed to be constrained by only the frame of the robot. This clever choice of constraint eliminated the transmission elements between the actuator and the robot, which also eliminated this loss mechanism. However, in order to operate at an optimally efficient surface speed given the predefined joint trajectory, some sort of transmission element appears necessary. This need is suggested by the modest efficiency of the 4 watt prototype actuators shown in Table 1. (Church)

References

A WIND ENERGY PLAN THAT FITS AMERICA'S RESOURCES

Drew J. Devitt, CTO
American Offshore Energy
Aston, PA, USA

SUMMARY

The return on investment from utility scale wind turbines can be improved by a paradigm shift from Horizontal Axis Wind Turbines (HAWT) to Vertical Axis Wind Turbines (VAWT) because they may be made to float easily, allowing inexpensive siting in Class 6 winds rather than the class 3 or 4 wind near shore. Recent technology advances in high performance racing yacht designs can be borrowed and tension and compression principles, (like crossing a sail boat mast with a bicycle wheel) to build high strength, light weight structures. These factors more than make up for the lower efficiency of VAWT design and provide a doubling of the capacity factor.

Using radial air or water bearings to support the rotor at the perimeter, VAWT’s are less expensive and faster to build, they would have just one moving part, the rotor. Direct drive generation at the perimeter may be employed to eliminate the whole drive line. Deep water siting allows for several methods of energy storage (pumped hydro or buoyancy).

The turbine center of gravity is low with the generation components near the bottom of the structure, this makes for easy service at sea and the shallow draft allows complete erection at port and the ability to tow the turbine to sea or back to port in day for major service.

Because the turbine is perimeter supported at 3 points with hydrostatic bearing technology there are no oil based systems on board and a whole farm worth of turbines could be sunk by remote control in the face a hurricane to safely ride out the storm below the surface. The turbine could be re-commissioned with little if any direct intervention. These two points dramatically reduce risk and so cost of insurance and financing. This is a transformational and disruptive technology for the wind industry which solves multiple Energy Policy Issues.
Bearing technology with the capacity and speed to support a large swept area at the perimeter has not previously been available. But now New Way Air Bearings is offering externally pressurized sea water based bearings. The guide bearings for hydroelectric turbines often use water based bearings to guide their rotors. It is recognized that such a rotor in a strong breeze will distort, not remaining flat or round. To cope with these distortions a 3 point axial support is provided. Four 1 meter wide by 2 meter long bearings are flexure mounted and ganged together on a whiffle tree at each of the three supports. The radial bearings mount in a similar fashion and cope with the change in the radius from distortion by having an axial length that is a very small percentage of the circumference.

As noted before the rotating aerodynamic structure is constructed with tension and compression principles. The three point float system is also constructed using tension and compression principles in the rotor structure is coupled to it kinematically. In this way the float system can be made exceptionally light when compared to a float system that must support a large cantilevered horizontal axis wind turbine.

A method for manufacturing large rotors for VAWTs with fluidic bearing races can be achieved through the following method. Pre-rolled or bent steel is welded together to comprise the rotor. There is a center abutment that is fit with a large spindle. The spindle may be a rolling element, plane bearing, hydrostatic or air bearing spindle for example. This spindle is used as a crane to position the steel segments of the rotor around the perimeter. The spindle also provides a way to measure the position of the steel elements before welding.

The steel segments are welded together. The center spindle is designed so that using multiple arms, it may support the entire steel rotor. The center spindle is fitted with a motor for driving the rotor. One of the perimeter pedestals is fit with modular machine tool slides. Spindles and tools may be mounted to the slides in order to precision machine the rotor in-place. After the machining operation, these slides, or another set of slides, are fit with a flame spray apparatus. The flame spray apparatus is used to deposit a coating of nickel, or other appropriate noncorrosive material, onto the prepared and machined bearing surfaces on the rotor. This coating is built up to be more than a millimeter thick. The flame sprayed nickel is then precision machined or ground. In this way a noncorrosive bearing surface with the appropriate precision can be created in the assembly yard. This avoids the problems associated with having to transport such a large rotor. Fluidic bearings are then used to kinematically support the rotor while it is spinning as a wind turbine.
HVDC PERIMETER GENERATION

Floating turbines allow for wind farms to be sited further from shore, in deeper waters and for lower installation costs. But, as discussed previously, a floating, perimeter designed VAWT can lower construction and installation costs even further. Once installed, the perimeter designed floating VAWT could be integrated with traditional magnetic induction generators, but, by combining the perimeter VAWT with an emergent electric field technology such as a high voltage DC direct drive generator, offshore wind farm costs can be lowered still further.

ELECTRIC FIELD TECHNOLOGY

EFT uses the inherent electric field of an electron, rather than an induced magnetic field, and, because the EFT machines as developed by EFM are based on forces from stored or static charges, they are capacitive. As a generator, EFT technology permits the production of high voltage, low current DC, rather than low voltage, high AC current as is the case for magnetic machines. For this reason, EFT eliminates steel laminations, copper coils, permanent magnets and REEs. Also, because the electric field is inherent, rather than an induced field, the di/dt component of magnetic induction power production is also eliminated, which means the EFT generator is able to produce power at any shaft speed that is greater than zero. For wind turbines, this means the efficiency of an EFT generator increases at slow speeds, because current (I^2R losses) are lower at slow speeds.

An EFT generator produces power in three primary steps:

1. Charge: Apply a low voltage DC (LVDC) source to aligned conductive surfaces (poles) of a phase. Due to the capacitance between the aligned conductive surfaces, charge will flow from the LVDC source to the conductive surfaces to equalize the field.

2. Compression: Due to wind action from the turbine blades move the charged conductive surfaces out of alignment. This movement out of alignment occurs, forces the isolated charge into an ever smaller area which increases the stored energy and voltage between the plates.

3. Discharge: Once the voltage between the conductive surfaces has reached a predetermined value connect the conductive surfaces to a HVDC bus.

1) Apply LVDC for Charge Source

2) Compress charge/field from wind action

3) Extract Energy - HVDC

Note: Charge is conserved, but compressed field has greater voltage and energy
ECONOMIC IMPACT

The floating VAWT has numerous significant advantages regarding job creation; first, the capital intensive supply chain needed to manufacture large roller bearings, gears, forgings and castings would not be required. Steel fabrications and fiberglass components with relatively low capital equipment needs are all that would be required and so a supply chain based on these components would scale much more quickly. The labor skill sets could also be filled quickly and practically deployed in many more seaside locations putting Americans to work at a faster rate.

This means that all of our old shipbuilding sites and cargo transfer ports become excellent candidates for wind turbine manufacturing sites. Once one successful manufacturing facility has been developed it could be replicated using a franchise model. Half a dozen of these sites could be in operation quite quickly on each of our coasts and though the great lakes. This is a great way to make useful clean energy jobs in the midst of our old manufacturing infrastructure. This would also dramatically speed our capability to reach aggressive RPS goals and leapfrog our European and Asian competitors in a technology that suits our resources.

Floating VAWTs will also eliminate the need for the purpose built ships to assemble sea floor mounted HAWT. This is very important because having never installed a foundation based offshore wind turbine, the US lacks a fleet of the jack up ships that are necessary. Unlike England we cannot hire foreign flagged ships to work in US territorial waters as the Jones Act, an old piece of legislation meant to protect US maritime jobs, does not allow it. We do have a ready fleet of ships capable of towing floating turbines out to mooring fields though.

By eliminating a seafloor foundation, the cost structure of supply-chain issues and the costs-to-assemble and service turbines at sea, are dramatically improved. As noted previously, the farther away from NIMBY Issues and State jurisdictions the better the wind resource becomes, but still the ability to tow a turbine back to the factory in a single day mitigates risk, reducing both insurance and banking costs for projects.

This VAWT design for floating offshore wind turbines is not just consistent with, but enables, the national policy direction to harness off shore wind by eliminating political, cost and technical roadblocks as mentioned above.

Because the vertical axis wind turbine does not require a gearbox the capital-intensive gearbox supply chain is not required. Conventional shipbuilding and boatbuilding technologies are all that is required in the way of manufacturing facilities. This means that all of our old shipbuilding sites and cargo transfer ports become excellent candidates for wind turbine manufacturing sites. Once one successful manufacturing facility has been developed it could be easily replicated using the franchise model. Half a dozen of these sites could be in operation quite quickly on each of our coasts and though the great lakes. This is a great way to make useful clean energy jobs in the midst of our old manufacturing infrastructure. This would also dramatically speed our capability to reach aggressive RPS goals and leapfrog our European and Asian competitors in a technology that suits our resources.

Because the wind farms for the VAWT’s would be located in deep water which have been off-limits to HAWT, there is not an either-or choice between the turbine technologies. VAWT’s may be seen as an additional layer of wind energy capacity that can be built on top of the already existing land based HAWT wind turbine manufacturing industry. VAWT’s will be like the icing on the cake, going after the sweetest winds in the easy to site areas with the lowest cost turbine technology.
ENERGY IN THE WIND

Utility scale wind power generation relies almost entirely on horizontal axis wind turbines. Vertical axis wind turbines have been discredited for having relatively low efficiencies. However, recent developments in bearing technology and the trend in Mechatronics to eliminate gearboxes suggest another look at VAWTs could solve many technical and policy issues for the wind power industry including how to construct economical floating wind turbines.

Conventional horizontal axis wind turbines are optimized for relatively high wind speeds. Because energy in wind is a squared function of its velocity this makes sense, but it results in "peaky power" being delivered to the grid. For instance in class 4 wind the average wind speed is 7.2 m per second but a typical wind turbine is optimized for 14 m per second wind speed. This results in high megawatt ratings for the turbines but results in low capacity factors, meaning the turbine will generate its rated capacity only a small fraction of the time.

Power companies want smooth, dependable power. Their experience is almost entirely with fossil fuel and nuclear energy sources which have very predictable outputs of electricity. As the percentage of electricity generated by wind power increases so will the amount of variability that they need to account for. The spinning reserve turbines which can be fired up quickly when the wind dies represent an inefficiency that reduces the marginal value of wind generated electricity. There is a lot of money being spent trying to develop storage technologies as this would be a way to enable spreading the power more evenly across time. So far though only compressed air storage and pumped hydro-storage have the capacity to practically time shift wind energy and they are very inconvenient to implement and inefficient.

ENERGY IN THE WIND VS. TIME.

This chart plots two years' worth of wind speed data from a buoy at the mouth of the Delaware Bay. To show the distribution of wind speeds with respect to time, it shows the total hours that the wind blew at each of the speeds as a bar chart. In order to show the energy that is contributed at each of the wind speeds, we have taken the power in the wind (which is a cubed function it's velocity) and multiplied that by the time that the wind blew at that speed. Notice that the maximum energy was at 11 m/s but the wind blew at this speed only 4% of the time and half of the total energy for the year occurred on high-speed side of the energy peak in 15% of the total hours. This is why wind turbine electricity is considered spiky and needs to be associated with storage in order to be considered for base load.

TURBINE EFFICIENCY BY TYPE.

This is a classic chart describing the efficiency of different types of utility scale wind turbines. The vertical axis on the left represents turbine efficiency as a percentage of the total energy in the wind. The horizontal axis along the bottom represents the relationship between wind speed and turbine tip speed, aerodynamic turbine types having tip speeds of four to seven times the wind speed and impulse turbines with tip speeds on the order of the wind speed. Aerodynamic turbines are favored because they have roughly twice the efficiency of impulse type turbines. Impulse turbines have historically been used whenever cost, reliability or capacity factor is more important than efficiency.
Development of experimental facilities for investigations of microscopic mapping of fluid velocities

Sajad Kafashi1, Jeff Eldredge3, Kwitae Chong3, Jeffery Thousand1, Scott Kelly2 and Stuart T. Smith1

1Center for Precision Metrology (CPM),
2Mechanical Engineering and Engineering Science, UNC Charlotte, Charlotte, NC, USA
3Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California, USA

INTRODUCTION

The objective of this research is to develop an instrument for tracking particles suspended in fluid using particle imaging velocimetry (PIV) technique. The main outcome of this research is to design and build a facility that is able to track individual particles in the fluid optically so that they can be analyzed computationally, the computational part of this work is not addressed here.

The applications include sorting particles in fluids based on their geometry, size and/or density, separating cells in biological sample based on their cell type [1], or the study of abrasive particle circulation in polishing [2-5].

EXPERIMENTAL PROCESS

Figure 1 shows the general setup of the PIV experiment. The fluid is placed onto an adjustable platform to set the height of the oscillating rod relative to the bottom of the transparent container. Imaging of the particles is achieved using a long range objective, high magnification camera system. Both triggering of the camera and collection of image frames is controlled by a real-time system using LabView programming. For imaging of induced streaming flows, the particles must be of near neutral density and sufficiently small to follow the flow of the fluid (particles of \(10 \, \mu m\) to \(150\) diameter with density of \(1.01 \, g/cm^3\) are used for most of the experiments). Actuators and fixtures for illumination sources are fastened onto a rigid bridge frame that permits a range of positional orientations. Because of the small depth of field of the imaging system, two lasers are used to identify the focal plane during camera adjustment.

Shown in Figure 2 is a photograph of the experimental facility for the particle imaging studies. The three legged bridge-type frame is constructed from aluminum and serves as a rigid mount for the oscillator drive mechanism, shown in Figure 3 that attaches to the underside of the frame’s top.

Experiments require the oscillating rod to be submerged within a fluid containing microspheres with depth control. This is accomplished with an adjustable height platform actuated by a micrometer.

FIGURE 2. Photograph of PIV experimental apparatus.

Oscillation mechanism

A cantilevered rod is oscillated by a high bandwidth piezoelectric actuator (up to 5 kHz).
In most experiments, the amplitude of oscillation is increased by operating near to a resonant frequency. The n^{th} natural frequency can be obtained using Equation 1 where m is the mass of the beam.

$$f_n = \left(\frac{E I}{2 \pi m L^2} \right)^{1/2}$$

(1)

To obtain efficient energy transfer to the fibers attached to the piezoelectric actuator it is necessary to drive them at the resonant frequency. A molybdenum wire of 0.5 mm diameter ($E = 329$ GPa) has been used as the oscillating fiber with first mode frequency around 270 Hz.

To generate the drive signal at a defined frequency, a Direct Digital Synthesizer (DDS) chip programmed with a microprocessor through Serial Peripheral Interface (SPI) is used. Using an AD9833, resolution of 0.1 HZ is achieved for frequencies ranging from 1 milliHz up to than 2 MHz when using a 10 MHz lock. The flexure and mounting platform are made out of aluminum. Figure 3 shows the fiber actuator mechanism.

A block diagram of the system used to drive the PZT actuator to oscillate the rod in the experiments is shown in Figure 4. Information regarding the signal type and frequency are transmitted from Labview to a microprocessor. The class A power driver amplifies the DDS signal up to 150 volts to drive the PZT actuator.

FIGURE 3. Oscillator drive mechanism showing the oscillating rod that has its axis perpendicular to the motion of the piezoelectrically actuated flexure stage.

FIGURE 4. Automated piezoelectric driver system.

Camera positioning stage

Previously the camera manipulation to view particles at different heights in the fluid was carried out manually which made it difficult to find and adjust the focal plane at the high magnification of this system. Figure 5 shows the apparatus for the automatic positioning of the camera which is also microprocessor controlled. Three stepper motors are attached to a platform with 120 degree pitch and the combination of stepper movements provides pitch, roll and height adjustments. A universal vise is also attached to the top of this platform and is used for initial coarse alignment of the camera. Two joysticks (two-axis movement for each) are linked to the microprocessor to control the stepper motors. The analog joysticks provide direction and variable speed control of the stepper motors.

FIGURE 5. Camera positioning stage with microprocessor control.

Illumination

Illumination of particles plays an important role in recording the high quality movies with the camera. Illumination uses combinations of 40W RGBW LED high brightness sources. Figure 6
shows the circuit for the LED brightness adjustment. Work is in progress to add parabolic mirrors to the LED’s to direct light and to implement a platform for adjusting light in orientations that optimize scattering of light from particle without stray reflection from other components being transmitted to the camera.

FIGURE 6. LED brightness adjustment circuit

A right-angle prism, or 90 degree, mirror with mirror-coated surfaces is attached on an adjustable leg attached to a height adjustment stage as shown in Figure 7. The LED is attached to the same stage and shines on one side of the prism mirror and reflects towards the bottom of the rod. Images are captured by the camera while viewing via the mirror on the opposite side of the prism. This method enables only the light scattered back from the flow zone (the rod and particles in the container) to be captured. To further reduce stray light, the entire setup surrounding the flow region is painted a matte (chalkboard) black.

As shown in Figure 7, the LED is attached on an inclined plate facing towards the mirror. To direct as much light as possible to the flow zone, the optimum angle was calculated for the LED which is shown as \(a \) in Figure 7. The adjustable stage leg is utilized because the distance, \(h \), between the rod and prism is critical for the image of the rod to appear on the center of the mirror face. By placing the reflection of the rod on the center, the flow zone area captured by the camera can be maximized through orientation of the camera with respect to the prism. The optimal angle, \(a \), for LED illumination can be calculated using Equation 2, 3, and 4.

\[
b = \tan^{-1}\left(\frac{4h}{x} \right) - \frac{\pi}{4} \tag{2}
\]

\[
c = \frac{\pi}{2} - b \tag{3}
\]

\[
a = \frac{\pi}{4} + b \tag{4}
\]

By substituting the dimensions of the setup with these parameters, angle \(a \) is obtained as approximately 68 degrees.

RESULTS

Images from a recorded video of the stationary and oscillating rod are shown in Figure 8. No liquid solution was used during this experiment. The bottom images were taken after grinding the tip of the rod flat. As seen from the images, flattening the rod’s tip improved the view of the rod. When oscillated with a 270 Hz signal applied to the piezoelectric, the rod moved in an elliptical path.
Figure 9 shows an image with the rod oscillating in distilled water with microsphere particles with concentration of 42600 particles per 400 mL and diameter of 45-53 μm. Generally, movies obtained with this system showed particles close to the rod circulating either as vortices adjacent to the rod or around the oscillating rod itself. These circulating patterns were strongly dependent on the boundary conditions of this experiment. There are some particles precipitated on the glass slide that are stationary, as well as bright spots which need to be removed using digital filters.

Figure 10. Early PIV software vector data. Arrows inside the ellipses indicate the rod’s oscillation direction.
Figure 10 depicts initial PIV results from images obtained from a single-probe flow experiment for which one movie frame is shown in Figure 9. The particle velocity field is reconstructed from video frames using commercial particle image velocimetry software, Dynamic Studio, from Dantec Dynamics. Based on theoretical studies of two dimensional flows [6] it is observed that in single probe flow experiments particles will move in a trajectory forming four symmetric streaming cells around the rod. In practice, the rod is of finite length and flows are expected to depart from this ideal model in the regions near to the surface and around the free end of the rod. A four vortex pattern (often called a chevron pattern) is visible in the lower PIV velocity map in Figure 10. However, as shown in upper image of Figure 10, some experimental results shows particles following different paths. These experiments have different rods, particle concentrations and size, and the rods are located within a circular reservoir without precise positioning. All parameters in these early experiments are now being more precisely and accurately measured.

CONCLUSION
Several improvement to the experimental facility of particle manipulation project have been added. Quality of recorded videos has increased by adopting a new lightening system. Finding the focal point and manipulating the camera to capture different flow regions has been made more convenient by building a motorized 3-axis motion control stage. Changing the frequency of the rod is handled by a custom developed high resolution signal generator.

FUTURE WORK
Improvement to image quality will continue by modifying the physical setup. Once the system configuration is optimized for raw image quality, images will be processed using digital filters. One filter for instance is needed for removing particles attached to the surface of the glass slide. After filtering, particle image velocimetry (PIV) studies will be carried out and compared to theoretical models. Finally, a second rod will be added to the system for analysis.

Studies of the particle flow patterns and comparison of these to theoretical models [6] are in early stages. A more systematic study to assess the influence of boundary conditions, Reynold number dependence, and multiple oscillators flow patterns are planned.

ACKNOWLEDGEMENT
This material is based upon work supported by the National Science Foundation under award number DMI 1000656. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

REFERENCES
Estimation of Heat Generation in a Linear Motion Bearing

Gyungho Khim¹, Seong Hyun Jang¹, and Chun Hong Park¹
¹Department of Ultra Precision Machines and Systems
Korea Institute of Machinery and Materials
Daejeon, Korea

INSTRUCTIONS
Linear motion bearings are used as a feeding unit in machine tools, LCD and semiconductor systems because of high stiffness and accuracy. And they are easy to use compared with other bearings. When the linear motion bearings are used as a feeding unit for above applications, very high speed is required for high throughput. However, this makes a large amount of heat caused by friction force of the bearings, which obviously causes thermal deformation and deteriorates motion accuracy. Therefore, it is important to consider effect of heat in designing a linear motion bearing stage.

In order to predict heat generation in the linear motion bearings, we used friction force obtained while the bearings are moving. The friction force of the linear motion bearings is affected by several parameters such as external load, lubrication, preload, velocity as well as bearing type and size. So the friction measurement system of the linear motion bearings is designed considering these parameters. Then heat flow rate is predicted from the measured friction force, and temperature rise is estimated from the heat flow rate and the FEM tools. Finally, the predicted temperature rise is compared with actual measurement.

FRICION MEASUREMENT SYSTEM
Figure 1 shows a flowchart for heat prediction. First, friction of the linear motion bearings is measured using a specially designed friction measurement system under several conditions. Then, heat flow rate is calculated under assumption that a work done by the friction is converted into the heat. Then temperature distributions using FEM analysis are compared with actual measurements by thermocouples. Figure 2 shows the friction measurement system designed in this paper. It consists of two opposing linear motion guides and surrounding boxed structure for applying external load, and independent feeding unit for moving the bearings. In order to apply the external load on the bearings, two linear motion rails and bearing blocks are oppositely attached, and surrounding box typed structure is installed on the bearing blocks. The screw on the box typed structure is adjusted to apply load, and its magnitude is measured using a loadcell which is installed between surrounding box and upper bearing block. A feeding unit is installed in parallel with the two opposing linear motion guides. So, the linear motion bearings can move continuously. Another loadcell is installed between the feeding unit and surrounding box to measure the friction force of the bearings in an axial direction. The used loadcell can measure compression and tension force. Therefore the friction force is continuously measured in both directions while the bearings are moving reciprocally.

![Figure 1. Flowchart for heat prediction](image1)

![Figure 2. Friction measurement system](image2)
FRICITION MEASUREMENT RESULT
Friction characteristics of a linear motion bearing (THK HSR30R) are evaluated under several different conditions (velocity, external load, preload, bearing size). Figure 3 (a) and (b) show friction force measured with external force and velocity, respectively. The friction force increased with external force and velocity. And relationship between friction force and velocity presents typical Stribeck curve. However, we have no interest in the friction force in small velocity less than 50 mm/s because heat generation is very small in the region.

\[F_{\text{friction}} = A v_f + B F_n + C P_b + A' v_f^2 + B' F_n^2 + C' P_b^2 + A'' v_f F_n + B'' v_f P_b + C'' F_n P_b + D \]

(1)

Where, \(v_f \) is velocity of the bearing, \(F_n \) is external force, and \(P_b \) is preload of the bearing.

Figure 4 shows friction force obtained while the linear motion bearing is moving for a long time. Most importantly, the friction force is constant regardless of movement time of the bearing. Positive value in the friction force means compression of the loadcell.

![Friction force](image)

FIGURE 3. Friction force

The friction force is generalized using the Box-Behnken method with external force, velocity, and preload of the bearing, which is expressed by Eq. (1).

\[F_{\text{friction}} = 21.6 v_f + 5.5 \times 10^{-4} F_n - 4.6 P_b + 5 v_f^2 + 4.3 \times 10^{-3} F_n^2 + 5.6 P_b^2 + 4.9 v_f P_b + 5.3 \times 10^{-5} F_n P_b + 6.4 \]

(2)

TEMPERATURE MEASUREMENT AND COMPARISON
It is assumed that the friction force is transferred into heat. So heat flow rate, \(Q \), generated while a linear motion bearing is moving is predicted from the measured friction force as Eq. (2).

\[Q = F_{\text{friction}} \cdot v_f \]

From the predicted heat flow rate, temperature distributions and thermal deformations of the linear motion bearings are theoretically estimated using the FEM analysis. We compared estimated temperatures with measured temperatures in order to verify the estimated heat flow rate. Figure 6 shows temperature distributions obtained from the
predicted heat flow rate. The heat flow rate is given in contact areas between the rail/block grooves and balls. The boundary conditions are conduction inside bearings and rails, and convection between surfaces of the bearings and atmosphere.

Figure 7 shows temperature measurement positions. The temperatures are measured using thermocouples in rails and bearing blocks while the linear motion bearings are moving during 5 hours. The measured temperatures are shown in Figure 8. The predicted temperatures are well agreed with measurements by comparing Figure 6 and 8. In conclusion, heat generation during movement of linear motion bearings can be predicted from the proposed friction measurement system.

REFERENCES
Design of Compact Sensing System of VCM Spherical Actuator

Hyunchang Kim\(^1,2\), Jaehyun Park\(^2\), Siwoong Woo\(^2\) and Daegab Gweon\(^2\)

\(^1\)Department of Printed Electronics, Advanced Manufacturing Systems Research Division, KIMM, Jangdong 171, Yuseong-gu, Daejeon, 305-343, South Korea

\(^2\)NanoOptoMechatronics Lab., Department of Mechanical Engineering., KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, South Korea

INTRODUCTION

Recently, the study of spherical actuators to perform multi degree of freedom movements has increased. The spherical actuator is an electric machine that is able to tilt its shaft on multiple degrees of freedom using electromagnetic force. Various types of spherical motors have been developed. Lee et al.[1-4] devised variable reluctance spherical actuators. Yan et al.[5,6] developed a spherical actuator similar to Lee’s; their drive principles are actually synchronous.

The existing spherical actuators have sensing and guide mechanism is outside of actuators. It causes bulk size and unpractical for application. This means that new type of sensing system placed inner side of actuator is necessary for miniaturization of the spherical actuators.

For this reasons, we propose a new type of sensing system for spherical actuator to miniaturize total system. After designing, we verify the performance of proposed sensing system by comparing with rotary encoder.

CONCEPT OF THE VCM SPHERICAL ACTUATOR

Figure 1 shows conceptual design of VCM (Voice Coil Motor) spherical actuator. This spherical actuator uses VCM based on the Lorentz force principle. It is composed of a stator and a moving coil type rotor.

The stator of the actuator has eight permanent magnets and steel yoke for high uniform magnetic flux density. Yoke is divided two parts: outer yoke and inner yoke. The yokes create closed magnetic flux loop. The permanent magnets are attached to outer yoke.

The rotor and guide system is shown in Figure 2. The rotor is composed of a two degree of freedom gimbal guide mechanism and four coils to drive the tilt motions. There are two pairs of different shaped coils are used to drive the X and Y'-axis tilt motions. X-coil is made circular shape in order to getting independence from rotating motion. Therefore, spherical actuator can produce constant torque when it rotates on X-axis. It is also independent of Y'-axis rotation.
For this reason, circular coils generate the X-axis tilt torque and rectangular coils generate the Y'-axis tilt torque independently. These coils are moved with the gimbal guide mechanism. The coil jig is fixed on the shaft of the gimbal guide mechanism.

SENSING SYSTEM OF THE VCM SPHERICAL ACTUATOR

The compact sensing system is important for miniaturization of the VCM Spherical actuator. To achieve high resolution and compact size, the proposed sensing system is composed of a gimbal guide system, permanent magnet arrays and hall sensor.

Sensing mechanism

Figure 3 shows the proposed sensing system. Following the rotation of guide system, sensor system measures each axis tilt motion independently.

As shown in Figure 3, two magnet arrays with 90° phase difference are fixed on the inner yoke and hall sensors are placed on the X-axis tilt guide for sensing X-axis tilt motion. In the same way, Y' magnet arrays are fixed on the Y'-axis tilt guide and hall sensors are placed on the X-axis tilt guide.

![Figure 3. The sensing system of the spherical actuator](image)

Figure 4 shows the expected signals of two hall sensors at one axis. As tilting with X-axis or Y'-axis, two sinusoidal signals with 90° phase difference is measured. The tilting angle is calculated based on the conversion algorithm [7]. The conversion algorithm is shown in Table 1.

![Figure 4. The expected sensor signal of the proposed sensing system](image)

TABLE 1. The degree conversion algorithm

<table>
<thead>
<tr>
<th>Range (deg)</th>
<th>S1 > 0</th>
<th>S2 > 0</th>
<th>[S1] > [S2]</th>
<th>Formula for tilt angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10 ~ -7.5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-10 + tan⁻¹(S1/S2)</td>
</tr>
<tr>
<td>-7.5 ~ -5</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>-5 - tan⁻¹(S2/S1)</td>
</tr>
<tr>
<td>-5 ~ -2.5</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>-5 - tan⁻¹(S2/S1)</td>
</tr>
<tr>
<td>-2.5 ~ 0</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>tan⁻¹(S1/S2)</td>
</tr>
<tr>
<td>0 ~ 2.5</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>tan⁻¹(S1/S2)</td>
</tr>
<tr>
<td>2.5 ~ 5</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>5 - tan⁻¹(S2/S1)</td>
</tr>
<tr>
<td>5 ~ 7.5</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>5 - tan⁻¹(S2/S1)</td>
</tr>
<tr>
<td>7.5 ~ 10</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>10 - tan⁻¹(S2/S1)</td>
</tr>
</tbody>
</table>

Verification of performance

After designing the proposed sensing system, the verification of performance is necessary for replacing outside sensor. In the verification experiment, the rotary encoder is used for reference sensor. By comparing with reference data, the possibility of using the proposed sensing system is expected.

![Figure 5. The expected angle data after sensor signal conversion processing](image)
The experiment system for verification is composed of outside rotary encoder and the proposed sensing system with guide system in the spherical actuator.

Following the Y' gimbal guide, Y' tilting angle is measured by outside rotary encoder and proposed sensing system. The data measured by the proposed sensing system is converted into angle data. After signal processing, a comparison of the proposed sensing system angle data with rotary encoder angle data is represented in Figure 6. The difference between tilt angle measured by hall sensor and reference is represented in Figure 7.

![FIGURE 6. The Y'-axis tilt angle measured by rotary encoder and proposed sensing system](image)

![FIGURE 7. The difference of Y'-axis tilt angle measured by rotary encoder and proposed sensing system](image)

The X-axis measurement is independent of Y'-axis measurement. The experimental system for X-axis measurement permits only X-axis tilt motion. X-axis tilt angle is measured by outside rotary encoder and proposed sensing system. In the same way, X-axis hall sensor data is converted into angle data and a comparison of the proposed sensing system angle data with rotary encoder angle data is shown in Figure 8.

![FIGURE 8. The X-axis tilt angle measured by rotary encoder and proposed sensing system](image)

![FIGURE 9. The difference of X-axis tilt angle measured by rotary encoder and proposed sensing system](image)

Similarly, X-axis tilt angle measured by rotary encoder and hall sensor is different. The error of X-axis tilt angle is represented in Figure 9.

The proposed sensing system with guide mechanism can place the inside of VCM spherical actuator. Therefore, spherical actuator maintains compact size and does not add any outside sensor. In the actual sensing system, however, measured angle data is not same with rotary encoder. So the calibration of measured data is necessary.
CONCLUSION

In this study, a new type of sensing system using hall sensor is proposed and verified performance. As the difference between the proposed sensing system and reference rotary encoder exists, the proposed sensing system needs calibration for replacing commercial encoder. The proposed sensing system is used for compact multi degree of freedom spherical actuator. The proposed sensing system can be installed in the spherical actuator and replace rotary encoder which is set up the outside of spherical actuator.

Future work includes calibration of the sensing system and verification performances of the spherical actuator using this proposed sensing system.

ACKNOWLEDGEMENT

This research was supported by Agency for Defense Development (ADD) grant funded by the Korea government.

REFERENCES

EFFECTS OF PRESSURE PULSATIONS ON AN OIL HYDROSTATIC SPINDLE

Byron R. Knapp, David A. Arneson, Daniel D. Oss, Melvin J. Liebers
Professional Instruments Company
Hopkins, Minnesota, USA

ABSTRACT
Hydrostatic spindles and slides exhibit errors due to the ever-present pressure ripple of pumps. Design and testing of a high pressure (4 MPa) oil supply is described that results in nanometer-level spindle error. Hydraulic design guidelines derived by Viersma are experimentally verified using static and dynamic pressure ripple measurements. The root total of the Cumulative Power Spectrum (CPS) is used to verify hydraulic system performance enhancements. Best results were obtained using a suppressor and regulator close to the pump.

BACKGROUND
Positive displacement pumps are used to supply high pressure oil to hydrostatic bearings. Compared to other positive displacement pumps, fixed displacement gear pumps are the most commonly used due to their high reliability and low cost [1]. These pumps exhibit flow fluctuations, or flow ripple, that induce pressure variation in the bearing films causing errors. The pressure pulses occur at the pump fundamental frequency and harmonics as well as the driving gear tooth pass frequency and harmonics. The harmonics can be reduced, but not eliminated, by increasing the number of teeth on the driving gear [1].

The most comprehensive and deterministic approach to suppression of pulsations in hydraulic systems is provided by Viersma. In his book, he derives transfer functions for each element of the hydraulic supply to arrive at the following design guidelines [2]:

- suppressor (or accumulator) placed close to the pump acts as a filter for high frequencies
- pressure control valve (or regulator) close to the pump controls the low frequency pressure
- combination of suppressor and regulator close to the pump provides an effective wide band filter
- selective filters can be added to further reduce specific frequency disturbances

HYDROSTATIC SPINDLE
The hydrostatic spindle under test uses step-compensation rather than restrictors with pockets. The rotor shown in Figure 1 uses conical bearing surfaces to provide axial, radial, and tilt load capacity. The high structural stiffness of the rotor contributes to static stiffness while thin oil films result in excellent damping [3].

![FIGURE 1. A cross-sectional view of the bi-conic rotor. The compact and stiff rotor permits the use of high pressure oil.](image)

Stiffness and load capacity with 4 MPa (600 psi) oil are summarized in Table 1. Since the rotor is stiff in the direction of the force vectors of the film, higher pressure oil provides higher stiffness and higher load capacity than a more compliant structure [4].

| TABLE 1. Measurements of stiffness and load capacity of an oil hydrostatic 4R bi-conic spindle with oil supply pressure of 4 MPa (600 psi). |
|-----------------|----------|----------|----------|
| Stiffness | Axial | Radial | Tilt |
| 350 N/µm | 130 N/µm | 1.1 N·m/µrad |
| Load capacity | 9,000 N | 3,000 N | 300 N·m |
FIGURE 1. Rotor and stator of the 4R bi-conic spindle under test.

PULSATION SENSITIVITY
Theoretically, a symmetrical bearing design is insensitive to flow surges due to common mode rejection [3] but this is seldom the case in the presence of structural compliance. For example, as a pressure pulse enters the bearing films shown in Figure 1, the rotor centerline remains unchanged since both films are affected equally. However, the increased pressure causes the rotor to deflect axially and radially which results in errors due to non-constant (pressure) conditions.

To predict the effects of pressure pulsations on errors, the concept of a frequency dependent “pulsation sensitivity” is introduced. The term combines the effects of pulses on the dynamic structural compliance and fluid dynamics in the bearing film.

Finite Element Analysis (FEA) is used to model the pulsation sensitivity due to static pressure changes. The pressure profile shown in Figure 2 is applied to a rotor half. A fixed boundary condition is applied at the middle of the rotor.

The static pressure profile applied to the bearing surfaces of the rotor causes a deflection of the rotor as shown in Figure 3. FEA predicts that at low frequencies, changes in supply pressure will result in axial errors of 0.3 nm per 1 kPa. This result was verified by increasing the supply pressure to the spindle from 2.8 MPa (400 PSI) to 4.8 MPa (700 PSI) and recording the change in flying height of the rotor with a capacitive sensor. The result is plotted in Figure 4 and the measured pulsation sensitivity for static pressure changes is 0.3 nm/kPa (the slope of the line).

Finite Element Analysis (FEA) is used to model the pulsation sensitivity due to static pressure changes. The pressure profile shown in Figure 2 is applied to a rotor half. A fixed boundary condition is applied at the middle of the rotor.

The static pressure profile applied to the bearing surfaces of the rotor causes a deflection of the rotor as shown in Figure 3. FEA predicts that at low frequencies, changes in supply pressure will result in axial errors of 0.3 nm per 1 kPa. This result was verified by increasing the supply pressure to the spindle from 2.8 MPa (400 PSI) to 4.8 MPa (700 PSI) and recording the change in flying height of the rotor with a capacitive sensor. The result is plotted in Figure 4 and the measured pulsation sensitivity for static pressure changes is 0.3 nm/kPa (the slope of the line).

FIGURE 3. The stretch of the rotor predicted by FEA due to a supply pressure of 4 MPa is 1.3 µm. The low frequency pulsation sensitivity is 0.3 nm/kPa.

FIGURE 4. Stretch experimentally verified by measuring the flying height from 2.8-4.8 MPa (400-700 PSI). The static pressure sensitivity is 0.3 nm/kPa.
These results are useful in estimating how much asynchronous will be caused by a given level of pressure ripple. For example, to keep static-to-low-frequency asynchronous error caused by pressure ripple below 1 nm, the hydraulic pulsations should be kept below 3 kPa. This defines the target performance of the hydraulic system.

HYDRAULIC SYSTEM

A schematic of the hydraulic system under test is shown in Figure 5. The system provides 1 L/min of low viscosity spindle oil (Mobile Velocite No. 6) to the spindle at 4 MPa (600 PSI). The combination of high pressure, low viscosity, and low flow with low pumping losses is atypical of standard hydraulic power units so a purpose-built system was developed (shown in Figure 6).

The hydraulic system features a 0.7 kW brushless servo motor (Baldor BSM33) connected to an external gear pump (Concentric 1 cm³) with PID speed control to maintain output oil pressure at 4.8 MPa. This configuration provides the minimum pumping power loss [5]. A pressure relief set at 5.5 MPa is used as a safety valve to protect the system against overload. Under normal operating conditions there is no flow through the relief valve. The oil then passes through a 10 µm particulate filter (the nominal bearing film thickness is 16 µm). Then the oil flows through an in-line nitrogen charged noise suppressor (Wilkes and McLean WM 3056) and a high pressure oil regulator (Graco 217576) set at 4 MPa. Finally, the oil enters the spindle and flows across the bearings. Non-contact pressurized air seals prevent leakage and provide a sufficient pressure to assist drainage back to the tank without causing excessive aeration of the oil.

RESULTS

Oil pressure and axial displacement Power Spectral Densities (PSD) are measured as a function of hydraulic system configuration. A piezoresistive pressure sensor (Omega PX429) with a bandwidth of DC to 1000 Hz measures the supply pressure at the auxiliary oil inlet as shown in Figure 7. An ultra-low noise (0.4 nm pk at 15 kHz bandwidth) capacitive sensor (Lion Precision 2G-C8-1.2) targets a testball in the axial direction of the non-rotating spindle. A dynamic signal analyzer (HP 35670A) acquires power spectral densities and the root of the Cumulative Power Spectrum (CPS) from 1 Hz to 200 Hz provides the standard deviation of the total error [6]. Errors below 1 Hz are excluded due to thermal drift which will be addressed in future work.

PSDs for the pressure and axial displacement are shown for just-the-pump (Figures 8 and 9), pump with in-line suppressor (Figures 10 and 11), and pump with suppressor and regulator (Figures 12 and 13). The quietest configuration is with the suppressor and regulator close to the pump as suggested by Viersma [2].
The most dominant peaks in the pressure spectrum of Figure 8 are the tooth pass frequency (81 Hz) and tooth pass harmonics. The pump speed (7.5 Hz) and harmonics also contribute but at much lower amplitudes. The root total CPS of 19 kPa is well above the desired level of pulsations based on the static pulsation sensitivity estimate. The displacement spectrum in Figure 9 mimics the pressure spectrum and, as predicted, the CPS error exceeds the desired level.

FIGURE 8. Just-the-pump pressure PSD with supply pressure at 4 MPa. Root total CPS value is 19 kPa.

FIGURE 9. Just-the-pump displacement PSD with supply pressure at 4 MPa. Root total CPS value is 2.5 nm.

With the addition of an in-line pulsation suppressor, the spectra are significantly improved as shown in Figure 10 and Figure 11. The pulsation amplitude at the tooth pass frequency was reduced from 520 (kPa RMS)²/Hz to 13 (kPa RMS)²/Hz. The corresponding displacement at that frequency was reduced from 8 (nm RMS)²/Hz to 0.4 (nm RMS)²/Hz. The root total CPS values are 3 kPa and 0.7 nm respectively.
Further improvements at the tooth pass frequency were realized with the addition of the high pressure oil regulator as shown in Figure 12 and Figure 13.

Finally, the spectra of Figure 8 and Figure 9 were used to create a frequency dependent pulsation sensitivity function shown in Figure 14. This response function is a result of the dynamic behavior of the bearing film and the structural compliance. The static pulsation sensitivity results are consistent with the low-frequency region of the function.
CONCLUSION
Hydrostatic spindles and slides exhibit errors when subjected to pressure ripple. Structural compliance is the dominant contributor to pulsation sensitivity at low frequencies. Design and testing of a high pressure oil supply that results in minimal spindle errors is described. Best results are obtained using a suppressor and regulator close to the pump with pressure pulsations of 1 kPa giving rise to axial displacements of 0.6 nm.

REFERENCES

ABSTRACT
This paper introduces the design and fabrication of a multi-axis force sensor for localized growth of carbon nanotubes (CNTs). A micro-heater is located at the center stage that joins three cantilever structures. This pairing generates a highly sensitive tool for the growth of CNTs. The force sensor resolution and range are 77.1 pN and 17.3 μN respectively which allows the device to sense the reaction force of a CNT with a surface.

INTRODUCTION
One of the most popular methods for growing CNTs is chemical vapor deposition (CVD). While this method is common, high temperatures during the process limit what pre-existing materials can be on the substrate [1]. A solution to the integration of CNTs was first demonstrated by Englander who used Joule heating on a suspended silicon microbridge to isolate the growth CNTs and silicon nanowires [2]. Other researchers have used cantilever beams, micro heaters, and a range of resistive materials to act as heat sources [1]. All of these designs are limited by allocating valuable area on the wafer and additional processing steps to only grow CNTs in predefined locations. By moving the heat source to the center stage of a multi-axis force sensor a precise, accurate, and repeatable fabrication process can be developed.

The CNT deposition system presented in this paper consists of a multi-axis MEMs force sensor with an integrated micro-heater, which provides the heat energy for the CNT grow. A mesoscale nanopositioning system is used to deposit the CNT on a surface. The force sensors are used to register the reaction force of the growing CNT when it makes contact with the surface and control the tension applied during positioning. This system is illustrated in Figure 1.

For CNT growth, a metallic catalyst is placed on pyramidal structure similar to an AFM tip located at the center of the stage joining three cantilever beams. The full sensor design is discussed in the next section. The sensor is then placed in a quartz tube, Figure 1.A. Power is supplied to the micro-heater to heat up the catalyst as hydrocarbons are introduced to the tube. Decomposing hydrocarbons initiate the growth of CNTs from the tip of the pyramid, Figure 1.B. Figure 1.C shows the CNTs growing towards and contacting the surface below, which is registered by the force sensor. Once the contact force is achieved, a nanopositioner travels at a constant...
rate to maintain a tension in the CNT for precise positioning, Figure 1.D.

FORCE SENSOR
The multi-axis force sensor in Fig. 2 is composed of three symmetric cantilever beams connected by a center stage and fixed to wafer creating a fixed-guided system. Three beams allow for stage to travel in the vertical Z-axis and rotation about the X and Y axes to be measured by pairs of polysilicon n-type piezoresistor placed at the base of each beam. Integrated on the center stage is a pyramid and meander micro-heater. The pyramid creates a sub 100nm reference point for the growth origin of the CNTs. A tungsten micro-heater acts as the heat source for the CVD process. In addition to separating the growth process from the desired substrate, the localized heating allows for a room temperature environment inside the furnace.

Design
In this application, the force resolution and dynamic range of the sensors are the primary design parameters. The upper limit of the force resolution was set by the 0.16 nN growth force of a CNT. The growth force was measured by placing tungsten weights on top of catalyst substrate prior to the CVD process. The CNT bundle lifted the weights during the growth process resulting in a growth force [3]. Dynamic range, the ratio of force range to resolution, of the sensor is optimized by applying a system noise level model developed for MEMs sensors systems [4].

The model defines the three dominate sources of noise in its system: Johnson noise, flicker noise, and instrumentation amplifier noise. Johnson noise is a response to the thermal agitation of electrons in the resistor. Flicker noise is produced by the fluctuations in charge carriers. The dynamic range, DR, equation combines these noise sources from the piezoresistor with the instrumentation noise to be written as:

$$DR = \frac{\eta_{EM} \sigma_y N_c G_{FG} STC V_b G_{SG}}{\sqrt{4kT R B + (\frac{2e^2}{16}) C_R \ln \left(\frac{f_{max}}{f_{min}} \right) + S_{\text{aux}} B}}$$

In Eq. 1, G_F, G_{SG}, R, and Ω can be written in terms of the cantilever beam and piezoresistor dimensions, supply voltage, and carrier concentration [4]. Constraints for the optimization are defined by the system, available manufacturing process, geometry, and force resolution. By selecting polysilicon as the piezoresistive material, the initial gauge factor, G_F, carrier concentration, and resistivity could be defined. The G_F value was maximized at 20 for n-type doping. Doping concentrations and resistivity were determined to be 3×10^{19} atoms/cc and 0.01 Ω-cm [5].

The force resolution, F_{res}, equation is the maximum force divided by the DR. In Eq. 2, ε_F is the force gain for the flexure [4].

$$F_{res} = \frac{\sigma_y}{\varepsilon_F \varepsilon_S} / DR$$

The F_{res} value is adjusted to match or exceed the growth force of a CNT. As the force resolution nears the pN range, thermomechanical noise must be introduced as the lower limit for F_{res} to maintain the accuracy of the sensor [6].

$$F_{\text{thermomechanical}} = \frac{2kT B}{\pi Q \omega_n}$$

Fabrication Process
The force sensor is fabricated using the available processes from the Microelectronics Research Center and Center for Nano – and Molecular Science at The University of Texas at Austin. A 100 mm double silicon-on-insulator (SOI) wafer is used as the substrate to fabricate the sensor. The SOI wafer is composed of two 2 μm device layers and one 450 μm handler layer of silicon
separated by two 0.5 μm silicon dioxide layers illustrated in first image in Figure 3. First, the pyramid is formed via wet etching with KOH+IPA of 2 μm circular features. Second, 198 nm amorphous silicon layer is deposited with low pressure CVD (LPCVD). Diffusing doping with POCl₃ at 900°C is used to dope with amorphous layer of amorphous silicon is deposited with LPCVD and doped in a POCl₃ diffusion furnace. During this process, the amorphous layer transitions into polycrystalline silicon with a phosphorous concentration of 3×10^{19} atoms/cc. Piezoresistors are defined with a dry etch. The tungsten micro-heater is patterned next using a liftoff process. A liftoff process deposits the material, tungsten, over the patterned photoresist. Excess material is lifted off when the photoresist layer removed with acetone. Next, chromium layer is deposited and patterned for the bond pads and wire traces to the piezoresistors.

With all of the sensor’s featured created, the cantilever beams can be defined and etched from the front side with reactive ion etching (RIE). Deep RIE etching removes the 450 μm bottom layer suspending the cantilevers completely. To complete the release, the final oxide layer is removed.

MICRO-HEATER

The micro-heater is a 200 nm tungsten meander design. Wire traces are connected before and after the heater to create a four-wire sensor shown in Figure 4. The larger traces supply current to the heater. A change in voltage is measured with the two smaller traces. The known temperature coefficient of resistance of tungsten can be used to convert the change in voltage across the heater into a measurement of the change in temperature of the heater. Once calibrated, the current supply can be adjusted to accurately control the CVD temperature.

Design

The design of the micro-heater is broken into two parts: material selection and dimensions. The temperatures required for growth of multiwalled (MWCNT) and single walled (SWCNT) CNTs provide the material properties needed. The temperature range required to use CVD for CNTs is 600°C to 1200°C. MWCNTs are typically grown in the 600°C to 900°C range, while SWCNT require temperature from 900°C to 1200°C [7]. To stably operate the heater at these temperature, a material with a high melting point and non-degraded electrical resistance is required. Out of the silicon and metallic based options, tungsten is most suitable choice. It has a melting point of 3140°C and maintains a linear temperature coefficient of resistance. Also there are standard deposition and etching processes available [8].

As for the dimensions, the film thickness must be enough to promote adhesion, but thin enough to require a small power supply. The heater line width, 3 μm, is driven by a resistance ratio, cantilever beam width, and heater area. A ratio of 20:1 heater to wire trace resistance is used to reduce the impact of the wire traces on the power supplied to the heater. With the piezoresistors and chromium wire traces at the base of the beam, the tungsten wire trace width is limited to 110 μm. To minimize thermal effects of the heater on the uniformity of the cantilever deformations, the heater was limited to 100 μm circular field. These constrains lead to the 3 μm modified
meander design. The modified meander design generated a heater length of 1.398 mm resulting in an electrical resistance of 805 Ω.

Simulation

A static heat transfer simulation have been conducted to determine the heat distribution over the device. COMSOL™ 4.3b is used to study two models of the sensor. Symmetry is used to reduce size of the models and computational time. For the power required for the heater, half of the SOI wafer and micro-heater are modeled. A third of the SOI wafer, the micro-heater, and two of the piezoresistors are modeled to determine temperature gradient across the resistors with a power supply of 0.1 W. The SiO₂ layers were excluded due to its low thermal conductivity.

Under the heat transfer in solids study, a convective heat transfer coefficient of 5 W/m²K is applied to all surfaces except the base and the sections cut for symmetry. The temperature of the base is set to room temperature 300 K. A heat source is applied either to the heater or the piezoresistors. For the heater, the magnitude of the heat source is adjusted in terms of power until the center of the heater reached 1300 K. Figure 5 shows the heat distribution from the center stage to the surrounding silicon structure. When a power of 0.0425 W is applied to the heater the center reached 1292.9 K and is dissipated to 300 K by the end of the cantilever beam. That power supply, 0.085W for a whole heater, can be used with the wire trace and heater resistances to calculate the voltage supply, which is 8.27 V.

The next study supplies 0.1 W of heat power to each piezoresistor to simulate operating conditions. At the center stage, the heater temperature was defined to 1300 K. Figure 6 shows the temperature range from 300 K to 343.5 K along the resistor.

RESULTS

The noise optimization method produced a force sensor design where the DR and F_{res} are 107.02 dB and 77.1 pN respectively. The derived dimensions for the cantilever beams result in a combined stiffness of 0.042 N/m. Resistance of the piezoresistor is 773.95 Ω. The supply voltage is 8.797 V, which results in an operating power of 0.1 W per piezoresistor. Dimensions for the cantilever beam and piezoresistors are shown in Table 1.

<table>
<thead>
<tr>
<th>(μm)</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexure</td>
<td>3000</td>
<td>324.2</td>
<td>2</td>
</tr>
<tr>
<td>Piezoresistor</td>
<td>130.2</td>
<td>85.1</td>
<td>0.198</td>
</tr>
</tbody>
</table>

Table 1. Flexure and piezoresistors dimensions.

The simulations show that the handler layer surrounding the suspended cantilever beams dissipates the heat produced by the micro-heater. This should limit the amount of heat applied to the printing surfaces. With the operational power supply, the piezoresistors have a 43.5 K temperature gradient. Similar to the temperature monitoring of the micro-heater, the known temperature coefficient of resistance can be applied to maintain adequate supply voltage.
CONCLUSION
The force sensor design developed in this paper has a force resolution which is one third of the anticipated growth force. This design is the first step towards the direct printing of CNTs with high precision and accuracy onto substrates with temperature sensitive materials. This introduces a new process for integrating sub 20 nm features with desirable electrical, mechanical, thermal, and optical properties. The metallic form of CNTs can be used as robust wire traces on flexible devices with an elastic modulus in the 1 TPa range [7]. CNTs can also be used as transducers in nanoscale devices such as field effect transducers, piezoresistive sensors, and infrared sensors [9]. Finally, by growing and positioning the CNTs on to the substrate with the force sensor, the number of lithography and etching processes are reduce for a given device.

REFERENCES
SYNTHESIS OF THERMAL ERRORS IN GIANT FLOOR TYPE BORING MACHINES

Bog-Ki Min, Lei Cao, and Sung-Chong Chung
Hybrid System Design and Control LABoratory
School of Mechanical Engineering
Hanyang University
Seoul 133-791, KOREA

ABSTRACT
Based on black-box type identification method, dynamic thermal error models of shape and joint elements in giant floor type boring machines are obtained as discrete models. To derive error transfer functions (TFs) of the error elements, input and output data of the dynamic subsystems have been collected through the finite element (FE) thermal analysis. Synthesis of thermal error in the giant floor type boring machine is conducted by using the TFs and the previously developed kinematic error chain [1-2].

INTRODUCTION
Giant machine tools are applied for mega size machining in the ship building, aerospace and variety of plant industries. As the machining parts are huge and too much machining time is required, volumetric errors due to thermal deformation of the shape and joint elements degrade machining accuracy.

Kim and Chung [3], studied modeling of volumetric errors due to geometric and thermal deformation errors in small-size machine tools. To predict volumetric errors in the design process of giant floor type boring machines, kinematic error modeling was conducted by shape and joint transformation matrices [1]. Thermal deformation TFs of the shape and joint elements according to internal and external heat sources were formulated for 3D time varying error analysis in the giant floor type boring machine [2]. However, the error elements were obtained from heuristic methods. To obtain accurate thermal error models for precise and rapid design of giant machine tools, black-box type dynamic modeling of the error TFs through data acquisition of heat inputs and deformation output data is required.

In this paper, to describe the identification procedure of the dynamic error models, the column unit shown in Fig. 1 is selected an example. Similar procedures are applied for other units to determine deformation TFs. To collect input and output data, a lot of FE thermal analysis with proper boundary conditions is performed in this paper. Ambient temperatures according to height are used for external heat sources. Heat generated from the ballscrew interface, support bearings, motors, gears, spindle bearings and sliding units, and cooling units are internal heat sources. They depend on operating conditions. Convections on the head unit and the base plate are formulated as boundary conditions. TFs of the error elements are identified by discrete models based on black-box approach [4].

VOLUMETRIC THERMAL ERROR MODEL
Fig. 1 shows schematic diagram of the giant floor type boring machine. Column base, head frame, rotary base, and so on are shape elements. Moving and rotary elements such as rotary table, floor bed, column, and ram are joint elements. Shape transformation matrices consist of time varying error terms. Joint transformation matrices depend upon time varying and spatial thermal error terms as well.

FIGURE 1. Schematic diagram of a giant floor type boring machine.
Eq. (1) shows shape and joint transformation matrices of the column with geometric and thermal deformation errors [1-2]. ε_{x}^{S}, ε_{y}^{S}, and ε_{z}^{S} are angular errors of shape transformation matrices. ε_{x}^{J}, ε_{y}^{J}, and ε_{z}^{J} are angular errors of joint transformation matrices. Δa_{x}, Δb_{y} and Δc_{z} are translational errors due to thermal deformation of shape elements. S_{x}, δ_{x}, δ_{y} and δ_{z} are squareness, positioning and straightness errors. $S_{x}^{''}$, $\delta_{y}^{''}$ and $\delta_{z}^{''}$ are squareness, positioning and straightness errors due to thermal deformation. P_{y} is thermal expansions in the feed axis.

\[
[S_{S,T}] = \begin{bmatrix}
1 & -\varepsilon_{x}^{S}(T) & \varepsilon_{y}^{S}(T) & \varepsilon_{z}^{S}(T) & a_{x}+\Delta a_{x}(T) \\
-\varepsilon_{x}^{S}(T) & 1 & -\varepsilon_{y}^{S}(T) & \varepsilon_{z}^{S}(T) & b_{y}+\Delta b_{y}(T) \\
\varepsilon_{x}^{S}(T) & -\varepsilon_{y}^{S}(T) & 1 & \varepsilon_{z}^{S}(T) & c_{z}+\Delta c_{z}(T) \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
[J_{J,T}] = \begin{bmatrix}
1 & -\varepsilon_{x}^{J}(T) & \varepsilon_{y}^{J}(T) & \varepsilon_{z}^{J}(T) & \delta_{x}+S_{x}^{''}+S_{y}^{''}(T)+y \\
-\varepsilon_{x}^{J}(T) & 1 & -\varepsilon_{y}^{J}(T) & \varepsilon_{z}^{J}(T) & y+\delta_{y}+\delta_{z}(T)+P_{y}(T)+y \\
\varepsilon_{x}^{J}(T) & -\varepsilon_{y}^{J}(T) & 1 & \varepsilon_{z}^{J}(T) & \delta_{z}+\delta_{y}(T) \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

Considering dominant thermal error terms only, volumetric errors at the tool center point (TCP) due to the column in X, Y and Z directions are given by [2]

\[
\begin{align*}
\Delta X &= \Delta a_{x}(T) + S_{x}^{''}(T) \cdot y \\
\Delta Y &= \Delta b_{y}(T) + P_{y}(T) \cdot y \\
\Delta Z &= \Delta c_{z}(T) + \delta_{z}(T)
\end{align*}
\]

NUMERICAL SIMULATION

In previous papers [1-2], error terms in the shape and joint error matrices were formulated through heuristic approaches. As the machine tool is huge, heuristic modeling by experiment is difficult and expensive. In this paper, thermal error elements are modeled through FE analysis. Fig. 2 shows FE model of the column. It is divided into 20 parts. Following assumptions are applied for the thermal analysis: i) Corner of the bottom surface is fixed. ii) Bottom surface deforms freely in X and Z axes. Boundary conditions of the joint element are derived from frictional heat and convection coefficient of the ballscrew unit [5]. Generated heats due to the moving nut, fixed bearings and the spindle head unit are applied for the analysis as internal heat sources. Ambient temperatures shown in Fig. 3 (a) are external heat sources. Fig. 3 (b) shows internal heat source as a step input. Fig. 4 shows heat input to verify the identified thermal error models.

![Figure 2. Finite element model of the column.](image-url)

![Figure 3. Heat inputs for TF identification.](image-url)
IDENTIFICATION OF THERMAL TF MODELS

To identify thermal deformation TFs in discrete domain, TCP thermal errors are separated into environmental and operational terms as follows:

\[
\begin{align*}
\dot{X} &= \Delta a_x(T) + \Delta b_x(T) + \Delta c_x(T) + \Delta d_x(T) + \Delta e_x(T) + \Delta f_x(T) \\
\dot{Y} &= \Delta a_y(T) + \Delta b_y(T) + \Delta c_y(T) + \Delta d_y(T) + \Delta e_y(T) + \Delta f_y(T) \\
\dot{Z} &= \Delta a_z(T) + \Delta b_z(T) + \Delta c_z(T) + \Delta d_z(T) + \Delta e_z(T) + \Delta f_z(T)
\end{align*}
\]

(5)

Fig. 5 shows FE simulations and estimated environmental TF models. Residual errors are less than 10μm. Environmental shape error TF for ambient temperature input \(\theta(T) \) in X-axis is given by

\[\dot{\Delta} a_x(T) = \frac{0.2471e^{-1}}{1-0.9926e^{-1}} + 0.007289 \theta(T)\]

(6)

Converting this to continuous time domain, unit step shape and joint error responses are obtained as follows:

\[
\begin{align*}
\dot{\Delta} a_x(T) &= \sum_{i=1}^{3} D_{ax} \left[1 - e^{-t/\tau_{ax}} \right] \\
\dot{\Delta} b_y(T) &= \sum_{i=1}^{3} D_{by} \left[1 - e^{-t/\tau_{by}} \right] \\
\dot{\Delta} c_z(T) &= \sum_{i=1}^{3} D_{cz} \left[1 - e^{-t/\tau_{cz}} \right] \\
\dot{\Delta} d_x(T) &= \sum_{i=1}^{3} D_{dx} \left[1 - e^{-t/\tau_{dx}} \right] \\
\dot{\Delta} e_y(T) &= \sum_{i=1}^{3} D_{ey} \left[1 - e^{-t/\tau_{ey}} \right] \\
\dot{\Delta} f_z(T) &= \sum_{i=1}^{3} D_{fz} \left[1 - e^{-t/\tau_{fz}} \right]
\end{align*}
\]

(7)

Error TF consists of several first order systems. Time constants and gains denote thermal modes and error magnitudes, respectively.

Fig. 6 shows FE analysis and TF model results according to operating conditions. Maximum residual error is less than 5μm. Equation (8) shows shape and joint error TF terms according to operating conditions in the continuous time domain. They consists of several first order systems as well. Gains mean error magnitude of each thermal deformation mode. Time constants denote eigenvalues of the thermal modes.
VERIFICATION OF THERMAL ERROR TFs

Identified environmental and operational TF models are combined to estimate total thermal errors as shown in Fig. 7. It confirms that developed thermal deformation TF models estimate thermal error well.

\[
\begin{align*}
\delta \eta_s(T) &= \sum_{j=1}^{3} D_{\eta_s,j} \left(1 - e^{-\frac{T}{\tau_{\eta_s,j}}} \right) = 8.68(1 - e^{-0.0015T}) - 0.0001(1 - e^{-0.0022T}) \\
\delta \eta_h(T) &= \sum_{j=1}^{3} D_{\eta_h,j} \left(1 - e^{-\frac{T}{\tau_{\eta_h,j}}} \right) = 3.26(1 - e^{-0.0022T}) \\
\delta \eta_c(T) &= \sum_{j=1}^{3} D_{\eta_c,j} \left(1 - e^{-\frac{T}{\tau_{\eta_c,j}}} \right) = 13.15(1 - e^{-0.0017T}) + 4.59(1 - e^{-0.0020T}) - 0.00079(1 - e^{-0.0030T}) \\
\delta \eta_v(T) &= \sum_{j=1}^{3} D_{\eta_v,j} \left(1 - e^{-\frac{T}{\tau_{\eta_v,j}}} \right) = 2.37(1 - e^{-0.0020T}) - 0.95(1 - e^{-0.0030T}) \\
\delta \eta_p(T) &= \sum_{j=1}^{3} D_{\eta_p,j} \left(1 - e^{-\frac{T}{\tau_{\eta_p,j}}} \right) = 9.51(1 - e^{-0.0006T}) \\
\delta \eta_j(T) &= \sum_{j=1}^{3} D_{\eta_j,j} \left(1 - e^{-\frac{T}{\tau_{\eta_j,j}}} \right) = 1.85(1 - e^{-0.0024T}) + 0.079(1 - e^{-0.0032T}) - 0.00011(1 - e^{-0.0026T}) \\
\end{align*}
\]

CONCLUSIONS

Dynamic modeling of thermal error in the giant machine tool has been conducted through kinematic error modeling and black-box type system identification method. Heat inputs and output thermal error data are collected from FE analysis. Discrete type error TFs of shape and joint elements are identified through output error models. It is confirmed that thermal error of the giant machine tool is estimated well through the dynamic thermal error modeling.

ACKNOWLEDGEMENTS

This research is supported by MOTIE, Korea and HNK MACHINE TOOL CO. LTD.

REFERENCES

INTRODUCTION
This paper describes a process for developing the requirements and concept of operations for an engineered system that are traceable to the mission goals and stakeholder needs. The determinism provided by this up-front investment during the project life cycle sets the stage for developing a solution that is responsive and traceable to the goals and needs. An overview is provided on systems architecting and systems engineering and how they fit into the larger role of project management, and a view of a project life cycle from a combined systems architecting and engineering perspective is presented.

MOTIVATION
When developing a system to satisfy a mission need or opportunity, establishing correct and complete requirements and a concept of operations (ConOps) enables informed design decisions and improves the likelihood of long-term project success. A sufficiently rigorous approach to connecting mission goals and stakeholder expectations to the design of a new system can help a project team avoid the trap of pursuing a solution that only they see as being important and ultimately failing due to the loss of sponsorship or not meeting the needs of a key end-user, support infrastructure, or interface. Referring to Figure 1, the solution development phase of a project is connected to the mission goals and stakeholders by the system requirements and concept of operations. Any discussion or examination of a proposed solution that is not framed in the context of the requirements and concept of operations runs the risk of being disconnected from the reasons and benefactors of pursuing the project.

SYSTEMS ARCHITECTING & ENGINEERING
Systems architecting and engineering are sometimes referred to collectively as “systems engineering”. They overlap with each other but encompass two distinct areas of focus that are vital to project success [1, 2, and 3]. Systems architecting supports the stakeholders in identifying the mission goals and requirements, and exploring solution paths. It is not uncommon for an end-user or customer to be unclear about what is needed, in which case they need an advocate to help them determine those needs before momentum builds towards a particular solution. Systems engineering creates and manages the technical plan for developing and delivering a best solution, and supporting its entire life cycle. A combined systems architecting and systems engineering view of a project life cycle is shown in Figure 2. The majority of the project life cycle cost is committed when turning a conceptual design into a final design, so the up-front investment in systems architecting and systems engineering activities is important. Systems architecting and engineering overlap with project control, which ensures project execution according to governing processes, and all three lie within the larger role of project management, which seeks a self-consistent balance of scope, schedule, budget, performance, and safety. The remainder of this paper focuses on working through the first two major phases in Figure 2, to establish

FIGURE 1. Phases in a systems architecting and engineering –centric view of a project life cycle. Mission goals and stakeholders form the foundation upon which the two pillars of requirements and concept of operations stand, providing a solid base for solution development.

A 1993 study of U.S. Department of Defense projects shows that 80% of a project’s life cycle cost is committed by the initial 20%, and that the cost to extract defects from a system increases geometrically during the project life cycle [4].
requirements and a co-evolved concept of operations that are connected to the mission goals and stakeholders.

DEVELOPING REQUIREMENTS AND A CONCEPT OF OPERATIONS
The process for going from an initial mission definition to a requirements review, which includes the concept of operations, is broken down into the five phases shown in Figure 3 and is shown in schedule format in Figure 4. A graded-approach to developing requirements and a concept of operations is achieved by adjusting the depth of engagement within each phase, and the number of iterations within and between phases, to an appropriate level relative to the mission importance and project size.

Need or Opportunity Definition
At the outset of a project it is critical to establish a clear vision of the need or opportunity, goals, metrics for success, and constraints. Identifying a single mission need or opportunity helps avoid conflicting goals. Mission goals are qualitative high-level expectations for the system, and one or more objectives flow-down from each goal as quantitative targets that define how success will be determined [5]. Explicitly stating the project constraints, like schedule, budget, management or regulatory, and technology, provides clarity between the project team and stakeholders. Engaging key stakeholders during this phase provides the domain knowledge needed for accuracy and completeness, and establishes a shared understanding that can be referred to during project execution when the questions arise, “Why are we doing this, Why is it taking so long, and Why is this so hard?” A mission review assesses project-start feasibility by looking for consistency between the goals and constraints, enabling early schedule and budget adjustments and informing needed trade-offs between goals (see Table 2).

Operational Context
Knowing how a system fits into the rest of the world and how it will be used informs what it needs to be. A system context diagram, like the example shown in Figure 5, illustrates the boundary of the system, stakeholders, external interfaces, and key influences. Clearly defining the boundary between the system and its environment helps establish the scope of the project. Placing the stakeholders around the periphery of the diagram is analogous to gathering everyone around a table to discuss a shared big-picture view of the project. The system context diagram provides a basis for developing the operational scenarios for the system, from which the initial high-level concept of operations is derived. Qualitative functional, operational, and safety requirements are discovered by stepping through the concept of operations and asking, “What is needed to

FIGURE 2. A systems architecting and engineering-centric view of a project life cycle.
FIGURE 3. Process for developing stakeholder-driven requirements and concept of operations. Iterations within each phase (vertical swim lanes) and between phases are not shown. The dotted lines connect the output of this process to the third major phase (Solution Development) in Figure 2.

perform this step?” Typically, each of the resulting requirements flows down to one or more quantitative performance requirement.

Stakeholders, External Interfaces, and Initial Requirements

As the system context diagram and operational scenarios are developed, the list of stakeholders and external interfaces evolves through a process of discovery and refinement. Engaging the stakeholders\(^b\) that will interact with and be responsible for the deployed system informs the development of the concept of operations, its related requirements, and the validation plan. Additional high-level requirements are identified during discussions with key stakeholders, and drawn from experience with a similar mission or system context. Grouping all the requirements by type as shown in Table 1 focuses stakeholder discussions, reveals omissions, and enables reuse between projects. To ensure adequate completeness during this phase, it is helpful to maintain a (growing) list of stakeholder domains and external interfaces, and to identify the people who will represent and speak for them during discussions. By the end of this phase a clear vision can be articulated regarding the mission need or opportunity, goals, objectives, constraints, system context, and initial high-level requirements and concept of operations. Establishing a broad view of the system and who will expect what from it helps prioritize and focus the more extensive stakeholder discussions during the next phase. A stakeholder review provides an early project-readiness assessment by looking for a big-picture view and engagement of the right set of people needed to develop correct and complete requirements and a concept of operations (see Table 2).

\(^b\) “Active” stakeholders are responsible for and interact with the deployed system. “Passive” stakeholders influence the development and success of the system but do not directly interact with it [5].
Refining with Stakeholders

A systems architect/engineer’s talents and skills for networking, listening, and being organized are fully called upon when gathering stakeholder needs, expectations, and feedback; building agreements; and sorting through, prioritizing, and translating needs and expectations into refined versions of the requirements and concept of operations. Mapping stakeholders to the high-level requirements and concept of operations developed during the previous phase identifies whose voice needs to be heard when...

<table>
<thead>
<tr>
<th>Number</th>
<th>Activity</th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Identify mission need/opportunity, goals, and objectives</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Identify project constraints and engage key stakeholders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mission review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>4</td>
<td>Create initial high-level concept of operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>5</td>
<td>Create system context diagram</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Identify stakeholders, interfaces, and key influences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Stakeholder review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>8</td>
<td>Identify requirements, create initial system functional architecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>9</td>
<td>Compile initial high-level requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>10</td>
<td>Gather needs and expectations of all stakeholders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Iterate on goals, objectives, requirements, and ConOps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>12</td>
<td>Create draft requirements and ConOps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>13</td>
<td>Issue draft requirements and ConOps document</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>14</td>
<td>Gather stakeholder feedback and build agreement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>15</td>
<td>Revise requirements and ConOps document</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>16</td>
<td>Prepare review material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>17</td>
<td>Requirements and ConOps review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>18</td>
<td>Incorporate review feedback</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>19</td>
<td>Release rev 1.0 Requirements and ConOps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>△</td>
</tr>
</tbody>
</table>

Table 1. Suggested categories for organizing requirements. Although mission need/opportunity, goals, and objectives are not strictly requirements, including them in the requirements document provides traceability when judging the relative importance of a requirement to the mission.
FIGURE 5. A system context diagram for the Target Alignment System (TAS) coupling for the National Ignition Facility (NIF). This simple example includes key influences between systems. The coupling provides a stable and repeatable attachment of the TAS to three other systems (one at a time).

adding to and refining them, and enables focused, efficient, and effective small-group discussions during stakeholder interviews. An important job for a system architect/engineer is ensuring that the voice of every stakeholder representative is heard, captured, and considered. If an important voice is not heard until later during the project life cycle, it could be in the form of a significant shortcoming of the deployed system that would have been less costly and disruptive to deal with sooner. Success during this phase requires stakeholder involvement and feedback during interviews and reviews of draft documents. Management’s support of the importance of stakeholder engagement – making it a priority – improves the likelihood of a successful project. Striving for early feedback and rapid iterations helps make efficient use of everyone’s time, and can be vectored towards issuing an early draft of the requirements and concept of operations to support the solution development phase.

Stakeholder feedback on draft documents identifies areas requiring refinement, additional discussion, and agreement building. Following an organized process and documenting as you go, especially keeping track of who provided input on what, identifies missing discussions, provides traceability, and helps meet an aggressive schedule.

Requirements Review
Before a project commits significant resources to solution development, all five phases preceding it in Figure 3 should be considered to an appropriate degree. There is an improved likelihood of success if this is done explicitly and with traceability. A suggested review committee charter for assessing the thoroughness and appropriate graded-approach for that effort is shown in Table 2. High-level requirements are ideally solution neutral; flow-down requirements derived during the solution development phase connect them to a particular solution. Referring to Figure 2 and looking forward, a thorough solution description consists of: (1) a design driven by the requirements and concept of operations, (2) a verification plan traceable to the requirements for acceptance testing the
system, and (3) a validation plan traceable to the concept of operations for commissioning the system.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Are the mission need or opportunity, goals, and objectives clear, accurate, and complete?</td>
</tr>
<tr>
<td>2.</td>
<td>Are the project constraints adequately defined and complete?</td>
</tr>
<tr>
<td>3.</td>
<td>Are the mission goals and project constraints consistent with each other?</td>
</tr>
<tr>
<td>4.</td>
<td>Are the system boundary, external interfaces, and key influences accurately and adequately defined?</td>
</tr>
<tr>
<td>5.</td>
<td>Have the appropriate stakeholders been identified and included in the requirements development process?</td>
</tr>
<tr>
<td>6.</td>
<td>Is the concept of operations correct and at an appropriate level of detail?</td>
</tr>
<tr>
<td>7.</td>
<td>Are the requirements clear, accurate, complete, consistent, attainable, and verifiable?</td>
</tr>
<tr>
<td>8.</td>
<td>Was an appropriate graded-approach used relative to mission importance and project size?</td>
</tr>
</tbody>
</table>

TABLE 2. Suggested review committee charter for a requirements review. A mission review would cover items 1-3, and a stakeholder review items 4-5 and an initial treatment of item 6 [6].

TEN TAKE-AWAY POINTS

1. The majority of the project life cycle cost is committed when turning a conceptual design into a final design, so an up-front investment in requirements and ConOps is important.
2. Engaging key stakeholders provides the domain knowledge needed for establishing an accurate big-picture view.
3. A mission review assesses project-start feasibility by looking for consistency between the goals and constraints.
4. Knowing how a system fits into the rest of the world and how it will be used informs what it needs to be.
5. A stakeholder review assesses early project-readiness by looking for a broad view of the system and engagement of the right people.
6. Organizing requirements by type focuses stakeholder discussions, reveals omissions, and enables re-use between projects.
7. Mapping stakeholders to the requirements and concept of operations identifies whose voice needs to be heard when developing and refining them, and enables focused, efficient, and effective discussions.

8. A requirements review that includes the concept of operations assesses the thoroughness and accuracy of gathering stakeholder expectations and reconciling them with the mission goals, and assesses the project team’s readiness to develop a solution that is responsive to the mission.
9. Documenting as you go, especially keeping track of who provided input on what, helps identify missed discussions and establishes an explicit record that provides traceability.
10. A graded-approach is achieved by adjusting the depth of engagement and number of iterations during the process to an appropriate level relative to the mission importance and project size.

ACKNOWLEDGEMENTS

This work benefits from many discussions and encouragement: Scott Winters, Doug Larson, Greg Tietbohl, Perry Bell, Brian Felker, Gary Deis, Alan Conder, Mary Spaeth, Chris Marshall, Jeff Atherton, Beth Dzenitis, Dan Manha, Robin Hibbard, Shannon Ayers, Gordon Brunton, Allan Casey, Darwin Dobson, Arthur Carpenter, Gareth Hall, Robert Plummer, and Shawn Strickland, of the Lawrence Livermore National Laboratory, and Dinesh Verma of the Stevens Institute of Technology.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

REFERENCES

[6] Adapted from a charter by Scott Winters, Lawrence Livermore National Laboratory, for an April 2014 requirements review.

LLNL-PROC-657714
INTRODUCTION
Freeform optics are increasingly being used in the aerospace, automotive, sensor, LED lighting, and consumer electronics industries for their ability to create more compact and efficient imaging and non-imaging systems [1, 2]. However, the fabrication of freeform optics is challenging as it often requires several independent production steps including data conversions, material processing, and metrology. This multi-step process increases total production time and limits the achievable form accuracy of the optic. A more efficient process allowing for the fabrication and corrective machining of freeform surfaces to a high accuracy could be achieved by integrating the necessary production steps onto a single machining platform. The introduced machine, the UPC 400, provides an integrated platform for fabricating precision freeform optics.

MACHINE DESIGN
The UPC 400 ultra-precision machining center, shown in figure 1, has been designed to efficiently manufacture freeform surfaces up to 400 mm in diameter.

Two unique innovations allow the UPC 400 to rapidly machine high precision freeform surfaces. First, all of the necessary machining and metrology processes including diamond turning, milling, and optical measurement are integrated onto the UPC 400 platform. Second, a custom software package provides advanced data handling capabilities for both machining and measurement steps. This combination of hardware as well as software reduces production time, eliminates re-clamping errors, and increases the overall achievable accuracy of the freeform surface.

An Integrated Machining Platform
To enable the machining of large freeform surfaces and to provide a stiff and rigid platform for both diamond turning and metrology, the UPC 400 is built on a solid granite base with hydrostatic guide ways. This base supports the four machine axes (X, Z, C, and B) with high resolution linear scales and spindles which utilize aerostatic bearings to achieve very high accuracies even at fast speeds. This setup minimizes vibrations and increases rigidity, thereby creating an ideal platform for high precision diamond machining and measurement.

A linear X-axis carries the diamond turning equipment with optional fast tool, milling spindle, and metrology system. By arranging all of the tools in a linear setup (i.e. the tools are next to each other on a single X-axis slide) the UPC 400 can quickly switch between process steps without the need to remove or re-clamp the work piece, change setups, or use a rotary axis. Eliminating the need for a rotary axis for tool changes is beneficial since there is greater positioning uncertainty at larger diameters of the rotary table. This uncertainty affects both the tool and metrology position (mainly in X direction) and has a strong influence on the manufacturing accuracy of the tool. The linear arrangement on the UPC 400 reduces these
positioning errors and can be used even for the maximum work piece diameter of 400 mm.

The Z-axis carries the work piece spindle and utilizes a large stroke length for slow tool motion. For freeform machining the spindle also serves as the C-axis. This axis arrangement is advantageous since the slow tool motion is completely independent of the general machine setup. All of the additional tools such as the milling spindle or optional axes such as the B-axis are located on the X-axis slide which is not involved in the dynamic slow tool motion and remains static during the machining process.

The UPC 400 can perform diamond turning using fast tool motion (FTS) as shown in figure 2 or a combination of both fast and slow tool motion. The FTS can achieve high acceleration rates and provides a stroke length of greater than 10 mm. This is currently the longest commercially available stroke length for a fast tool setup and provides the ability to quickly machine highly dynamic freeform surfaces without the use of a time consuming slow tool process.

![FIGURE 2. Diamond turning a sinusoidal mirror.](image)

The UPC 400 utilizes a unique motion control system which combines an industry standard high power PC-based control with the highest clock rate digital drives for all axes. The data rate for set point generation during freeform machining is significantly faster than today’s market standard which leads to higher productivity and better throughput.

The motion control system on the UPC 400 represents a new concept for ultra-precision FTS machining as it uses only one control unit for both the positioning and dynamic axes. This is in contrast to many other commercially available ultra-precision machines with a FTS in which one set of controls is used for the X, Z, and C axes and a separate controller is used for the FTS.

On systems with separate controllers, the FTS controller calculates a new Z position for the tool based on the current tool position of the X and C axes. Depending on the rotation speed, the lag that occurs during the calculation can cause following errors with respect to the positioning of the C-axis. Furthermore, synchronization issues may occur since the FTS cannot interact with the machine controller. To overcome these issues, the UPC 400 uses a single controller for both the positioning and dynamic axes. This is beneficial as it allows for the fast and slow axes to communicate with each other and remain synchronized during the machining program thus minimizing form error. In addition, the use of a single control unit for all of the machine axes and tools makes the UPC 400 easy for the operator to setup, program, and control.

The X-axis slide features a travel range of greater than 700 mm. This allows for a highly modular machine which can be configured for use with many different processes, tools, and components.

The B-axis on the UPC 400 can be used to increase the machining freedom when using the diamond turning or milling tools. The B-axis is integrated such that the tool is located at the center of rotation. This is beneficial since small angular positioning errors or noise will not affect the radial X position of the tool. Additionally, the Z-axis can move the vacuum chuck to the center of the B-axis, eliminating the need for long projecting adaptors during R/Phi turning. Thus, the rotary B-axis on the UPC 400 can be effectively used without encountering the common errors inherent in standard rotary axis setups.

Besides the manufacturing of mold inserts, the UPC 400 is also well suited for machining large freeform metal optics such as those used in telescopes and other space applications. Hybrid optics, which combines both low and high frequency freeform structures, can also be machined. Alignment features, such as spherical reference marks which can be used to mechanically align the freeform optic during the optical setup, can be precisely machined onto the work piece (e.g. by using the integrated
milling spindle). Since only a single clamping setup is needed for machining all surfaces, these reference marks are accurately placed with respect to the freeform surface. Overall, the availability of different tooling options and mechanical flexibility makes the UPC 400 capable of machining many different types of freeform surfaces during a single process.

Integrated onto the UPC 400 is a 2λ heterodyne interferometer with an extremely high measurement frequency and a resolution of $<5 \text{ nm}$ (figure 3). A spiral tool path is used to scan the freeform surface immediately following machining and while it is still clamped inside the UPC 400. This eliminates the need to remove the optic from the machine thereby reducing alignment errors both during the measurement process and when re-clamping the optic for a corrective machining process. Also, the spiral tool path for the measurement utilizes the same surface algorithms as those used for creating the machining tool path so no additional programming steps are needed. The integrated mechanical and software setup coupled with the resolution of the interferometer creates a fast and stable metrology process that is capable of measuring ground or polished surfaces and reflective or transmissive materials.

Integrating metrology onto the UPC 400 eliminates the need for external measurement equipment, such as a CMM or an interferometer with a CGH which can be both costly and time consuming to use. Working with external metrology equipment such as a CMM can be challenging as it requires exacting alignment of the freeform surface in order to achieve useful results. Furthermore, the NC-code for the CMM is often generated in a different way than the NC-code used for machining since the CMM software may not directly understand the NURBS data or other description of the freeform surface. Thus, two different data sets are used and a data conversion will be required in order to compare the measured surface against the prescribed, machined surface. This can make it extremely challenging to accurately correct the surface. By integrating the metrology directly onto the UPC 400, the need for data conversions or data corrections is eliminated since all the necessary steps are performed on one platform.

Software Controls

Advanced data handling capabilities power the machining, metrology, and corrective machining processes on the UPC 400. Freeform surfaces are often expressed mathematically as NURBS (Non-Uniform Rational Basis Spline). This format is common to many CAD and optical design programs and allows for the description of complex freeform geometries. After the surface is designed, the NURBS data is converted into a STEP file which provides a lossless format for working with the data on the UPC 400. The STEP file can be used to create the subsequent NC programs for both machining (FTS and milling) and measurement. The ability to directly import the freeform description onto the UPC 400 is beneficial as only a single set of data is needed for all operations (i.e. machining, metrology, and corrective machining programs). This eliminates data conversions and data corrections between process steps for machining and metrology which can distort the data and cause increased surface figure errors.

The UPC 400 can also be directly programmed with G-code generated offline using commercially available software packages. In addition, external measurements of the surface deviation can be uploaded to the machine as a point cloud. The UPC 400 can then calculate a new NURBS surface for corrective machining. In this way, the UPC 400 can be programmed either directly using the onboard software or indirectly using external software programs giving it a range of flexibility and compatibility with other common industry practices.
The software also provides different functionalities to analyze the data. The graphical user interface on the UPC 400 allows for 3-D visualization of the NURBS data and programmed freeform surface. This enables the user to verify that the data has been properly imported and is in the correct orientation and direction (i.e. concave or convex). The software also offers a tool path analysis which analyzes the required axis movements and the clearance angle of the tool to prevent possible collisions.

The initial machining program on the UPC 400 is based on the prescribed NURBS data. Following the initial machining, the freeform surface is measured directly on the UPC 400 using the onboard metrology system. The software can then compare the measured surface to the designed/programmed surface. The resulting error is used to create a new, corrective NC program which can compensate for repeatable errors such as deviations in the tool radius. The need for only a single clamping setup allows for the accurate correction of repeatable tool errors. The combination of both innovative hardware (i.e. single platform machine) and data handling capabilities on the UPC 400 improves the efficiency of the manufacturing process and leads to improved surface accuracies on high precision optical freeform surfaces.

RESULTS

The capabilities of the individual components of the UPC 400 (e.g. slow and fast tool diamond turning, milling, and metrology) have been thoroughly tested. On a 50 mm diameter, spherical aluminum (Al 7075) mirror, the UPC 400 achieved form accuracies better than 60 nm PV (see figure 4) and a surface roughness of < 5 nm Ra. The machining took place with a 0.25 mm tool at 2000 rpm.

The ability to further improve the surface roughness was limited by the hard intermetallic phases of the aluminum material. Better results of about 1 nm Sa can be achieved using nickel-phosphorous materials as shown in figure 5.

FIGURE 4. On-axis-sphere R = 100 mm with form accuracy better than 60 nm PV.

FIGURE 5. Surface roughness measurement on nickel-phosphorus material (50x objective, Sa = 0.97 nm).
Freeform Machining Results

In order to test the freeform machining capabilities of the UPC 400, an aluminum spherical optic was machined off-axis. This is the ideal test piece as it requires the full freeform capabilities of the machine and can be quickly and easily measured to a very high level of accuracy using a standard interferometer.

The test part as shown in figure 6, was made of aluminum (AL 6082) with an outer diameter of 200 mm and two opposing, concave spheres located at a radius of 45 mm. Each sphere had a radius of 100 mm and a depth of about 4 mm.

![Figure 6. Off-axis-sphere for demonstrating the freeform capabilities of the UPC 400.](image)

Machining was performed using a 2 mm radius diamond tool with a spiral distance of 10 μm. The machining time was 2 hours at a speed of 45 rpm.

The results shown in figure 7, demonstrate the ability of the UPC 400 to machine a freeform surface to submicron level accuracy without any corrective machining. The remaining surface figure error is low order with minimal mid-spatial frequency errors. Low frequency error is preferred as mid-spatial errors can significantly affect the performance of an optical system. The higher frequency concentric circles that can be seen in the data are an artifact of the measurement process due to the high reflectivity of the material.

![Figure 7. Surface measurement of aluminum sphere machined off-axis showing resulting error of less than 650 nm PV.](image)

Further testing using the fast tool system has shown a 3x reduction in process time (compared to machining with the slow tool) while maintaining the same level of form accuracy. Using the fast tool can increase the overall productivity of the machine and significantly reduce machining time. For surfaces with higher acceptable form deviations (e.g. roughing steps), even faster speeds can be achieved.

Corrective Machining

Form errors can be compensated for and corrected using the UPC 400. A measurement of the machined surface is compared against the initial, ideal surface. The deviations between the ideal surface and the existing, machined surface can be used to generate a new NURBS surface for corrective machining.

The top image of figure 8 shows the measured surface of an off-axis machined sphere. The below image of figure 8 shows the new compensated NURBS surface which is based off the initial prescribed surface and measured surface. This compensated NURBS surface contains the necessary information to further improve and correct the surface figure error.
FIGURE 8. Measured deviation of the spherical lenses after machining (above) and the new NURBS surface for corrective machining (below).

It is expected that after corrective machining, the surface error will be in the range of 200 nm PV.

CONCLUSION
By integrating fast and slow tool diamond turning, milling, and metrology along with powerful data handling capabilities, the UPC 400 creates an ideal single machine platform for fabricating freeform surfaces. The highest quality form accuracies in freeform machining are achieved in the shortest process time. The single clamping setup preserves the coordinate system enabling the UPC 400 to correct for repeatable machining errors and achieve a high surface accuracy with minimal processing time.

REFERENCES
INTRODUCTION
Esophageal atresia (EA) is a rare anatomical defect found in infants, who are born with their esophagus disconnected as shown in Figure 1. EA with a relatively short gap, for example 2-3 cm, can be directly corrected by surgical connection. However, EA with a relatively long gap, longer than 3 cm, requires treatment over several weeks to elongate the esophageal pouch so that it can grow to a sufficient length for surgery. The standard operation for long-gap EA is the Foker method [1]. This method works for a wide range of EA, but requires several thoracotomies and weeks of continuous anesthesia. For minimally invasive correction of long-gap EA, several in-lumen methods have been proposed [2, 3, 4]. Such methods insert a bougie into the esophageal pouch to apply stretching force for stimulating growth.

We present a bougie design using permanent magnets and a hydraulic piston mechanism. Our device schematic is overlaid on the anatomy of esophageal atresia in Figure 1. The basic idea is to use an attractive force between two permanent magnets to stretch the esophageal pouches. Such an approach has been previously presented in [3, 4]; we have added a piston mechanism to allow measurement and control of the pushing force. The magnet for the proximal pouch is inserted via the mouth. The magnet for the distal pouch is inserted into the stomach via a gastrostomy, an artificial hole on the stomach for feeding. A hydraulic piston mechanism on the magnet allows the bougie additional tip extension relative to the magnet, which helps to stretch the esophageal pouches in a controllable manner. The piston mechanism also enables estimation of the stretching force from a pressure measurement of the piston fluid. The magnetic bougie is attached at the tip of a catheter, which is driven by a friction drive to provide push/pull force and adjust the gap size between the two magnets.

BOUGIENAGE WITH PERMANENT MAGNETS
This work forms the focus of the first author’s Master’s thesis [5]. In our bougienage method two permanent magnets are inserted into the esophageal pouches. We model the esophageal pouch as a linear spring and assume that the magnet in the distal pouch is fixed as shown in Figure 2. The force between the two permanent magnets F_m increases exponentially as the gap size decreases, whereas the esophageal stretching force F_e increases linearly. For short-gap EA, where the magnetic force is always bigger than
FIGURE 2. Bougienage with permanent magnets and a pushing mechanism. Here, ξ_0 is the neutral gap size between the esophageal pouches, K_e is the stiffness of the esophageal pouch, and x is the distance between the two magnets.

FIGURE 3. Magnetic bougienage with a hydraulic piston mechanism. The hydraulic tip extension d enables the bougie to stretch the esophageal pouch without changing the distance between the two magnets.

FIGURE 4. A cross-sectional view of the magnetic bougie with a hydraulic piston mechanism.

FIGURE 5. Friction drive 3D model.

the stretching force of the esophagus, bougienage can be accomplished using magnets only [3]. For long-gap EA, however, the magnetic force is not always larger than the stretching force, so that it needs to be complemented with mechanical pushing force as shown in Figure 2. Note that for gaps between ξ_1 and ξ_2 the magnetic force is less than the stretching force.

In Figure 2 the esophageal stretching force curve F_e intersects the magnetic force curve F_m twice at ξ_1 and ξ_2. Here, ξ_2 is an unstable equilibrium point, around which a small perturbation $\delta \xi$ makes the bougie move in either the positive or the negative direction and diverge from ξ_2. Conversely, ξ_1 is a stable equilibrium position. This instability could make it difficult to control the position of the magnetic bougie and is a concern for tearing if the gap $\xi < \xi_2$. We address the concern by implementing an additional degree of freedom using a hydraulic piston mechanism. As shown in Figure 3, injecting water into the piston extends the tip of the bougie, which shifts the magnetic force curve from F_m to F_m' in the ξ coordinate. The hydraulic modulation moves the unstable equilibrium from ξ_2 to ξ_2' and provides the bougie with a wider stable operating range. Also, the measurement of piston pressure through the catheter enables estimation of the esophageal stretching force.

MECHANICAL DESIGN

The magnetic bougie with piston mechanism is shown in Figure 4. Here a plunger consisting of ring-type permanent magnets is inserted into a barrel. O-rings are employed to seal the gap be-
FIGURE 6. Overview of the test bench.

between the barrel and the plunger. The bougie is connected to a catheter, through which an external syringe pump pushes water into the bougie to modulate the tip extension. A pressure sensor is placed at the outlet of the syringe pump via a T-connector as shown in Figure 6. The sensor measures water pressure in the catheter to estimate the force at the tip of the bougie, which thereby estimates the esophageal stretching force. A friction drive is designed as shown in Figure 5 to feed the catheter back and forth into the esophageal pouch, thereby pushing the closed end of the pouch with the bougie. For more details, see [5].

SYSTEM INTEGRATION AND CONTROL

In the test bench of Figure 6, a mock-up of the esophageal pouch is fabricated out of surgical rubber tubing and mounted on a beam-type load cell to measure the tension during the bougienage. The friction drive is mounted close to the esophageal mock-up to feed the bougie-tipped catheter. A syringe pump is placed next to the bench and connected to the catheter to push water into the magnetic bougie.

The control architecture for the magnetic bougienage system is shown in Figure 7. A cRIO real-time controller, manufactured by National Instruments, is used to implement the control system. The host PC communicates with the cRIO via an Ethernet cable and also via an USB cable with the EPOS2 brushless DC motor controller board, manufactured by Maxon Motor. The stepper motor in the syringe pump is driven by TB6560 Stepper Motor Driver manufactured by Toshiba.

EXPERIMENTAL RESULTS

We have conducted a bench-level test to demonstrate that the bougienage system can apply a desired stretching force, for example 3 N, to the esophageal mock-up in a controllable manner and can also reliably estimate the stretching force. As shown in Figure 8, we set the neutral gap size of the esophageal mock-up ξ_0 to
FIGURE 8. The setup for bougienage tests.

10 mm and the tip extension \(d_0 \) to 5 mm, which sets the distance between two magnets \(x_0 \) to 15 mm. Then, we insert the magnetic bougie into the esophageal mock-up and modulate the displacement of the catheter sinusoidally using the friction drive such that the mock-up experiences maximum tension of 3 N as measured by the load cell. This tension is compared with the bougie tip force estimated with the external pressure sensor. The experimental result is recorded as shown in Figure 9. In this figure, the upper plot is without dither and the lower plot is with dither. Dither is used to average out the O-ring friction of the piston mechanism by adding a 0.4 Hz sine wave to the hydraulic piston fluid drive via the syringe pump. We then filter the pressure sensor output through a moving average filter with a time window of 2.5 sec. In both figures, the red dashed line is the bougie tip force estimated with the pressure sensor after filtering through a moving average filter. The blue solid line is the tension of the esophageal mock-up measured with the associated load cell (the true value). The green solid line is the magnetic force measured with its associated load cell.

In the top trace of Figure 9, we can see that the esophageal mock-up experiences a sinusoidal tension with the maximum of 3 N. However, there is a large discrepancy between the bougie tip force estimated with the pressure sensor and the tension measured with the load cell. It is thus difficult to estimate the mock-up tension from the bougie measurement in this case. Therefore, we can reliably estimate the mock-up tension from the bougie measurement in this case.

FIGURE 9. Sinusoidal bougienage with \(\xi_0 = 10 \) mm and \(d_0 = 5 \) mm. The top trace is without dither, and the bottom trace is with dither.

ACKNOWLEDGMENTS

We thank National Instruments for their support of this project. This work was also supported in part by a Samsung Scholarship and by the Boston Children’s Hospital.

REFERENCES

INTRODUCTION
Due to technical improvements of Micro Electro Mechanical Systems (MEMS), high-performance and high-power mechanical parts, such as brushless motor and silicon gyro, are increasingly being used in the consumer market. Unmanned aerial vehicles (UAV), which apply these technologies and are capable of autonomous and automatic flight, are now commercially available for short-distance remote sensing. However, such remote sensing UAVs are still very expensive, and cannot be afforded by small laboratories such as those of universities. Recently, prices of multi-copter UAVs have been reduced to US$1000 or less on the market; however, these low-cost UAVs can only bear up to sensor weight of several hundred grams, which is not adequate for remote sensing.

On the other hand, the price of embedded computer systems is also dropping. One-board computer systems, such as Arduino and RaspberryPi, are now available at reasonable prices on the consumer market and are increasingly being used for controlling measurement systems and for embedded system education. Especially, RaspberryPi adopts Linux as OS, and has interfaces with various peripherals, such as USB, LAN, and serial ports. Furthermore, RaspberryPi provides options to connect visible and infrared digital cameras [1]. The authors thus propose mounting this board computer to low-cost UAVs to enable use of low-cost UAVs for short-distance remote sensing. Consequently, we developed a near-infrared camera system with RaspberryPi, and demonstrated how data can be acquired with the combination of a low-cost UAV and this camera system.

PLATFORMS AND SENSOR SYSTEM
Low-cost UAV
We chose the DJI Phantom as the low-cost platform product in this research. Phantom is a quad-type helicopter commercialized by DJI and has the ATT and GPS modes for flight operation [2]. It can hover in the accuracy range of GPS when it receives information from six or more GPS satellites. Figure 1 shows the outlook of Phantom platform. The weight of this UAV is about 900 g including battery, and loading capacity is about 400 g at maximum. The flight time is about 10 minutes without load and decreases as the load increases. We usually set a 5-minutes flight plan in our experiments.

Waypoint Operational UAV
Although the Phantom flight operation is relatively easy, the operator basically have to fly the UAV over the observation targets manually and then take images of the targets. The recent higher functionality UAV has an automatic flight capability by setting waypoints in prior to its flight operation. In order to make a mosaic image or a digital surface model (DSM) for the target efficiently within the limited time period, this waypoint operation should be suitable for our short-distance remote sensing.

Since most of low-cost UAV products do not have the operation mode with waypoints, we tried to assemble our own designed UAV with the use of the flight controller that has a capability to use waypoints. ArduPilot APM [3] version 2.6 is selected as the flight controller for our own assembled UAV. Table 1 shows the major parts list of our UAV, and Figure 2 gives the outlook of our waypoint capable UAV. The weight of the UAV is about 1050 g including battery, and the loading capacity is about 500 g at maximum.

Near-infrared GPS Camera System
Using RaspberryPi as the controller, an imaging system for acquiring aerial photographs was designed to satisfy the following conditions:
(1) Total weight of about 300g including the batteries.
(2) Input power of 5V DC.
(3) Operational time of more than 10 minutes.
Figure 3 shows the outlook of our camera system. We connect the GPS as well as near-infrared camera modules to the I/O of RaspberryPi, and use the mobile battery for portable phones as the power source (5V 1A · 2700mAh). The weight of the developed system including the battery is 231.3g and operational time period about 110 minutes. We attach the developed system to the UAV using a simple anti-vibration mount.

We also developed a control program for this camera system applying multi-threaded processing technique in order to acquire data simultaneously from the camera and the GPS modules. This program is automatically activated when the system power is turned on. This control program starts to take pictures with selected time intervals, currently set to 2 seconds, and records GPS logs once the GPS modules can calculate the location coordinates with better accuracy. The camera system can record the shooting time, latitude, longitude, and altitude in the Exif area of the image file. It finishes shooting and recording of the GPS logs using external commands. Figure 4 gives a sequence diagram of our camera system in UML format.

TABLE 1. List of assembled UAV parts

<table>
<thead>
<tr>
<th>Controller</th>
<th>APM 2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td>880KV brushless motor X4</td>
</tr>
<tr>
<td>Propeller</td>
<td>10 x 4.5 propeller X4</td>
</tr>
<tr>
<td>Battery</td>
<td>3S 11.1V 2200mAh LiPo battery</td>
</tr>
<tr>
<td>Sensors, etc.</td>
<td>GPS + compass receiver</td>
</tr>
<tr>
<td></td>
<td>6 ch radio receiver</td>
</tr>
<tr>
<td></td>
<td>battery monitor</td>
</tr>
</tbody>
</table>
ACQUISITIONS AND PROCESSING OF TEST DATA

During the period from March 7 to March 10, 2014, we had an opportunity to visit the tsunami-affected areas in Miyagi prefecture. Test data were acquired by using the Phantom UAV with our near-infrared camera combined with a superblue filter [4] that eliminates the red band. Figure 5 gives an example of the acquired data over the area that was washed away by tsunami in Ishinomaki city colorized in NGB (assigned Near-infrared band to red channel, Green band to green channel, and Blue band to blue channel) as well as Normalized Difference Vegetation Index (NDVI) image.

The recorded image data has an Exif area including latitude, longitude, and altitude information obtained from the GPS receiver. These camera locations were used as the initial values for more accurate location estimation, and then orthophoto and DSM mosaic images were created using the structure from motion (sfm) technique. Figure 6 gives an example of these processes. Figure 6(a) shows each individual image, and Figure 6(b) and 6(c) indicate mosaicked ortho and DSM images, respectively. These data were taken at the embankment model at the time of reconstruction in Yuriage district of Sendai city.

SUMMARY AND FUTURE RESEARCH PLANS

We developed a short-distance remote sensing system with the use of a low-cost UAV and board computer. By using the near-infrared camera controlled by the board computer, we confirmed that the developed system could be effectively used for our short-distance remote sensing purpose. Our future research plans are as follows,

1. Real time monitoring of flight information using XBee communication.
2. Reducing the weight of the camera system.
3. Simultaneous observation by using 4 bands including blue, green, red, and near infrared bands.
4. Calibration of output image from camera system.

We also hope to improve the accuracy of real-time GPS locations and achieve effective data acquisition using multiple platforms.

ACKNOWLEDGEMENTS

The test data used in this paper was obtained with the assistance of Professor Kohei Cho of Tokai University. We also received guidance from associate professor Kazuki Nakamura of Nihon University. We would like to express our gratitude for their support.

REFERENCES

FIGURE 5. Example of NGB and NDVI images created from data acquired in Ishinomaki. (a) NGB color image and (b) NDVI image for same area of (a).
FIGURE 6. Ortho and DSM images created from the data acquired at the mounded area in Yuriage. (a) Captured individual images, (b) Ortho mosaicked image, and (c) DSM mosaicked image.
DESIGN AND CONTROL OF A DUAL VOICE COIL LINEAR NANO-POSITIONER

Ahmet Okyay, Kaan Erkorkmaz, and M. Behrad Khamesee
Department of Mechanical and Mechatronics Engineering
University of Waterloo
Waterloo, ON, Canada

INTRODUCTION
Ultra-precision motion systems have been a core area of research for applications such as semiconductor and optical manufacturing, and micro-machining machine tool design. Voice coil motor (VCM) driven ultra-precision motion stages have been shown to successfully achieve sub-nanometer resolution over stroke lengths as long as 150 [mm], when coupled with a ball screw drive [1]. In a recent study [2], it has been demonstrated that a flexure based VCM stage with 8 [mm] stroke can achieve 20 [nm] of positioning resolution. In another study [3], a nano-precision XYΘ scanner has been proposed with +/- 20 [nm] in XY and +/- 0.1 [arcsec] resolution in Θ directions. This system, with 1 [mm] linear stroke length, employs VCMs for actuation and air bearings for motion guidance. Dynamic response of the system has been measured and it is found to follow a circular reference trajectory with 400 [μm] diameter at 1 [Hz] with positioning errors smaller than 0.15 [μm] peak-to-peak. VCMs can be combined to produce actuation in all six motion axes [4], thereby eliminating the need for bearing components. The range of motion is limited in that case (2 [mm] in linear and 4° in rotational axes), as reported in [4]. One of the limiting factors in ultra-precision positioning accuracy is the performance of actuators. In [5], optimization of VCMs for an ultra-precision motion stage is presented. The cost function used involves maximization of the average acceleration and minimization of the average heat dissipation within a specified travel length resulting from a step voltage input. This paper presents a new design, featuring a dual voice coil actuator in a convenient air bearing arrangement, consisting of two bushings and a flat air bearing. The design is particularly easy to align and assemble. In producing a prototype of the stage, precision engineering and design optimization principles were applied. The stage is capable of achieving 20 [mm] stroke, currently with +/- 5 [nm] of resolution.

FIGURE 1. Linear ultra-precision motion stage.
OVERVIEW OF THE SYSTEM
A schematic and a photo of the proposed motion stage are presented in Figure 1. The moving body consists of a monolithic shaft with plates attached to planar grooves machined on the top and bottom sides. The structure is supported by two air bushings at each end, thus constraining lateral, vertical, pitch, and yaw motion. The flat air bearing on the bottom constrains roll motion. The bearing structure is very easy to assemble and align around the ground cylindrical shaft. The two ends of the shaft are attached to magnetic cores, which engage into stationary coils fixed to brackets, thus constituting VCMs in moving magnet actuator (MMA) configuration. The two magnetic cores help to compensate for the nonlinearity caused by the change in each other’s engagement. Position measurements are obtained through a sinusoidal encoder, with the head mounted in a stationary manner. Thus, there is no contact with the moving section. There is also provision in the design to incorporate acceleration feedback, or swap the flat air bearing with a vacuum preloaded air bearing for additional damping.

DESIGN AND OPTIMIZATION OF THE VOICE COIL MOTORS (VCM)
A schematic of the VCM is given together with an example set of COMSOL FEA results, in Figure 2. The VCM is made up of the AISI 1018 iron core and the wound coil which engages to the core within a specified clearance. An axially magnetized, NdFeB ring magnet with Nd42 grade has been used as the flux source. In the design of the VCMs, two sets of optimizations have been carried out. The first set charts out the performance of the system in terms of “acceleration per current density”, which penalizes added mass by the magnetic core while seeking the maximum force achievable by the current carrying capacity of the coil wires. The second optimization index is the “motor constant” formulated for the volume of coil, which is a measure of square root of heat dissipated per unit force, independent of the coil design. For each set of optimizations, the resulting gap flux densities in the radial direction of the coil were estimated by simulating the corresponding VCM design in COMSOL, as exemplified in Figure 2. By maximizing the first performance factor and minimizing the latter, a design which allows high positioning performance can be achieved with minimal thermal distortion caused by the motors.

VIBRATION MODES
An analytical study of the vibration modes using catalog values for air bearing/bushing stiffnesses [6] has been carried out. The diagram which gives the definitions for vibration axes for first natural frequencies is given in Figure 3.

First natural frequencies are calculated as, 940 [Hz], 940 [Hz], 736 [Hz], 735 [Hz], 475 [Hz] for Y, Z, Yaw, Pitch and Roll axes, respectively. The roll mode is calculated using an approximate approach by integrating bits of linear stiffness elements over the area under compression. The accuracy of these predictions is to be confirmed with modal testing.
CONTROL SYSTEM DESIGN

Current Control Loop

The current control loop was realized using linear amplifiers, tuned at 1000 [Hz] bandwidth. The current controller is made up of an integrator and a lead. The same controller is implemented for both motors using separate amplifiers. Motor properties (in terms of inductance) change depending on the position of the stage, as this changes the level of engagement for each motor. Therefore, closed loop transfer function (CLTF) of the current control loop varies with stage position. In order to validate the implemented controller, the stage is clamped at various stroke positions, and CLTF is evaluated using sinusoidal voltage commands sent to the amplifiers. The resulting frequency current response is recorded. Results are presented in Figures 4 and 5. The behavior of Amplifier A + Motor A and Amplifier B + Motor B, in terms of the peak magnitude and phase roll-off, follow the same patterns in reverse order with respect to the stage position. Theoretical prediction for current control CLTFs at $x = 0$ [mm] and $x = 20$ [mm] are also presented in Figures 4 and 5. These are evaluated using the initial motor identification results together with the designed current controller. Magnitude plots show rather close agreement in both cases, while the phase plots seem to have a sharper decline in the experimental case. These are thought to have originated from discrepancies in the initial identification of the motors.

Position Control Loop

The experimentally obtained open-loop position frequency response of the motion system to the amplifier input voltage is given in Figure 6. In preliminary testing, the position control loop was designed as a lead-lag controller, tuned for 500 [Hz] cross-over frequency. The controller was implemented on a dSPACE - DS1005 board sampling at 20 [kHz]. The loop transfer function, $L(s)$ is given in Figure 7. The upper plot represents the Bode magnitude plot, while the lower one is the Nyquist diagram of $L(s)$ near the origin. A phase margin of $PM = 40^\circ$ was used.

FIGURE 4. Bode plot for voltage to current transfer function of Motor A for various fixed positions of the stage.

FIGURE 5. Bode plot for voltage to current transfer function of Motor B for various fixed positions of the stage.

FIGURE 6. Open loop position response.

In preliminary testing, the position control loop was designed as a lead-lag controller, tuned for 500 [Hz] cross-over frequency. The controller was implemented on a dSPACE - DS1005 board sampling at 20 [kHz]. The loop transfer function, $L(s)$ is given in Figure 7. The upper plot represents the Bode magnitude plot, while the lower one is the Nyquist diagram of $L(s)$ near the origin. A phase margin of $PM = 40^\circ$ was used.
CONTROL PERFORMANCE EVALUATION

Initial positioning tests, with filtered step inputs (cut-off freq. 40 [Hz]), demonstrate a settling resolution of 5 [nm], as shown in Figure 8.

The signals recorded should be a combination of vibratory motions of the reading head with respect to the fixed stage, and the measurement noise. FFT of the sample signal in Figure 9 up to the cut-off frequency 10 [kHz] is given in Figure 10.

A separate study has been carried out to gauge sensor noise. The stage was mechanically fixed to its position at the middle of the stroke length and position recordings at 20 [kHz] were gathered from the sensors reset to zero at the beginning of the recording. A sample from these measurements, all of which reflect similar characteristics, is presented in Figure 9.
Results in Figure 10 indicate that the recorded position signal is a combination of drift at very low frequency and uniformly distributed high frequency noise. Hence, the measurement noise floor is established at 10 [nm] peak-to-peak, which coincides with the positioning resolution. It can be concluded that the positioning resolution of the system is currently limited by the sensor characteristics.

REFERENCES
ANALYSIS OF MATERIAL MECHANICS FOR PNEUMATIC RUBBER ACTUATORS
(MATERIAL PROPERTIES EXPERIMENT AND MOTIONS OF NBR BELLOWS ACTUATORS)

Manabu ONO¹, Kota YAMAGISHI¹, Mamoru SHIMAZAKI¹, Makoto SAKAMOTO², Tsuyoshi FURUSHIMA³, Kenichi MANABE³ and Tetsumaro HIROI²

¹Department of Mechanical System Engineering
Tokyo Metropolitan College of Technology
Shinagawa, Tokyo 140-0011 Japan
²Department of Production System Engineering
Tokyo Metropolitan College of Technology
Shinagawa, Tokyo 140-0011 Japan
³Department of Mechanical Engineering
Tokyo Metropolitan University
Hachioji, Tokyo 192-0397 Japan

INTRODUCTION
The pneumatic actuator made from rubber has the flexible feature. This is also called a soft actuator in order to carry out flexible operation. A soft actuator has the soft and safe feature. The actuator can change also corresponding to external force. Therefore, this actuator is excellent in the machine attached b a human body and in-pipe mobile robot. This actuator is studied for the power assistant suits which assist elderly people, a physically handicapped person, and the worker that carries a heavy load [1].

The photograph of a pneumatic rubber bellows actuator is shown in Fig. 1. We use these for the in-pipe mobile robot which shows in Fig. 2. The pneumatic rubber bellows actuator is excellent in the power-weight ratio, and even if small, it can take out large generative force. Therefore, the actuator is used for the in-pipe mobile robot which can move freely in the inside of a small diameter pipes[2].

Only the power which a design of the power assistant suit and in-pipe mobile robot using a pneumatic rubber actuator produces by air pressure was examined. The characteristic peculiar to rubber which arises by rubber has been disregarded. The simulation cannot finish catching the motion of an actuator and is designed by the Trial & Error technique. In this research, the rubber which constitutes the actuator used for the in-pipe mobile robot was analyzed experimentally. We thought that a power assistant suit and a robot could be designed theoretically, when the action of the actuator had been grasped. Rubber carries out nonlinear large deformation by external force. The material characteristics of rubber were identified by experiment and the database was built. This can expect improvement in
performance and reduction of development costs

MEASUREMENT OF THE SHORE-A HARDNESS OF NBR
The hardness which is the material characteristics of rubber is measured. We are fabricated the actuator using the rubber called NBR 60, NBR 70, NBR 80, NBR 85, and NBR 90. Based on JIS K 6253, the Shore A hardness of various rubbers was measured using the type A durometer. Measurement piled up three 300mm * 300mm * 3 mm rubber sheets. The hardness measurement result of NBR is shown in Fig. 3. It turned out that a little Shore A hardness of the numerical value of a name and measured value differs. We think that the Shore A hardness rougher than a declared numerical value can be grasped.

THE TENSILE TEST OF NBR
The tensile test was done in order to search for the tensile strength which is a material constant of NBR. The tensile test used the dumbbell-like No. 3 specimen which is a calibration block based on JIS-K-6251. The tensile strength to cutting and the growth of cutting were measured at the tension speed of 500 mm/min. A tensile strength σ_B (MPa) is calculate by the Eq. 1.

$$\sigma_B = \frac{F_B}{A} \quad (1)$$

F_B (N) shows maximum tensile load and A_0 shows the cross-sectional area of the gage line of a specimen. Measurement of the maximum tensile force F_B (N) is inputted into PC using a digital recorder. The growth at the time of cutting is calculated by the Eq. 2.

$$\varepsilon_B = \frac{L_1 - L_0}{L_0} \quad (2)$$

L_0 shows the distance between gage lines and L_1 shows the distance between gage lines at the time of cutting. The distance between gage lines was measured by picture judging. By doing a tensile test, the stress distortion diagram was able to be obtained about five kinds of NBR which we are using actuators. As an example, the nominal stress-nominal value distortion diagram of NBR 70 is shown in Fig. 4. A result shows at NBR that nonlinear modification has arisen. The growth at the time of cutting is shown in Fig. 5. When rubber becomes hard, it turns out that growth decreases.

FIGURE 3. Measurement of shore A hardness

FIGURE 4. Stress-strain curve of NBR 70

FIGURE 5. Elongation at break

NBR 60 is understood that growth is comparatively large. This shows that the growth of the material of rubber is not hardness and proportionality relation.

STRAIN ENERGY FUNCTION EXPRESSION OF NBR
FEM analysis of the nonlinear deformation of rubber is conducted. The Mooney-Rivlin type was used for this analysis. Expression modeling
of the specimen of rubber was carried out. The strain energy function of NBR was drawn from there. The stress tensor concerning a rectangular section was denoted by the extension ratio lambda. The primary model of a strain energy function is denoted by Eq. 3.

\[\sigma = C_1(2\lambda - \frac{2}{\lambda^2}) + C_2(2 - \frac{2}{\lambda^2}) \]
(3)

We applied the tensile test data of NBR 70 shown in Fig. 4 to the Eq. 3 and the least-squares method obtained the coefficients C1 and C2. As a result, it became a value of C1=0.0966 and C2=0.0320. Verification of the stress-distortion diagram of a primary model is shown in Fig. 6. X in a Fig. 6 expresses measured value and the solid line expresses strain energy function expression. It was judged that agreement of measured value and strain energy function expression was not enough. We found being improved of the model from the result. The secondary model of the strain energy function was examined. This is denoted by Eq. 4.

\[\sigma = (2(C_1 - 6C_2) \frac{2(4C_2 + C_1)}{\lambda} + 4C_3 \lambda^2)(\lambda - \frac{1}{\lambda^2}) \]
(4)

The tensile test data of NBR70 is similarly applied to Eq. 4, and the coefficients C1, C2, and C3 are identified with a least-squares method. The result was set to C1=0.491, C2=14.6, and C3=0.617. Verification of the stress-distortion diagram of a secondary model is shown in Fig. 7. Measured value and strain energy function expression are well in agreement. Therefore, it was judged that a secondary model was suitable for derivation of a strain energy function.

CONCLUSIONS

The material characteristics experiment was conducted on NBR which is the material of the pneumatic rubber actuator used for a power assistant suit and the in-pipe inspection robot.

The primary model examined the strain energy function using the Mooney-Rivlin type. The tensile test result of NBR70 was applied to the formula, and the coefficient was obtained. However, the agreement with measured value was not accepted.

REFERENCES

A ROLL-BONDING MACHINE FOR POLYMERIC FILMS

Nikhil Padhye, David M. Parks, Alexander H. Slocum, Bernhardt L. Trout

1Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, MA, 02139, USA

2Department of Chemical Engineering
Massachusetts Institute of Technology
Cambridge, MA, 02139, USA

MOTIVATION

An ongoing activity at the NVS-MIT Center for Continuous Manufacturing (NVS-MITCCM) envisions continuous manufacturing of pharmaceutical products from thin polymeric films. Such a manufacturing process is intended to operate in a minimum number of steps, and the final drug-product be made from start to finish in a continuous manner at one facility. This methodology promises to accelerate the introduction of new drugs in the market, minimize the generated waste, reduce the use of energy and raw materials, carry out quality checks inline, as opposed to post-production, and increase the overall reliability and flexibility of the production process [3]. A crucial step in this downstream process is bonding of multiple incoming layers of films (each layer \(\sim 100 \mu m \) thick) in a continuous mode. Here, we present the design of a continuous roll-bonding machine to carry this task with precision.

Notation

- \(h_1 \) film-stack thickness at the inlet [m]
- \(P \) line loading [N/m]
- \(h_o \) total thickness at the outlet [m]
- \(e^p \) plastic strain in film-stack [m/m]
- \(L \) total load [N]
- \(w \) width of the film [m]
- \(M \) moment per unit width [N]
- \(E_{film} \) modulus of film [MPa]
- \(\sigma_{y,film} \) yield strength of film [MPa]
- \(R \) radius of roller [m]
- \(E_{roller} \) modulus of roller [MPa]
- \(\sigma_{y,roller} \) yield strength of roller [MPa]
- \(\tau \) duration of contact in rollers [s]
- \(V_2 \) exit speed of the films [m/s]
- \(\bar{\sigma}_x \) average principal stress in x-direction
- \(\bar{\sigma}_y \) average principal stress in y-direction

FUNCTIONAL REQUIREMENTS OF MACHINE

Bonding multiple incoming layers of polymeric films during continuous manufacturing requires appropriate levels of active plastic deformation over a certain interval of time [2]. The polymer films of interest have a yield strength \(\sigma_{y,film} \sim 6-8 \text{MPa} \) and a modulus \(E_{film} \sim 200-300 \text{MPa} \), and feed speeds around 30 mm/min. Typically 10%-20% plastic deformation is required over a short interval (5-20 s) to achieve bonding. The machine should have sufficient flexibility to operate in a wide range about these specifications.

DESIGN AND ANALYSIS OF ROLL-BONDING MACHINE

A possible solution is to design a machine comprising of two rigid-rollers capable of exerting sufficient loads over the desired interval of time. Rollers made of stainless steel (yield strength, \(\sigma_{y,roller} \sim 600 \text{MPa} \) and a modulus \(E_{roller} \sim 180-200 \text{GPa} \)) can be treated rigid in comparison to relatively ductile polymer films. Flattening of rollers, which may be an issue in the context of rolling metals, is unlikely here since polymeric films have a small yield strength in comparison with that of the rollers. The steel rollers can also provide sufficient traction on the incoming films for necessary forward drive.

In general, the total strain \((e_{total}) \) comprises both elastic \((e^e, \text{ recoverable})\) and plastic \((e^p, \text{ non-recoverable})\) strains, i.e. \(e_{total} = e^e + e^p \). To a first approximation we can ignore the elastic strains assuming that the plastic strains will dominate in this deformation processing situation, i.e. \(e_{total} = e^p \). Therefore the material can be treated as rigid-plastic, i.e. a material which is perfectly rigid prior to yielding and perfectly plastic afterwards. The analysis presented here is adopted from [1]. A rigid perfectly-plastic rolling scheme is shown in Figure 1, and from the rolling geometry we have

\[
d = \frac{a^2}{R}
\]
where,

\[d = \frac{h_1 - h_o}{2} \]

(2)

The von Mises yield criterion in conjunction with plane-strain condition (in the y-direction) leads to

\[|\bar{\sigma}_x - \bar{\sigma}_z| = \frac{2}{\sqrt{3}} \sigma_{y,film} \]

(3)

By considering the equilibrium of a differential element and following the von Karman’s procedure [5], the line loading \((P)\) and the moment per unit width \((M)\) applied to the rolls can be estimated as follows:

\[P\left(\frac{\sigma_{y,film}}{\sqrt{3}}\right) = 2 + \frac{a}{\bar{h}} \left(1 - \frac{1}{3R}\right) \]

(4)

\[M\left(\frac{\sigma_{y,film}}{\sqrt{3}}\right) = 1 + \frac{a}{4\bar{h}} \left(1 - \frac{a}{R}\right) \]

(5)

where, \(\bar{h} = \frac{h_1 + h_o}{2}\) is the mean film thickness.

From the geometry of deformation, if \(V_2\) is the exit velocity of rolled-stock, the time of compression \((\tau)\) in the rollers (if \(d \ll R\)) can be estimated as

\[\tau = \sqrt{\frac{R(h_1 - h_o)}{V_2}} \]

(6)

Typically if the coefficient of friction between the rollers and the strip is large, and/or the strip has lower yield strength the frictional traction at the interface exceeds the yield stress of the strip in shear so that there is no slip in the conventional sense at the surface i.e. plastic shear will take place in the rolled stock, while the surface will “stick” to the rolls with static friction. It is worth emphasizing that the above procedure incorporates no-slip assumption and, homogeneous deformation i.e. the vertical segments of the bar deform vertically as if they were separated from each other so that no shear stress can arise in them. After considering several trade-off designs we selected steel rollers of \(R = 100\ mm\), so as to achieve desired active plastic-straining during rolling. For example, \(\sigma_{y,film} = 6.0\ MPa\), \(h_1 = 1\ mm\), \(h_o = 0.8\ mm\), then \(2d = 0.2\ mm\) (indicating 20% plastic compression), and \(a = 4.47\ mm\).

From equations 4 and 5, \(P = 6.82 \times 10^4\ N/m\) and \(M = 150.89\ N\), respectively. If we assume the width of the strip to be \(20\ mm\), then the total load \(L = 1359.3\ N\) and total torque is \(3.01\ Nm\). If \(V_2\) is \(30\ mm/min\) then the residence time \((\tau)\) would be \(8.94\ s\). This illustration demonstrates that we can successfully achieve active plastic-deformation in the rollers in a few seconds.

It is worth mentioning that rigid-plastic analysis presented here does not take into account any strain hardening, heating effects, etc. and in actual process compression loads can differ. Other machine elements, discussed next, were sized and selected appropriately for successful functioning of the roll-bonding machine. For the sake of brevity we abstain from presenting those calculations here. In principle, sophisticated finite element procedures along-with accurate constitutive material models can be employed for accurate predictions of stresses, strains, etc.; however, the goal of this paper is to present analyses to identify the approximate operating loads and thereby select appropriate machine elements for a roll-bonding machine. During actual operation, like any other operating machine, the compression loads and angular-speed of rollers are tuned so as to meet the desired performance.

Figure 2 shows the CAD model of roll-bonding machine that we have developed. Table 1 lists the main components of the machine along with their functionality. The two cylindrical rollers with shafts are mounted on two separate ‘U’ shaped stages. The stages carrying the rollers are attached on the linear-sides such that distance between them can be adjusted. The distance between the rollers is measured by a micrometer. The position of the roller-carrying-stages attached to the linear slides is set using the two
FIGURE 2. CAD model of the Roll-Bonding Machine. The cylindrical rollers provide adequate line-loading to achieve plastic deformation on incoming films over a desired interval of time.

TABLE 1. Major components of the Roll-Bonding machine and their functionality. Functional requirements of each element have been carefully analyzed ([4]) before making design choices. Machining and assembly were carried out such that the parallel between the rollers was accurate up-to ±0.003".

<table>
<thead>
<tr>
<th>Machine Element</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rollers</td>
<td>Compression rollers capable of applying several kilo-Newton of line-load were machined out of stainless steel with a surface finish of $R_a \sim 6 \mu m$. The diameter of each roller is 200 mm.</td>
</tr>
<tr>
<td>Linear Slides</td>
<td>Carry the stage of the compression rollers, and enable setting the relative gap between the rollers. The slides were purchased from Stelron Components Inc.</td>
</tr>
<tr>
<td>Micrometer</td>
<td>Measures the distance between compression rollers which are mounted on the linear slides.</td>
</tr>
<tr>
<td>Load Cell</td>
<td>Purchased from Omega (model LC 305-1K) to measure the compression load (N). It is mounted on the left roller-stage.</td>
</tr>
<tr>
<td>Springs</td>
<td>Extension springs are used to secure the left roller-stage and load cell against the position handle.</td>
</tr>
<tr>
<td>Position Handle</td>
<td>Drive the left roller-stage through a threaded-rod and set its position.</td>
</tr>
<tr>
<td>Threaded Rod (Right)</td>
<td>Set the position of the right roller. Locking nuts secure it in the desired position.</td>
</tr>
<tr>
<td>Pulley System</td>
<td>Attached to the shafts of the rollers, and interconnected by a double-sided timing belt (not show so as to avoid clutter).</td>
</tr>
<tr>
<td>Stepper Motor</td>
<td>Purchased from Applied Motion Products (Model STM-23 QN). An appropriate gear train was selected to provide a minimum angular speed of 0.08 rpm and maximum torque of 50 Nm to drive the compression rollers.</td>
</tr>
</tbody>
</table>
threaded-rods. A load cell is mounted on the left roller-carrying-stage to measure the compression loads. The two threaded rods are secured to the main frame by the action of locking-nuts. During operation the position of the right-roller-stage is kept fixed, and the position of the left roller-stage is adjusted through threaded rods and a position handle. The rotatory motion of the position handle that drives the left threaded rod causes the sliding motion of its roller-stage. Two extensional springs are mounted on the frame and the left roller-carrying-stage such that load cell is well secured against the left threaded rod.

During operation, the position of the left roller-carrying stage is adjusted till a desired level of load or displacement is noted on the load cell or micrometer, respectively. The shafts are driven by a system of pulleys and double-sided timing belts using a stepper-motor. The stepper motor is attached to the main frame of the machine, and during operation an appropriate level of tension is maintained in the timing belt which drives the pulleys on the shafts. To ensure that timing belt does not slip over the pulleys when driving the shafts, an idler pulley is mounted to take up the slack in the timing belt, which occurs as rollers are brought closer. The angular speed of the motor dictates the exit speed \(V_2 \) of the films from the rollers. Figure 3 shows a snapshot of roll-bonding of multiple layers through our devised mechanism.

![Figure 3](image_url)

FIGURE 3. Roll-bonding of polymeric films.

The overall success of the roll-bonding mechanism lies in precisely applying the line-load without introducing unwanted deflection or failure of any machine element during compression between the rollers. In order to evaluate the accuracy of our system we have tested the standby performance (i.e. compression without the presence of films) in the displacement-controlled mode by imposing different levels of displacements by using the micrometer and measuring the load from load-cell as rollers are brought into the contact. This procedure was repeated many times with a maximum load of 1.5 \(kN \), and a load vs deflection curve (with error-bars) is shown in the Figure 4. From these results it can be concluded that the load follows the displacement in a linear fashion with good repeatability. The stiffness of the roll-bonding mechanism based on the load vs displacement curve is estimated to be \(5.3 \times 10^6 \) \(N/m \).

ACKNOWLEDGMENT

The authors acknowledge Novartis Pharma AG funding, and for providing research facilities at Novartis-MIT Center for Continuous Manufacturing for carrying out this research.

REFERENCES

IMPROVEMENT OF SIMPLIFIED BIAXIAL-TENSILE-TESTING APPARATUS USING LATHE CHUCK

Makoto SAKAMOTO1, Manabu ONO1, Mamoru SHIMAZAKI1 and Katsumasa TAKAHASHI2

1Department of MONOZUKURI Engineering
Tokyo Metropolitan College of Industrial Technology
1-10-40, Higashiooi, Shinagawa-ku, Tokyo 140-0011, Japan

2Department of Mechanical Engineering
Nagaoka University of Technology
1603-1, kamitomioka, nagaoka-shi, Niigata 940-2188, Japan

INTRODUCTION

In recent years, the desired accuracy and the forming difficulty of the product size in the fabricating operation of a plate material are increasingly severe. For example, the automotive industry environmental concerns, the problem of fuel efficiency and weight reduction and so on. Reducing the weight of automobiles is one of the primary concern by which their fuel efficiency is lowered. The two basic approaches are in automotive design and in materials selection, and they are closely related. As a countermeasure, the demand of high-tensile steel or aluminums alloy sheet is increasing rapidly. Because the press forming can produce cheap parts in large quantities, it is used for the processing of the automotive material.

The biaxial tensile testing apparatus of the hydraulic control for which the estimation method of material used cruciform specimen is already developed [1]. This apparatus has measured the forming limit and yield loci of various materials with sufficient accuracy. However, in order to pursue performance, apparatus is large-sized and is complicated. Development of a simple and accurate evaluation technique is desired in small and medium enterprise or a manufacturing site.

Using the scroll chuck used for a lathe, we developed the simplified biaxial tensile test apparatus. Then, independent chuck by which each axis is independent and operates, arbitrary stress ratio condition are made to act on a specimen, and this study aims at measuring the plastic deformation characteristic with high precision of the apparatus and strain ratio after fraction of sheet metal.

NEW AND OLD TESTING APPARATUS

The old simple biaxial tensile testing apparatus which we manufactured is shown in Figure 1 [2]. This apparatus consists of three portions. They are independent chuck used for a lathe, motors (MUSCLE Cool Muscle Servo System by Muscle Co.), and four vices to the numbers 1-4 for chucking the specimen. The vices were moved by the motors controlled by the personal computer. The normal tensile speed was 5mm/min. There were some problems in this apparatus. One of them is that the rigidity of apparatus is low, because the distance of chuck and a specimen grasp device is long. The distance is 121 mm. Therefore, the moment of 121FNm is acted near a chuck root.

So, in this research, design development of new biaxial tensile apparatus was performed based on the following design concepts for the purpose of measurement accuracy improvement.

FIGURE 1 Old Simple biaxial tensile testing apparatus set on the independent chuck
Material is used by SK105.
A maximum tensile load is 2kN.
A specimen attachment position is made lower than the height of a chuck.
The plan design is shown in Figure 2, and the model designed by 3D cad is shown in Figure 3. The actually manufactured device is shown in Figure 4. Figure 5 is shown the new experimental apparatus.

![Figure 2 Design of New device for testing apparatus](image)

![Figure 3 3D view of new device](image)

![Figure 4 Manufactured new device](image)

![Figure 5 New Simple biaxial tensile testing apparatus set on the independent chuck](image)

FIGURE 5 New Simple biaxial tensile testing apparatus set on the independent chuck

EVALUATION OF RIGIDITY

In order to confirm the rigidity of the old apparatus, the aluminum sheet was pulled as shown in Figure 6. Evaluation of the rigidity of apparatus is performed by calculating the displacement of a flexible region until it fractures from the start of test, and the grasp part of the old apparatus. Load was measured by the miniature load cell (ELHM-T4, MESS & SENSORTECHNIK Co.) in a figure, and was measured using the displacement from dial gage. By pulling as a result, first, while inclination was loose, it began to incline from the place exceeding 350N, the relation between load and displacement magnitude to alignment became, and it became clear that 0.48 mm of displacement has occurred in 1.4kN.

Figure 7 shows an experimental setup by new apparatus. Both measurement result of apparatus rigidity is shown in Figure 8. In the case of new equipment, displacement was measured with 2.05 µm in 1.6KN. This shows that the rigidity of equipment improved 96%, and it has been successful by us.

![Figure 6 Experimental setup by old apparatus](image)

![Figure 7 Experimental setup by new apparatus](image)

FIGURE 6 Experimental setup by old apparatus

FIGURE 7 Experimental setup by new apparatus
EXPERIMENTAL PROCEDURE
Figure 9 is shown the new simple biaxial tensile testing apparatus set on the independent chuck. The vices are moved by the motor controlled by the personal computer. The normal tensile speed is 5mm/min.
The test material used in this study is an aluminum A1050-O sheet with a thickness of 1mm. The specimen of a uniaxial and a biaxial are shown in Figure 10. The true strain components, \(\varepsilon_x \) and \(\varepsilon_y \), were measured using scribed circle as shown by Figure 11 [3].

RESULTS AND DISCUSSION
The experiment was conducted three times. The true stress - true strain curve is shown in Figure 12. It was shown that experimental equipment has the performance as well as the usual tensile testing machine.
The biaxial test was carried out using the specimen of Figure 10(b). Each cruciform specimen was subjected to proportional biaxial strains with \(\varepsilon_x : \varepsilon_y = 1:1, 2:1, 3:1\) and \(3:2\). An experimental result are shown in Figure 13. The place where the mark is carried out with the circle is Fracture point. The forming limit diagram (FLD) showing in Figure 14 was created from each experimental result.

CONCLUSIONS
In the case of new equipment, displacement was measured with 2.05 \(\mu\)m in 1.6KN. This shows that the rigidity of equipment improved 96%, and it has been successful by us. The uniaxial and the biaxial tensile test of A1050-O sheet metal were carried out using the simple biaxial tensile testing apparatus which operates independent lathe chuck. The stress-strain curve is obtained as good as the tensile test equipment in general. Furthermore, it was shown that it can ask also for a FLD curve with sufficient accuracy simple by having improved the rigidity of equipment.

REFERENCES
The Analysis of Ironless Moving-Permanent-Magnet Synchronous Linear Motor Thrust Fluctuation

Yujing SONG 1, Ming ZHANG 1, and Yu ZHU 1

1 State Key Laboratory of Tribology, Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

INSTRUCTIONS
Ironless Moving-Permanent magnet synchronous linear motors (IMPMSLM) are widely used in precision machinery manufacturing, aerospace, microelectronics and other high positioning accuracy requirements of the occasion.

Wherein, the linear motor thrust fluctuation is an important factor affecting the positioning accuracy of the work-piece table. Many scholars have studied the thrust fluctuation reduction methods to improve the motor performance. Some articles optimized structure size [1], or the analytical method ignoring the end effect [2], or using look-up tables [3]. Another scholars have adopted active control strategy to compensate for the thrust fluctuations [4]. For ironless moving permanent-magnet synchronous linear motor (IMPMSLM), the factors that cause the thrust fluctuation include motor size, end-effect of permanent magnet array, magnetic field distribution of permanent magnet array, the number of driving phases and the form of driving current, etc. In order to achieve the purpose of reducing the thrust fluctuation, it can use compensation methods or change the motor structure size.

MOTOR STRUCTOR
In this paper, the ironless moving permanent-magnet synchronous linear motor (IMPMSLM) structure is shown in FIGURE 1. For the structure, the vertical coil array is as stator, and the Halbach permanent magnet array as mover.

FIGURE 1 Simplify structure of ironless moving permanent-magnet linear motor

CAUSES OF TRUST FLUCTUATION
The factors that impact IMPMSLM thrust fluctuation include the size of the motor structure, the end effect of the permanent magnet array, the distribution of the magnetic field of the permanent magnet array, the number of driving phases and the form of driving current, etc. The thrust fluctuation is defined as:

\[f_w = \left(\frac{F_{\text{max}} - F_{\text{min}}}{F_{\text{avg}}} \right) \]

wherein, \(F_{\text{max}} \) and \(F_{\text{min}} \) respectively means that the mover thrust maximum and minimum value, \(F_{\text{avg}} \) means that the average thrust mover.

Factor of the motor structure size
For the analysis of the IMPMSLM force model, it is essential to analyze the motor's electromagnetic field. Because the system approximates to
magnetoquasistatic field, Maxwell's equations can be simplify to
\[\nabla \cdot \vec{B} = 0 \quad (1) \]
\[\nabla \times \vec{H} = \vec{J} \quad (2) \]

For the magnetic material with the magnetization \(M \), the conversion relationship between the magnetic flux density and the magnetic field intensity is:
\[\vec{B} = \mu_0 (\vec{H} + \vec{M}) \quad (3) \]

Due to the divergence of the vector curl is identically 0, the vector magnetic potential \(\vec{A} \) can be defined as
\[\vec{B} = \nabla \times \vec{A} \quad (4) \]

Recycling the expression (1) (2) (3), it can receive the Poisson equation as
\[\nabla^2 \vec{A} = -\mu_0 (\vec{J} + \nabla \times \vec{M}) \quad (5) \]

Where, \(\vec{J} \) is free current density.

In two dimensional case, where the field lies in an \(x-y \) plane, the vector potential \(\vec{A} \) is purely \(z \)-directed. In this case the vector Poisson equation simplifies to the scalar relationship
\[\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) A_z = -\mu_0 (J_z + \frac{\partial}{\partial x} M_y - \frac{\partial}{\partial y} M_x) \quad (6) \]

As long as solving the magnetic vector potential \(\vec{A} \), as well as using equation (4), it can obtain expression of magnetic flux density \(\vec{B} \), and then get the force model of permanent magnet array [5].

The actual length of the linear motor is limited, so that the magnetic field is deformed, so there is the end-effect. The analytical model of magnetic field distribution, including the end-effect, is obtained by using the modified Fourier series method. It sets modified pitch as \(l' \), as shown in FIGURE 2:

\[l' : \text{real pitch of permanent magnet array (a mechanical period).} \quad a : \text{the width of the vertical direction of magnetization of the permanent magnet.} \quad ll : \text{the modified pitch of permanent magnet array.} \]

FIGURE 2 The modified pitch of Halbach permanent magnet

According to the principle of Maxwell stress tensor, the force of the permanent magnet array can be obtained by integrating the stress tensor [5]. Since the permanent magnet array is equivalent to one period after correction, the vertical force acting on the permanent magnet array is
\[F_y = \frac{l' \cdot w}{2} \int (B_y^2 - B_x^2) dx \quad (7) \]

The lateral force is given by
\[F_x = \frac{l' \cdot w}{2} \int B_x B_y dx \quad (8) \]

By the analytic formula described above, in the same pitch, scanning the structural parameters of the motor including the air gap thickness, the height of the permanent magnet and the width of permanent magnet respectively, it obtains curves of thrust fluctuation, as shown in FIGURE 3, FIGURE 4, FIGURE 5 respectively:
FIGURE 3 Changes of thrust fluctuation with the different thickness of gas

With the increase in the thickness of the air gap, the thrust fluctuation is decreased with the index form. With the permanent magnet height increasing, the thrust fluctuation is decreased rapidly, well when the height to a certain extent, the thrust fluctuation doesn't change significantly. Along with the increase in the width of the vertical direction magnetized permanent magnet, the thrust fluctuation changes wavily.

FIGURE 4 Changes of thrust fluctuation with the different height of magnet

Factor of the distribution of the magnetic field of the permanent magnet array
As the order of the Halbach permanent magnet array is changeable, the sinusoidal form of the magnetic field generated by the permanent magnet array is corresponding changed. In this paper, it mainly analyzes motors with two different spread patterns, as shown in FIGURE 6:

FIGURE 6 The arrangement of Halbach permanent magnet arrays

In the case of same driving current, motor forces of the two different permanent magnet arrays, are obtained by simulation as shown in FIGURE 7:

FIGURE 7 The motor force of the two arrangements of Halbach permanent magnet arrays

The thrust fluctuations, with two different arrangements of Halbach permanent magnet array, are calculated from FIGURE 7, respectively as: 3.43%, 1.29%. Clearly that when the magnetization direction of the permanent magnet along the 45 ° clockwise rotation distribution, the motor thrust fluctuation is much smaller. The specific reason is due to the sinusoidal form of the
magnetic field is better which is generated by the Halbach permanent magnet array with the magnetization direction of the permanent magnet along the 45° clockwise rotation distribution. To verify the accuracy, it analyzes the magnetic field harmonics generated by the two Halbach permanent magnet arrays, as shown in FIGURE 8.

FIGURE 8 Magnetic field harmonic analysis of the two Halbach magnet arrays

Seen from FIGURE 8, the Halbach magnet array, with the permanent magnet magnetization direction along the 90° clockwise rotation distribution, produces magnetic field of fundamental, 5th, 9th,..., order, while the Halbach magnet array, with the permanent magnet magnetization direction along the 45° clockwise rotation distribution, produces magnetic field of fundamental, 9th, 17th,..., order, which effectively reduced the high-order harmonics of the magnetic field, thereby the thrust fluctuation is smaller.

Factor of the number of driving phases

In the case of the same permanent magnet array, the number of driving phases influences the thrust fluctuation. In this paper, it researches the thrust fluctuations when the driving currents are three-phases and six-phases.

In the case of the same Halbach magnet array, when the driving current is respectively three-phases and six-phases, motor forces are obtained by simulation as shown in FIGURE 9:

FIGURE 9 The motor force received by the 2D simulation model of the moving-permanent-magnet linear motor (a: three-phase current; b: six-phase current)

Calculating the simulation data, when through a three-phase current, the thrust fluctuation is 2.98%, well when through the six-phases current, the thrust fluctuation is 1.04%. Therefore, with the increase of the number of driving phases, the thrust fluctuation will be reduced accordingly. The
reason is that, if the coil array is equivalent to a permanent magnet array, the more the number of coils, the smaller the corresponding equivalent magnetic field harmonics, so that the thrust fluctuation decreases.

Factor of the form of driving current

For line motors, the analytic formula of the force can be expressed in different forms, for example through the motor back-EMF, then the motor force can be expressed as

\[F_y = \sum_{i=1}^{k} E_{yi} I_i \]
\[F_x = \sum_{i=1}^{k} E_{xi} I_i \]

Where, \(F_x \) and \(F_y \) is respectively the lateral force and vertical force. \(E_{xi} \) and \(E_{yi} \) is the back-EMF for the X and Y directions, respectively. \(I_i \) is the \(i \)th-phase current. \(k \) represents total \(k \) phases current. \(v_x \) and \(v_y \) is respectively means the speed of the mover in the horizontal direction and vertical direction.

There are high harmonics in back-EMFs, so through sinusoidal AC, there will be thrust fluctuation in motor. If the above expressions are as constraints, minimum power consumption that

\[\min J = \min \sum_{i=1}^{k} I_i^2 R \]

as the goal to resolve. In theory, it will get the resultant that the thrust fluctuation is 0, at the same time minimize the power consumption by the method of least squares.

When the given lateral force is 10N and vertical force is 0N, with the back-EMFs obtained by the simulation, the calculated three-phase current is shown in **FIGURE 10**. Then using this three-phases current into the two-dimensional model for simulation, it gets that 10.1N average lateral force, 0.57% thrust fluctuation, and 0.002N average vertical force, which consistent with the given force, as shown in **FIGURE 11**:

FIGURE 10 The three-phase current obtained by the back EMF

FIGURE 11 The obtained motor force when the form of current like **FIGURE 10**

CONCLUSION

The factors that cause the thrust fluctuation are analyzed in this paper, giving conclusions as follows:

1. Considering the end-effect of permanent magnet array, the analytical model of the mover thrust force are established using the modified Fourier series. Then the effects of air gap thickness, the height of the permanent magnet, and permanent magnet width on thrust fluctuation
are analyzed. With the increase in the thickness of the air gap, the thrust fluctuation is decreased with the index form. With the permanent magnet height increasing, the thrust fluctuation is decreased rapidly, well when the height to a certain extent, the thrust fluctuations don’t change significantly. Along with the increase in the width of the vertical direction magnetized permanent magnet, the thrust fluctuation changes wavyly.

②The magnetic field of permanent magnet array has high harmonics, and the less the harmonic the small the thrust fluctuation.

③In the case of the same permanent magnet array, the more phases of the coils, the smaller the thrust fluctuation.

④Due to the high harmonics of the magnetic field, the thrust fluctuation is inevitably generated when the driving current is sinusoidal. In order to solve this problem, a method of current calculation is given on the basis of the given thrust, running speed of the mover and the back-EMF, so that the thrust fluctuation can be reduced to negligible.

The analysis above can be used in practice to reduce the thrust fluctuation, and to improve the accuracy of the linear motor.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foundation of China under Grant 51175296.

REFERENCES

PROBLEM: NEGATIVE SUPPLY PRESSURE
Although 3.7 billion people worldwide have access to piped water on their premises, there are still significant quantity and quality concerns with their water [1]. Piped water systems in poorer regions of the world often operate intermittently. The Asian Development Bank’s study of 20 major cities in India found that they supplied water for an average of only 4.3 hours per day [2]. Whenever a water pipe is not positively pressured, contaminants can infiltrate through the holes and cracks in the pipe network and create significant quality concerns [3, 4]. As part of the MIT-Tata Center for Technology and Design the authors worked in collaboration with New Delhi’s water utility and other private water suppliers to define and address this problem.

When such intermittently-pressurized systems are pressurized, consumers withdraw water as rapidly as possible. High flow rates increase frictional losses and decrease the system pressure. Lower system pressure means that water can no longer reach the rooftop storage tanks that many consumers use. To address this low-pressure, many consumers connect half- or one-half horsepower booster pumps directly to their water supply pipe. When switched on, these booster pumps can create a suction pressure of up to eight psi.

This suction pressure creates two harmful effects. First, where the water utility’s supply pressure is less than eight psi, it can induce negative pressure in the last and smallest pipe leading to the house as shown in Figure 1. Negative pressure can allow contaminants to infiltrate into this supply pipe, which water-supply engineers in New Delhi cite as the most frequent location for contamination to occur. Second, when one house uses a booster pump, the local pressure is reduced, which causes a reduction in the flow to neighbors’ houses. This in turn forces neighbors to install booster pumps and further exacerbates the booster pump problem.

SOLUTION: BACK-PRESSURE REGULATOR
One component of the negative pressure problem is booster-pump induced. This component could be mitigated with the use of a back-pressure regulating valve as in Figure 1. As the valve throttled the flow, negative pressure between the valve and the booster pump would increase, leading to cavitation in the pump. This in turn would force the pump to operate on a modified pump curve, enforcing a slower flow rate, reducing upstream frictional losses, and therefore maintaining positive upstream pressure.

Unfortunately, existing back-pressure regulators either have high frictional losses or are built for large diameter pipes and use large and expensive diaphragm actuators. In response to these limitations and with input from water system engineers, consultants, and customers in New Delhi, Bangalore, and Mumbai, the functional requirements outlined in Table 1 were determined.

KEY DESIGN FEATURE: STABILIZED STARLING RESISTOR
The key design feature of the self-actuating, full-bore, back-pressure regulating valve is a stabilized collapsing tube. The use of a collapsing tube as a regulator is frequently referred to as a “Starling Resistor” [5] after E.H. Starling, who used one in his experimental apparatus, where the tube only allowed flow through it when the upstream
TABLE 1. Summary of the functional requirements and the design parameters of the valve.

<table>
<thead>
<tr>
<th>Functional requirement</th>
<th>Design parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Sustain positive back-pressure</td>
<td>Regulating valve, collapse according to: open if $P_{\text{upstream}} > 0$; close if $P_{\text{upstream}} < 0$</td>
</tr>
<tr>
<td>2) Low frictional losses when open</td>
<td>Full bore, minimize length, round edges</td>
</tr>
<tr>
<td>3) Reliability</td>
<td>Low part count, no active components, stable in throttling positions</td>
</tr>
<tr>
<td>4) Inexpensive</td>
<td>Low part count, common materials, no large external diaphragm</td>
</tr>
<tr>
<td>5) Withstand cyclical loading (-10psi and +30psi)</td>
<td>Minimize stress concentrations with gradual transitions and rounded corners</td>
</tr>
<tr>
<td>6) Burst pressure > 140psi</td>
<td>Provide an external support for the soft tube</td>
</tr>
<tr>
<td>7) Safe for continuous drinking water contact</td>
<td>NSF 61 (or FDA compliant for prototyping) materials</td>
</tr>
<tr>
<td>8) Stronger than standard piping</td>
<td>Transfer forces through an outer metal casing</td>
</tr>
</tbody>
</table>

pressure was greater than or equal to the pressure on its outside [6]. The outside pressure in this case is atmospheric pressure and therefore a collapsing tube would prevent negative pressure from passing upstream and would meet functional requirements 1, 2, and 4 in Table 1.

Unfortunately, such resistors are known to have an unstable regime in which they open and close rapidly [7]. Left unchecked, this behavior would induce frequent and severe pressure transients into the water system and accelerate the cyclic fatigue in the collapsing tube. No information was found in the literature about methods or mechanisms, theoretical or practical, for removing this instability. Bench-top experimentation, however, showed that the instability could be eliminated by the use of a stabilizing insert inside the collapsing tube.

Four different cross-sectional sizes were experimentally investigated (not detailed here, but in Taylor’s thesis [8]). The design which minimized the instability, while still effectively regulating pressure was a cutaway pipe with a cross-section whose perimeter matched exactly the inner circumference of the collapsing tube; the cross-section is shown in Figure 2. With the collapsing dynamics stabilized, the valve met the first four functional requirement in Table 1.

DESIGN EVOLUTION

Three iterations of prototypes have attempted to render the collapsing tube concept into a field-testable prototype and are pictured in Figure 3. The alpha prototype featured a cast urethane (green) inner stabilizing layer with a half-inch inner diameter. The collapsing tube (pink) was made of Shore A35 silicone rubber and was one-sixteenth of an inch thick. The collapsing tube was reinforced with a wire mesh tube on its outside to prevent it from ballooning at high pressure. Strain-transition layers, also of silicone rubber, of A50 were used to improve the fatigue life of the prototype. A brass crimp compressed each of the following to the stabilizing insert: the wire mesh, both transition layers, and the collapsible tube. The entire assembly was then put inside a two-inch PVC pipe assembly to discourage tampering. During field testing, ‘eager’ plumbers sheared the threads off five of the nine alpha prototypes. Thus, functional requirement 8 was added.

The beta prototype transferred the load through its outer metal layer made of 1.25-inch pipe. A middle reinforcing layer performed three functions: it sealed to the outer layer with two O-ring seals, it prevented the collapsing tube’s balloon-
ing, and it sealed to the collapsing tube through a glued joint (located on the outside of the middle layer to reduce the joint's loading). The stabilizing insert was held in place through friction. Although seven beta prototypes were successfully used in a second round of field trials in New Delhi without any instances of failure, the interface between the middle layer and the collapsing tube had a high contact area and the tube did not collapse as easily as in the case of the alpha prototype. Further, stakeholders in India from four private and public water utilities, customers in three neighborhoods, and the World Bank warned that the beta prototype was too heavy and therefore was likely to be stolen for its recycling value.

The gamma prototype addressed the additional concerns and is also pictured in Figure 3. Threaded plugs screw axially into the valve to compress the blue O-rings to form a seal between the collapsible tube and the outer metal 1-inch pipe. These seals also act to axially anchor the collapsible tube to the inner cast-urethane insert, eliminating the glued joint.

DESIGN VALIDATION: FIELD TESTS IN DELHI

Nine alpha and seven beta prototypes were tested in New Delhi, India in January and March of 2014. The most dramatic example of the valve's reduction of negative pressure is shown in Figure 4. To evaluate the performance more quantitatively, a cross-over study was conducted

at 19 houses, 12 of which received 24 hours per day of water supply (unexpected by the authors). The performance was measured by the reduction in the duration of negative pressure at the connection and by a new metric for contamination risk derived in detail in Taylor's thesis [8].

The valve proved most effective at the 12 continuously-supplied connections, preventing an average of 82 minutes per day, per house of negative pressure. The valve also reduced the contamination risk at each of these connections by a median of 97% — enough to cause significant improvements in the contamination-associated health risks. The pressure regulating function of the valve was evident when pump cycles at the same houses were compared with and without the valve as in Figure 5. The valve made the most significant impact at houses with a connection pressure between three and eight psi.

The results from intermittently-supplied connections were much less clear because: four of the seven intermittently-supplied connections in the study had less than 10 minutes per day of booster-pump-induced negative pressure; the booster-pump-induced risk at the remaining three connections was still only a small fraction of the total risk; and high variability in the pressure history of these connections obscured the effects of the valve. Therefore, these seven connections had a low signal-to-noise ratio, and most conclusions about the efficacy of the valve needed to be qualified by ‘while the system was pressurized’ to exclude the large noise effect of the many hours per day of unpressurized pipes.

Combining the results from continuously- and intermittently-supplied connections showed that:
FIGURE 5. The valve’s regulation effect at three houses with different supply pressures. Red arrows indicate when the pump was on. In the top two panels, there was no negative pressure to prevent; in the middle two, the valve effectively prevented negative pressure; and in the bottom two, the valve could not prevent all negative pressure because the supply pressure was negative.

- without the valve and while the system was pressurized, the contamination risk posed by booster-pump-induced negative pressure was verified as significant;
- the valve was most effective at limiting negative pressure below -1.4 psi, preventing 96% of all pressure less than -1.4 psi;
- the valve reduced the duration of negative pressure from an average of 99 to 45 minutes per day, per connection while the system was pressurized;
- the valve reduced the risk of contamination by a median of 80% while the system was pressurized; and
- the valve reduced the contamination risk posed by negative pressure by two orders of magnitude at six houses — enough to correspond to significant reductions in health risks.

ACKNOWLEDGMENTS

This work was funded by the generous support of the MIT-Tata Center for Technology and Design; the field work was supplemented by the support of the Sir Dorabji Tata Trust. Field assistance was received from the Delhi Jal Board and private bodies involved in the management and operation of New Delhi’s water system. Their support was generous and is appreciated greatly.

REFERENCES

INTRODUCTION
X-ray imaging has been around for over a century and is largely credited as being started by William Röntgen. Since that time the most common usage for x-rays is imaging internal features of objects by comparing regions of different contrast. This method is referred to as absorption-contrast imaging and is the result of the absorption of x-ray photons. Regions of higher density absorb more photons than regions of lower density, yielding the contrast difference. There is a downside to using the absorption-contrast imaging method and that is a lack of distinguishable detail specifically in low density specimens such as biological tissue [1,2]. One solution to this problem is to measure the phase of a beam after having passed through a specimen.

In the early 1900’s, a number of scientists that include Max von Laue, William H. Bragg, and William L. Bragg discovered x-ray diffraction from crystals and from this emerged the field of x-ray crystallography. Later in 1965, an x-ray interferometer constructed from single crystal silicon was demonstrated by Bonse and Hart enabling the measuring of phase [1]. The type of interferometer design used by Bonse and Hart is often referred to as a triple Laue (LLL) interferometer and since then, multiple researchers have successfully built phase-contrast imaging and computer tomography systems using various interferometer designs [3–6]. However many of these systems are built using synchrotron sources. This work is to discuss the development of a phase-contrast x-ray facility utilizing a laboratory micro-source generator.

THEORY
Phase measurement of an x-ray beam requires beam separation prior to beam combining. To do this, a single crystal material orientated about a specific plane is cut to produce three equally spaced blades known as the splitter, mirror, and analyzer (see Figure 1). When the incident beam \(X_i \) interacts with the splitter blade and satisfies the Bragg condition at angle \(\theta \), the beam is separated in two. The diffracted beams then interact with the mirror blade and also at the diffraction angle, yielding a total of four beams between the mirror and analyzer blades. Of the four beams, two beams converge at the analyzer and produce a standing wave before exiting to a detector. Placing a specimen in the path of either the diffracted beam between the splitter and mirror or the path of a converging beam between the mirror and analyzer changes the phase of the beam of that diffracted beam.

The relationship between material and phase can be calculated from the equation [6]

\[
\phi(x, y) = -\lambda r_0 \int \rho(x, y, z) dz.
\]

where:
- \(\lambda \) is the wavelength of the X-ray radiation
- \(r_0 \) is the classical electron radius
- \(\rho(x, y, z) \) is the electron number density

In the case of a homogeneous material, Equation 2 can be substituted into Equation 1.
\[\int_{M} \rho(x, y, z) \, dz = \rho_m N_A Z \, t. \]
\[(2) \]

Where:
- \(t \) is the material thickness
- \(\rho_m \) is the material density
- \(N_A \) is Avogadro's constant
- \(Z \) is the atomic number
- \(A_r \) is the standard atomic weight

In this case, the measured phase is a function of material and specimen thickness. Hence, for a constant thickness specimen, variations in phase will correspond to material variations and vice versa.

FACILITY DEVELOPMENT

The x-ray facility discussed in this abstract is broken into five individual subsystems. The first of the subsystems is the lead-lined enclosure within which the remaining subsystems are housed for radiation safety. These remaining subsystems are described as the x-ray generator, interferometer, detectors, and specimen. At the center of the system for control and data processing is a multicore processor computer connected to an x-ray camera by camera-link, an x-ray source controller by serial communication, and a National Instruments CompactRIO (cRIO) by ethernet. The cRIO operates in FPGA mode and contains modules for analog out, analog in, digital I/O, and serial communication.

Enclosure

To house all components, a custom lead-lined enclosure was designed and fabricated. The enclosure was designed to sit on a vibration isolation table with interlocking steel frames whereby the top and bottom frames contain the side frames. An exploded view showing the individual frames is illustrated in Figure 3. Lead-acrylic windows on the two front doors and sides maximize the viewing area into the enclosure and remove the need for internal lighting. Lead-lined wood is used for the ceiling and back of the enclosure. Securing the top frame to the bottom frame are four tie rods, Figure 4.

FIGURE 2. Block diagram representation of x-ray facility control hardware.

Connected to the serial module are multi-axis stage controllers and a stepper motor controller. Multiple temperature sensors are monitored by the analog in module, while the Geiger-Müller detectors are monitored by the digital I/O.

FIGURE 3. Exploded view of x-ray enclosure.

The steel frames and wood were lined with 1.5 mm thick lead sheeting and the lead identified by coating with white paint for safety. The internal dimensions of the enclosure are 1.5 m wide, 1 m deep, and 0.65 m high. A photograph of the assembled enclosure is shown in Figure 4.

FIGURE 4. Photograph of assembled x-ray enclosure.
X-ray Generator
The x-rays are generated using a Bede microsource system with a molybdenum target. The microsource controller is set to operate up to 25 W with a voltage between 10 kV to 50 kV. An attachable optic is used to focus the x-ray to a spot size of approximately 1.8 mm FWHM at 750 mm from source. Multiple fail-safe safety interlocks exist to protect the user and equipment. For operator protection, interlock switches on the enclosure doors disable the generation of x-rays if the shutter and door are both open, while interlocks for the generator shutter lamps and external warning lamp are also present. The generator target is protected by a flow meter interlock monitoring the water cooling system to ensure flow between 350 and 600 ml·min⁻¹.

The x-ray microsource is mounted to a rotary table modified for stepper motor control. A 90:1 speed reducer connects the stepper motor to the rotary table to increase angular resolution when adjusting the generator to satisfy the diffraction condition (Figure 5).

Interferometer
Monocrystalline silicon was aligned along the (111) and (220) planes. Following alignment, three blades were cut into the silicon with a 9 mm by 8 mm cross-section. The thicknesses of the blades are 1 mm for the splitter (S) and analyzer (A), and 2 mm for the mirror (M).

After manufacturing the blades, a flexure was machined into the crystal using a high speed spindle. Surface damage produced by the machining process was removed in a HF, HCL, and acetic acid solution with approximately 50 μm removed. The interferometer with flexure is shown in Figure 6.

The interferometer will sit on a kinematic mount attached to a 100 mm Z-axis linear stage (Figure 9) to position in the x-ray beam path. Control of the interferometer’s flexure is currently being designed to have a linear range between 3 to 5 nm. One potential design for the flexure actuator is shown in Figure 7. A piezoelectric actuator will position a quartz tuning fork with attached fiber that acts as a sensing element until contact with the monolith is detected [7]. Once contact is established, the tuning fork would serve as an actuator for moving the analyzer flexure with attenuation of around 1:3000 being in the ratio of compliance of the analyzer flexure to that of the fiber. Flexure actuation of the interferometer in will produce a displacement of the (111) planes.

Detectors
Multiple types of detectors (Figure 8) are used in the system. The primary detector is a 1000 x 1000 pixel Photonic Science x-ray camera with 10-bit resolution capable of capturing up to 30
frames per second. The camera can be substituted for or used in conjunction with Geiger-Müller detectors capable of 25000 counts per second.

FIGURE 8. X-ray measurement using camera (left) and Geiger-Müller detector (right).

Positioning of the detectors is possible by two motorized linear axis stages, a 100 mm Y-axis and 150 mm Z-axis, and a manual rotary stage. The manual rotary stage is utilized to prevent image elongation by adjusting the camera axis to be co-linear with the x-ray.

Specimen

Positioning the specimen to be imaged is the last subsystem within the enclosure. The specimen is affixed to a precision keyless chuck with an adjustable optical post for fine positioning. These components are connected to a rotary stage that is used for creating the images used in CT reconstruction. The assembly moves along the Y-axis into the beam path by way of a 150 mm linear stage. A photograph of the assembly is shown in Figure 9.

FIGURE 9. Photograph of the specimen subsystem assembly and the Z-axis linear stage used in the interferometer subsystem.

X-RAY IMAGING RESULTS

The first images taken using the facility were of a quartz tuning fork with the steel casing removed. The dimension of a quartz tuning fork is approximately 6 mm long, 1.5 mm wide, and 0.3 mm thick. Initial images showed speckling that translated into ringed patterns during cross-section CT reconstruction of multiple images of the rotating specimen. These speckles indicated the camera required calibration to correct for variations in offset and gain of individual pixels.

After calculating the offset value and producing a gain calibration map, the images were processed through a correction program. Raw and corrected images, along with reconstruction of the tuning fork cross-section from the rotated images are shown in Figure 10 and Figure 11. As seen in Figure 11, the correction reduced the speckling which translated into improved image quality.

FIGURE 10. Raw image of a tuning fork (left) and the reconstructed cross-section (right).

FIGURE 11. Raw image of a tuning fork (left) and the reconstructed cross-section with camera pixel gain and offset correction (right).

As this facility utilizes a focused beam, information regarding the beam’s FWHM, amplitude reduction, and the cone angle were desired. Using the camera, images were taken every 5 mm over a 140 mm range. The results, Figure 12, show an amplitude decrease of 1.3 bits-mm⁻¹ and an increase in the FWHM by 1.3 μm per 1 mm change in distance. Using the
FWHM and displacement, the cone angle is 0.08°.

FIGURE 12. Amplitude and FWHM of the x-ray beam with respect to a relative position.

CONCLUSION

Development of an x-ray phase-contrast imaging and micro-CT facility continues to progress and evolve. The interferometer monolith was manufactured from monocrystalline silicon with a four-bar flexure and an enclosure was purposely designed and built for the project. Housed inside the enclosure are multiple linear and rotary stages and sensors for positioning the x-ray generator, interferometer, specimen, and detectors. Communicating with the controllers and monitoring various sensors is a CompactRIO FPGA, while a computer controls the x-ray source controller and camera. The facility is currently operating in absorption-contrast mode for testing and calibration purposes. These tests include imaging quartz tuning forks and reconstructing the cross-section using the inverse radon transform. Finally, measurements of the x-ray beam at various distances from the source have been evaluated to determine the beam’s FWHM diameter and cone angle.

FUTURE WORK

Artifacts are being produced using deep reactive ion etching for metrological calibration of the facility [8]. These artifacts contain numerous features down to 1 μm wide and consist of up to third-order geometric shapes. A design for securing the interferometer monolith to a vertical orientated linear stage is in progress. The design utilizes kinematic mounts to enable users to change the interferometer in the system and features an actuator for displacing the analyzer blade flexure for absolute phase reconstruction. Parallel to the facility development, a method for automating crystal orientation is in development to enable the facility to orientate and produce interferometers using various materials and about different orientations.

ACKNOWLEDGEMENTS

Research funding for this project has been provided by the Biomedical Research Imaging Center (BRIC) and the Center for Precision Metrology's affiliates program at the University of North Carolina at Charlotte.

REFERENCES

MAGNET ASSISTED STAGE FOR EFFICIENT WAFER SCANNING

Deokkyun Yoon1, Yuhao Pan1, and Chinedum E. Okwudire1
1Department of Mechanical Engineering
University of Michigan
Ann Arbor, MI

OVERVIEW
A magnet based passive-assist device for improving the motor efficiency of wafer scanners is presented. The magnetic assist device improves the motor efficiency in wafer scanning applications by providing assistive force during the acceleration/deceleration portions of the stage’s motion, where the motor is less efficient in converting electricity to motor force due to copper losses. A magnetic assist device prototype was installed on an existing stage to reduce the RMS motor force by 55% and the energy consumption by 73% without negatively affecting the control precision.

INTRODUCTION
Optical lithography is the method of choice when patterning coated photoresist on silicon wafers for subsequent processes in the semiconductor industry. During the wafer scanning process, the scanning stages, which are typically driven by linear motors and supported by low friction guideways, operate at constant speeds of 0.5 to 1 m/s [1, 2]. Consequently, the actuation force requirement during scanning motion is very low. However, during motion reversals at the end of each scanning stroke, the stages have to provide high accelerations (i.e., 1 to 2 g) in order to minimize the non-scanning time and maximize throughput [2]. The linear motors therefore have to be sized to provide high peak and continuous forces, which in turn increases the size and cost of associated components (e.g., power amplifiers and support structures).

Besides its impact on machine footprint and cost, the high force requirements of wafer scanning stages have huge implications on efficiency due to copper (or resistive) losses in the motor coils [3]. Copper losses generate heat that is conducted to surrounding components causing thermal errors. Preventive measures such as forced cooling and thermal isolation must be taken to mitigate these temperature-induced errors. Copper losses are proportional to the square of the motor current; therefore it is advisable to increase the motor force to current ratio whenever possible [3]. One way of achieving this goal is to augment the motor with a passive-assist device. The passive-assist device acts as a (dynamic) counterbalance that stores and releases mechanical energy thus reducing the power requirements from the motor. Passive-assist devices have been presented in the forms of a torsion spring attached to a revolute joint of a robot [4] and a linear spring attached to each linear axis of a planar stage [5]. In each case, the spring was carefully designed to minimize the actuation energy or peak motor current for a family of motion trajectories of the robot or stage. Even though the spring was optimal for the family of trajectories, it was shown to increase the actuation requirements for some of the trajectories within the family because the motors needed to do work against the spring. The implication is that the size of the motors would have to be increased to accommodate such trajectories. For wafer scanners, it is more advantageous to have a spring that provides assist only during motion reversals and disengages during constant velocity scanning.

MAGNET BASED PASSIVE-ASSIST DEVICE
A non-contact spring, which is engaged and disengaged between the moving table and the linear motor of stage, can be realized by exploiting the repulsion force between a pair of permanent magnets of identical poles. The schematic representation in Fig. 1 shows the idea, where two pairs of permanent magnets (PM1 and PM2) are mounted at the two ends of the stage stroke and the moving table. FM is the actuation force of the linear motor while FPM1 and FPM2 are the repulsion forces produced by PM1 and PM2, respectively. The repulsion force between two permanent magnets rapidly
increases as the gap between them reduces. Consequently, as the table approaches either end of its stroke, where motion reversals occur, the repulsion force is very high, providing the motor with the needed assist. However, as the table moves away from the stationary magnets, the repulsion force drops drastically such that it is minimal during the constant velocity scanning portion of the motion.

FIGURE 1. Schematic representation of magnet assisted stage where permanent magnets are mounted at ends of the stroke and moving table.

PROTOTYPE DESIGN AND EXPERIMENTS

A magnet based passive-assist device was prototyped in a 2-D Halbach arrangement to increase the force density by rotating magnet poles for the magnetic field augmentation [6]. 9.525 mm (3/8”) long Neodymium magnet cubes were used for constructing 2-D Halbach arrays. As shown in Fig. 2, the device was attached to one end of an air-core linear motor driven stage (described in Ref. [7] in the context of a hybrid feed drive). The linear motor is capable of producing 1,200 N peak and 211 N continuous forces with a force constant of 57.0 N/ARMS [8].

FIGURE 2. Magnet assist stage prototype where two 2-D Halbach arrays are shown to produce repulsion force for assisting linear motor during motion reversal

For measuring F_{PM}, the table was moved toward the end of stroke at a constant speed (50 mm/s) while measuring the required motor current. The motor current was converted to force to create the relationship between F_{PM} and the gap between the two magnet arrays. The force vs. gap relationship is shown in Fig. 3, where the force is asymptotically decreasing toward 0 N with the increasing gap.

FIGURE 3. Measured repulsion force of a 2-D Halbach array pair

The trapezoidal velocity reference trajectory profile shown in Fig. 4 was used for validating the magnet assisted stage design. The trajectory had a 15 m/s2 acceleration limit, 0.5 m/s scanning speed, and 97 mm stroke. This combination resulted in an 80.3 mm long constant speed scanning length.

FIGURE 4. Reference trajectory used in experiments. (a) velocity profile, (b) acceleration profile. Wafer is scanned during constant speed portion of motion.

The magnet assisted stage was controlled using a traditional P-PI controller with the PI velocity (V_{FB}) and P position (P_{FB}) feedback loops combined with velocity (V_{FF}) and acceleration (A_{FF}) feed forward loops shown in Fig. 5. An
additional loop was added for feed forward compensation of the force produced by the magnetic assist device. The compensator consists of a look-up table created from the measured \(F_{PM} \) to gap relationship shown in Fig. 3. The expected distance between the two permanent magnet arrays based on the reference position command is used to provide the controller with an estimation of how much assist force is available from the magnets, so that the controller only outputs the motor force needed for the motion. In addition, the compensator helps the controller to quickly reject any spill-over disturbance forces from the permanent magnets that may otherwise adversely affect position control precision during the constant speed scanning region.

Two scanning experiments (one without and the other with the assist device) were conducted to assess the effectiveness of the assist device. The first experimental result without the assist device was used to establish the baseline stage performance. Fig. 6 shows the performance comparison between the baseline stage and the magnet assisted stage. The velocity dependent nominal guideway friction has been subtracted to show the motor force for moving the inertial load. The moving mass was estimated to be about 39.5 kg for the baseline stage and the magnet assisted stage had about 1.1 kg additional mass for extra features for mounting magnet arrays. As seen from the figure, the motor force was drastically reduced during the acceleration portion of the motion due to the assistive force provided by the permanent magnet pair. It should be noted that the motor needed to provide a small amount of compensatory force to maintain the constant speed as the moving table was approaching the stroke end due to the spill-over repulsion force from the magnets. This repulsion force is considered a disturbance from the controller perspective, but it is effectively compensated by the PM force compensator. The red dotted lines in Fig. 7 represent the 1 \(\mu \text{m} \) control precision window. It can be seen that the position control precision during the scanning portion and the settling time after acceleration/deceleration did not worsen with the addition of the assist device.

The energy \((E) \) consumed by the motor is calculated using Eq. 1. \(T_s \) and \(T_e \) are the start time and the end time for the time window of interest, \(v \) is the velocity of the moving table, \(F_M \) is the motor force applied to the moving table, and \(K_M = 21 \text{ N/W}^{0.5} \) is the motor constant associated with the copper losses \([8]\). Essentially, Eq. 1 considers the mechanical work for moving the inertial load and the copper loss terms in calculating the energy consumption. For the analysis of this study, \(T_s = 0 \text{ ms} \) and \(T_e = 227 \text{ ms} \) are used for half of the scanning motion.
period shown in Fig. 4 (i.e., the half motion command near the end of the stage equipped with the assist device).

\[E = \int_{T_a}^{T_b} |v| F_m + \frac{F_m^2}{K_m^2} dt \]

(Eq. 1)

The force and energy consumption differences between the two experimental cases are shown in Table 1. The trajectory used during the experiments demanded about 335 N\text{RMS} for the baseline stage, which far exceeds the motor specification for the continuous force limit of 211 N\text{RMS} [8]. This means that the baseline stage would not be able to operate at this aggressive reference trajectory since it would over-heat the motor components in the long run. A lowered acceleration magnitude or the addition of some dwell time between successive scan motions would be necessary to keep the RMS force below the continuous force limit of the motor. The magnet assisted stage required 152 N\text{RMS} to follow the same trajectory and this difference in force requirement translated into the smaller energy consumed. Because the copper loss is proportional to the square of motor current, the magnet assisted stage consumed 73\% less energy compared to the baseline.

TABLE 1. Comparison of motor force and energy consumption between baseline stage and magnet assisted stage

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Magnet Assisted</th>
</tr>
</thead>
<tbody>
<tr>
<td>F\text{m, RMS} [N]</td>
<td>335</td>
<td>152</td>
</tr>
<tr>
<td>E [J]</td>
<td>69.4</td>
<td>18.7</td>
</tr>
</tbody>
</table>

It must be noted that the reported RMS force and energy values do not include the energy consumed to overcome the friction from the guideways because wafer scanners usually use frictionless guideways. The effect of guideways friction on the motor force and the energy consumption is minor, however. The RMS forces would have been 338 N and 158 N respectively for the baseline and passive-assist stage if the guideways friction were taken into account, implying that the energy losses due to friction were about 4.0 J and 3.7 J in each case.

CONCLUSIONS

In this paper, the idea of a magnet assisted stage design for reducing the energy lost to heat in wafer scanning applications has been presented. It has been shown, using preliminary experiments, that the addition of assistive magnet arrays to an existing stage can improve its energy efficiency by reducing motor current requirements during acceleration/deceleration. Moreover, the addition of the magnets does not negatively influence the precision of the stage during scanning. Future work will be geared towards further enhancing the efficiency, precision and flexibility of the magnet assisted stage through improvements in its mechanical design, control and motion command generation.

ACKNOWLEDGEMENT

The authors would like to thank Dr. Steve Ludwick of Aerotech Inc. for bringing the issue of overheating of motors used in wafer scanning stages to the authors’ attention. Contributions of Ms. Henrietta Cho to the preliminary design of the 2-D Halbach arrays presented in this paper are also gratefully acknowledged. This work is supported by the National Science Foundation’s CAREER Award #1350202.

REFERENCES

A NEW OPTIMIZATION METHOD TO ACHIEVE COINCIDENCE OF MODAL NODAL LINES

Ming Zhang¹,², Yu Zhu¹,², Jing Wang¹,², Cheng Zhang¹,², Zhao Liu¹,², Chuxiong Hu¹,²

¹State Key Laboratory of Tribology
Department of Mechanical Engineering
Tsinghua University
Beijing, China

²Beijing Key Lab of Precision/Ultra-Precision Manufacturing Equipments and Control
Department of Mechanical Engineering
Tsinghua University
Beijing, China

INTRODUCTION

450mm wafer chuck stands for the development trend of semi-conductor manufacturing equipments. But enlarged block also brings a series of problems such as structural flexibility increase and power consumption enlargement. To meet the challenge of these problems, traditional approaches such as weight reduction and stiffness improvement are applied but the effects are limited [1].

An alternative way is to deal with the flexibility directly through independent modal space control, which induces the complexity of controller design. The more efficient way is to avoid exciting flexible modes as more as possible. This could be achieved through structural design which aims to make the nodal lines of the specified flexible modes coincide at one point where the actuator is placed [2, 3].

Rein Boshuisen [4] proposed one method to apply this idea on the wafer chuck. However, the optimization is multi-objective, which causes the optimization process rather time-consuming and even unstable. In this paper, we proposed a new single object optimization method on the design of wafer chuck. This method is simpler and more effective. Calculation and experiment is provided to prove the validity of the proposed design.

MODAL APPROACH

For a linear time-invariant system, state variables such as displacement and velocity in physical coordinates could be transferred to uncoupled modal coordinates, design and control the system under modal coordinates is called modal approach [5]

Transfer Function

The dynamics of a free wafer chuck under modal coordinates can be expressed by the transfer function of a as Eq. (1). Where Z(s) is z-direction displacement of the wafer chuck, F(s) is the exciting force at the location of actuator [6].

\[
Z(s) = \frac{\varphi_1(z_a)\varphi_1(z_a)}{m_1s^2} + \sum_{n=2}^{\infty} \frac{\varphi_n(z_a)\varphi_n(z_a)}{m_n s^2 + c_n s + k_n}
\]

m_n : modal mass, subscript 1 indicates rigid body

Mode

\(\varphi_n(z_a) \) : sensing ability
\(\varphi_n(z_a) \) : actuating ability

c_n : modal damping
k_n : modal stiffness

The product of \(\varphi_n(z_a) \) and \(\varphi_n(z_a) \) determines the excitability of the associated mode, \(\varphi_n(z_a) \) and \(\varphi_n(z_a) \) are related to modal eigenvectors. When the actuator is placed close to the nth node line, \(\varphi_n(z_a) \) approaches to zero, the nth mode excitability will be dramatically reduced.

Position of Actuators

As shown in Fig. 1, the wafer chuck to be designed is simplified as a rectangular plate. In case of the 1st flexible mode, the nodes compose two cross dash lines. When actuators are positioned at dash line, the actuator contribution of the 1st mode will be zero. Therefore the 1st mode will not be visible in the transfer function. Another way to avoid exciting a mode is when more actuators are used with opposite modal contributions. The total contribution of that mode is cancelled out so the mode is not excited. This actuation principle is called symmetric actuation.
Optimization

We designed a scaled wafer chuck which is 200×200×10 mm³ to reduce the experimental cost.

Modal Nodal Lines of Original Chuck

As illustrated in Fig. 2(a) the nodal lines of the first five flexible modes do not coincide.

Optimization Function

In order to do the coincidence, the distribution of the nodal lines of the first five flexible modes has to be changed. For this purpose, a cavity is inserted in the middle of the chuck, the size (diameter D and depth h) could be optimized to realize the coincidence of nodal lines (Fig. 3).

Mathematical Model of Optimization

One or more optimization objective functions (OOFs) with variables D, h must be defined to describe the coincidence degree of modal nodal lines mathematically. So when the value of OOF(s) is minimized, it directly means modal nodal lines coincide. The optimization procedure can be illustrated as:

\[
\begin{align*}
\min F(D, h) \\
\text{s.t.} & \\
D & \geq 0 \\
10 - h & > 0 \\
h & > 0
\end{align*}
\]

(2)

where \(F(D, h) \) denotes the set of the optimization objective functions (OOFs).

Optimization Objective Function

The quality of the optimization result depends on the choice of OOF(s). Rein Boshuisen [4] provides an OOF, which defines the sum of the norms of 3-direction \((z, Rx, Ry)\) generalized input vectors in the modal coordinate as optimization object. This object actually is the weighted sum of 3 object functions those must be minimized. The calculation of multi-object optimization is far more complicated than single object optimization and the result is less stable.

To define a simpler and more stable single objective OOF, we introduce the variance of location vectors of common nodes of the 3rd & 4th, 3rd & 5th, and 2nd & 5th nodal lines in Cartesian...
coordinate as the objective function. (see Fig. 2(a) as 3 black Xs), which is expressed as:

$$\sigma^2 = \frac{1}{3} \sum_{i=1}^{3} (r_i - \bar{r})^2 = \frac{1}{3} \sum_{i=1}^{3} [(x_i - \bar{x})^2 + (y_i - \bar{y})^2]$$ \hspace{1cm} (3)$$

where \(\bar{x} = \frac{1}{3} \sum_{i=1}^{3} x_i \) and \(\bar{y} = \frac{1}{3} \sum_{i=1}^{3} y_i \), \(x_i \) and \(y_i \) are obtained by FEM calculation.

Modified OOF for Calculation
Since FEM is based on finite discrete theory, it is impossible to extract a continuous exact node line. To solve this problem, we define the nodes whose eigenvectors values are below 0.3 as modal nodes. Then the FEM calculation result of the first five modal nodal lines of wafer chuck are slightly wider than these lines shown in Fig. 2(a), thus each of the 3 black Xs in the upper left corner of the Fig.2(a) does not stand for one node but a set of nodes. Enlarged drawing of the region 3 black Xs are located, shown as Fig. 2(b). And Eq. (3) becomes:

$$\sigma^2 = \frac{1}{3} \sum_{j=1}^{n_i} (r_j - \bar{r})^2 = \frac{1}{N} \sum_{i=1}^{N} [(x_i - \frac{1}{N} \sum_{i=1}^{N} x_i)^2 + (y_i - \frac{1}{N} \sum_{i=1}^{N} y_i)^2]$$ \hspace{1cm} (4)$$

where \(n_i \) is the number of nodes in SET i, \(N = n_1 + n_2 + n_3 \).

RESULT
With \(\sigma^2 \) getting smaller, the coincidence degree of the 2nd to 5th modal nodal lines apparently is getting higher. The optimization result shows that the smallest optimization objective function \(\sigma^2 \) is achieved when \(D = 191.2 \)mm and \(h = 3.5 \)mm. The nodal lines of the first five modes after optimization extracted from FEM are illustrated in Fig. 4.

The 2nd ~ 5th nodal lines coincide at A, B, C, D. Place actuators on these 4 points, we can avoid the excitation of the 2nd~5th modes and eliminate the 1st mode through the effect of over-actuation.

PERFORMANCE
To illustrate the effect of the modal nodal lines optimization and over-actuation, the acceleration frequency response tests and impulse response tests of wafer chucks, the original and optimized, are conducted.

Acceleration Frequency Response
To improve the accuracy of the tests, the exciting and measuring locations were exchanged. The sensors were located at point A, B, C, D as shown in Fig. 4—in the test of original chuck, only one sensor was located at point A. And the excitement was located in point E which is not the node of any first five flexible modes.

Because of the symmetry of the frequency response function matrix, the test result should not be changed. Original and optimized chucks are shown in Fig. 5 (a)&(b), while comparative frequency response tests are shown in Fig. 5 (c)&(d).

The acceleration frequency response curves are compared as shown in Fig. 6. We can see that except the first resonance, the 2th~5th resonances have been greatly reduced due to nodal lines optimization.
FIGURE 6. Acceleration frequency response of the original and optimized wafer chucks

Impulse Response

The sensors were located at point A as shown in Fig. 4. And the excitement was located in point E as same as the frequency response tests. With the same excitement, the impulse response of the original and optimized chucks is shown in Fig. 7.

FIGURE 7. Impulse response of the original and optimized wafer chucks

The peak of optimized chuck’s acceleration impulse response is just 50 ms$^{-2}$ while the peak of original chuck reached 1100 ms$^{-2}$. This proved that the design has greatly reduced the flexibility of the chuck.

CONCLUSION

The critical problem in the development of wafer stage is to deal with the flexible deformation since it causes vibration and control instability. To reduce the actuating ability of the 2nd-5th modes, structural optimization is executed so that the nodal lines of the four modes coincide; as for the first mode, over-actuation is adopted so that this mode does not deteriorate the dynamic behavior. In this paper, we have introduced the conception of variance of location vectors of common and used it to describe the dispersion degree of the 2nd to 5th modal nodal lines the optimized topology of wafer chuck has been obtained by using FEM. The frequency response tests and impulse response tests have demonstrated that the wafer chuck after design behaved more like a rigid body, which indicated a great improvement in dynamic performance. The optimization method has been proved to be correct, and could be used in optimization of 450mm or larger wafer chucks.

THANKS

This paper is supported by the National Natural Science Foundation of China (Grant No. 51175296 & 51105226) and National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2009ZX02208).

REFERENCES

DESIGN AND ANALYSIS OF IRONLESS PERMANENT MAGNET LINEAR SYNCHRONOUS MOTOR WITH LITTLE FORCE Ripples FOR ULTRA-PRECISION POSITIONING SYSTEMS

Fan Zhi, Ming Zhang
The State Key Laboratory of Tribology, Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control
Department of Mechanical Engineering
Tsinghua University
Beijing 100084, China

INTRODUCTION
Ironless permanent magnet synchronous linear motor (ILPMLSM) are widely applied in the field of ultra-precision positioning systems [1]. The accuracy of the model of the ILPMLSM affects the performance for positioning. Therefore, the high accurate model of the force is necessary.

In the analysis of a Halbach magnet array, an analytical model is presented by using of the magnetic scalar potential. The force between coils and magnets can be calculated with the Lorentz force law [2]. In Kim’s analysis, surface-mounted linear motors consisting of permanent magnets and ironless current-carrying coils are treated in a uniform way via the magnetic vector potential. The force between coils and magnets can be calculated with the Maxwell stress tensor [3]. This method does not depend on the structure of motor. And when the force is calculated, tedious volume integration can be translated into surface integration. So far, these two methods are applied in many researches [4-10].

The models of the force in these methods are the sum of the fundamental and the higher harmonics in force. As the model of ILPMLSM is evaluated every servo time in the real-time control, a simple analytical model is used, which only consists of the fundamental and omits the higher harmonics. Therefore, one main reason for the force ripples is higher harmonics [4], [5].

The higher harmonics of force is caused by the distribution of current in windings and the pattern of magnet array. The two components have studied by some researchers, respectively. The effect of magnetizing patterns of the permanent magnets has been investigated in detail by using FEM and the simulation-based DOE method [5]. An effective ripples reduction can be achieved by varying the parameters of the NS magnet array, such as magnet height, magnet width, air gap length and motor width [6], [7]. Force ripples for different magnet width/pole pitch in Halbach magnet array are studied by 2-D Finite Element analysis [1], [8]. A stair-step-shaped magnetic pole structure is proposed to shape the air gap flux density distribution to be as close to a sine wave as possible for the reduction of force ripples [9]. The overlapping windings and trapezoid windings can produce single-sided and perfectly sinusoidal magnetic field compared to the film windings [8], [10].

In these researches about the force ripples in ILPMLSM, one special structure of windings or magnet array is studied individually. The result is difficult to be applied in the analysis and design of other structures. And the influences of windings and magnet array are studied separately in the researches. The relationship between them is not considered. Moreover in Kim’s analysis, the fundamental of the force is studied but the higher harmonics are not.

In this paper, the expression of the higher harmonics of force is derived via Maxwell stress tensor, firstly. Further, a novel design theory of ILPMLSM is proposed, which easily meets the requirement of little force ripples by eliminating higher harmonics as more as possible. Then the force ripples in a type of ILPMLSM with particular structure is analyzed. The influences of the distribution of current in windings and the pattern of magnet array are both researched. And the relationship between them is also considered. The results are validated by comparison of the ILPMLSM with finite element analysis (FEA).

ELECTROMAGNETIC MODELING
The geometry used to model the ILPMLSM is shown in Fig. 1. The lower region of thickness Γ represents the winding with y-directed current density J, which is expressed as an infinite Fourier series through terms J_{y_n}. The upper region of thickness Δ represents the magnet array with magnetization M in the xz-plane, which is expressed as an infinite Fourier series in z-directed and x-directed through terms M_{z_n} and M_{x_n}, respectively. The base coordinate frame is carried by the winding. And a primed coordinate frame is carried by the magnet array, which is displaced from the base coordinate frame by a vector $(x_0+\Gamma)i+z_0j$. Thus x_0 is the air gap, and z_0 is the lateral displacement of the magnet array relative to the winding. The pitch of the motor is l, and the spatial wavenumber of the nth harmonic is $k_n = \frac{2\pi}{l}$. We further define $\gamma_n = |k_n|$. The motor is assumed to be of depth w in the y-direction and of length L in the z-direction. End effects in this model are omitted.

FIGURE 1. ILPMLSM model.

In this model, the expression of the higher harmonics of force is derived with magnet vector potential and Maxwell stress tensor. The force acting on one pitch of the magnet array as

\[
\begin{bmatrix}
F_{zn} \\
F_{zn}
\end{bmatrix} = G \begin{bmatrix}
\sin \gamma_n z_n & \cos \gamma_n z_n \\
\cos \gamma_n z_n & \sin \gamma_n z_n
\end{bmatrix} \begin{bmatrix}
J_{zn} \\
J_{zn}
\end{bmatrix} \begin{bmatrix}
M_{zn} \\
M_{zn}
\end{bmatrix} \begin{bmatrix}
M_{zn} \\
M_{zn}
\end{bmatrix}
\]

(1)

where F_{zn} and F_{zn} are the nth order higher harmonic of the x-directed and z-directed forces per spatial wavelength, respectively. Terms J_{zn} and J_{zn} represents the real part and the imaginary part of term J_{zn}, respectively. Similarly, terms M_{zn} and M_{zn} represents the real part and the imaginary part of term M_{zn}. The constant

\[
G = \frac{\mu S}{\gamma_n} \frac{1-e^{-\gamma_n l}}{1-e^{-\gamma_n T}} e^{\gamma_n l}
\]

contains the effects of the motor geometry. If $n=1$, the expression represents the fundamental of force.

The analysis of the expression (1) shows that the amplitude of the nth order higher harmonics of force is determined by the nth order Fourier coefficient of current density and magnetization, and independent of others. The nth order higher harmonics of force is eliminated when the nth order Fourier coefficient of current density or magnetization is zero. Therefore, a novel design theory of the motor with little force ripples is presented. Firstly, increasing the number of the zero Fourier coefficient of current density and magnetization is necessary. Then, the orders of the zero Fourier coefficient of current density and magnetization is different.

There're force ripples in ILPMLSM because the distribution of current density and magnetization are non-sinusoidal. If the number of zero Fourier coefficients of current density and magnetization are more, the distribution of current density and magnetization are close to sinusoidal. And the force ripples are reduced.

ANALYSIS OF THRUST RIPPLES OF ILPMLSM

Structure of ILPMLSM

FIGURE 2. The structure of ILPMLSM. (a) Schematic view of ILPMLSM. (b) Analysis model of ILPMLSM.
In this paper, the ILPMLSM which structure shown in figure 2 is researched. Windings wrap around the stator core and are stacked side by side in this type of motor. The windings and the magnet array are divided into sth and tth per spatial wavelength, respectively. The clearance between neighboring windings is a times of pitch, and the phase angle of current in neighboring windings differs 2π/s. The clearance between neighboring magnets is ε times of pitch, and the angle between the directions of magnetization in neighboring magnets is 2π/t. The amplitude of the current density in winding is J₀. And the magnetization of the magnet is M₀.

Force Ripples

As the phase angle of current in the first winding on the left side of the selected period is φ, the function of the current density varied with z₀ in each winding from left to right in one spatial wavelength is

\[J_i = J_0 \sin \left(k_{z_0} + \varphi \frac{i-1}{s} 2\pi \right) \]

The angle between the vertical direction and the direction of magnetization in the first magnet on the left side of the selected period is θ, the magnetizations in z-direction and x-direction of each magnet from left to right in one spatial wavelength is

\[M_{z_i} = M_0 \sin \left(\vartheta + \frac{i-1}{t} 2\pi \right) \]
\[M_{x_i} = M_0 \cos \left(\vartheta + \frac{i-1}{t} 2\pi \right) \]

The nth order higher harmonics of force which is produced by this type of motor derived by expression (1) is

\[F_{x,n} = \begin{cases} \frac{D \cos \Phi, n = ps +1 & \& qt +1}{D \cos \Phi, n = ps -1 & \& qt +1} \\ 0, else \end{cases} \]
\[F_{z,n} = \begin{cases} \frac{D \sin \Theta, n = ps +1 & \& qt +1}{D \sin \Theta, n = ps -1 & \& qt +1} \\ 0, else \end{cases} \]

where \(F_{x,n} \) and \(F_{z,n} \) are the nth order higher harmonic of the x-directed and z-directed forces per spatial wavelength, respectively. The constant

\[\Phi = \frac{2(n-1) - \pi}{l} + \frac{n-1}{s} \pi - \varphi - \frac{1}{s} \pi - \theta + \frac{1}{t} \pi \]
\[\Theta = \frac{2(n+1) - \pi}{l} + \frac{n+1}{s} \pi + \varphi + \frac{1}{s} \pi - \theta + \frac{1}{t} \pi \]
\[D = A \cdot f \cdot g \cdot h \]

contains the effects of the motor geometry. If n=1, the expression represents the fundamental of force.

Analysis of the Higher Harmonics of Force

In this paper, we focus on z-directed force. The analysis method and result of the x-directed force are similar to z-directed force. Firstly, the higher harmonics is analyzed in a simple situation that there's no clearance between neighboring windings or in magnet array. That is \(\alpha = 0 \) and \(\varepsilon = 0 \). The relationship between the amplitude of the (n+1)th order harmonics and the nth order harmonics in force is

\[\frac{F_{x,(n+1)}}{F_{x,n}} = \frac{e^{2\pi i/n}}{n} \left(1 - e^{-2\pi i/n} \right) \left(1 - e^{-2\pi i/n} \right) e^{-2\pi i/n} e^{2\pi i/n} \]

where \(F_{z1} \neq 0 \). It can be proved that the ratio above is less than 1. In another word, the higher the order of non-zero higher harmonic is, the smaller its amplitude is. Therefore, the first order non-zero higher harmonic is the main component of the force ripples caused by higher harmonics.

The relationship between the amplitude of the nth order harmonics and the fundamental in force is

\[F_{x,n} = \frac{F_{x,1}}{n^2} \left(1 - e^{-2\pi i/n} \right) \left(1 - e^{-2\pi i/n} \right) e^{-2\pi i/n} \]

Where \(F_{x,1} \neq 0 \). The ratio above is about the order of 1/n³. So, we can estimate the effect of the first order non-zero higher harmonics in the motor. In addition, according to the allowable amplitude of the force ripples, wavenumber n can be determined. For example, the rms force ripples due to variation of the permanent magnet properties, manufacturing tolerances and power amplifier offsets is equal to 0.06% [11]. If the force ripples caused by higher harmonics are needed to be less than that, n should be larger than 12. And if the force ripples caused by higher harmonics are needed to be ten times less than 0.06%, n should be larger than 22.
According to the analysis results above, increasing the order of the first order non-zero higher harmonic can reduce the force ripples effectively. Further, the influence of geometry parameters s and t on the order of the first order non-zero higher harmonic is researched.

\[n = ps + 1 = qt + 1 \] \hspace{1cm} (4)
\[n = ps - 1 = qt + 1 \] \hspace{1cm} (5)

If the order of certain higher harmonics of force can meet neither of the two equations above, the amplitude of this higher harmonics is zero. Therefore, the solutions of the two equations is important. We know, there’re infinitely many solutions of the two equations, and the least positive integer of them is the order of the first order non-zero higher harmonics. Let d be the maximum common divisor of s and t. The least positive integer solution of equation (4) is

\[n_{a1} = \frac{st}{d} + 1 \]

When d larger than 2, there’s no non-negative integer solution of equation (5). So, n_{a1} is the order we need. Otherwise, the least positive integer solution of equation (5) is less than n_{a1}. And it is what we need. The first order non-zero higher harmonics of force varied with parameters s and t is listed in table 1. Reasonable parameters s and t can be determined according to n needed.

TABLE 1. The first order non-zero higher harmonics of force varied with parameters s and t.

<table>
<thead>
<tr>
<th>t</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td>5</td>
<td>13</td>
<td>7</td>
<td>17</td>
<td>9</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>7</td>
<td>10</td>
<td>19</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>5</td>
<td>13</td>
<td>9</td>
<td>17</td>
<td>9</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>6</td>
<td>11</td>
<td>6</td>
<td>31</td>
<td>26</td>
<td>11</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>19</td>
<td>7</td>
<td>13</td>
<td>7</td>
<td>19</td>
<td>19</td>
<td>43</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>8</td>
<td>15</td>
<td>29</td>
<td>29</td>
<td>8</td>
<td>15</td>
<td>8</td>
<td>29</td>
<td>43</td>
<td>71</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>17</td>
<td>9</td>
<td>17</td>
<td>9</td>
<td>17</td>
<td>9</td>
<td>65</td>
<td>25</td>
</tr>
</tbody>
</table>

The clearance between neighboring windings is researched to eliminate certain order non-zero higher harmonics. Expression (2) is a sine function varied with n. There’s an appropriate value of the clearance to meet the two expressions below.

\[\sin \left(\frac{n \pi}{s} - \alpha n \pi \right) = 0 \]
\[\sin \left(\frac{1}{s} \pi - \alpha \pi \right) = 0 \]

That is

\[\alpha = \frac{1}{s} \cdot \frac{m}{n} \]

where m is a non-negative integer. By this method, the amplitude of the nth higher harmonics is zero and the amplitude of the fundamental is not zero. The aim of eliminating certain order non-zero higher harmonics comes true. Further, the larger α is, the smaller the amplitude of the fundamental is. So, we need the largest m. For example, a motor with $t = 4$ and $s = 12$ is researched. The first order non-zero higher harmonics of force in this motor is 13. Let m to be 1, and α will be 0.006. In this case, the amplitude of the 13th higher harmonics is zero, and the first order non-zero higher harmonics becomes 25. Another example, a motor with $t = 4$ and $s = 6$ is researched. The first order non-zero higher harmonics of force in this motor is 5. There’s no non-negative integer solution of m. So, if this method will be applied to eliminate the first non-zero higher harmonics of force in the type of ILPMLSM researched in this paper, the relationship between s and t should meet $s \neq qt + 2$, where q is a non-negative integer.

![FIGURE 3. The structure of the magnet array that the length of the z-directed magnetization magnet is different from the length of the x-directed magnetization magnet when t = 4.](image-url)

In the same way, appropriate clearance between neighboring magnets can eliminate certain order non-zero higher harmonics of force. But, applying it to eliminate higher harmonics, assembly will be difficult to ensure the magnitude of the clearance. There’s another method that can both solve the two problems. We focus on the difference between the length
of the z-directed magnetization magnet and the x-directed magnetization magnet when t = 4. The length of the x-directed magnetization magnet is assumed to be \(\eta \) times of pitch. The structure of this magnet array is shown in figure 3. The expression (3) is converted into

\[
g(\eta) = \frac{2\sqrt{2}}{\pi} \sin\left(\frac{\pi}{4} + \eta \pi\right)
\]

Similar to the clearance between neighboring windings, there’s an appropriate value of the length of the x-directed magnetization magnet to meet the two expressions below.

\[
\sin\left(\frac{\pi}{4} + \eta \pi\right) = 0
\]

\[
\sin\left(\frac{\pi}{4} + \eta \pi\right) \neq 0
\]

That is

\[
\eta = \frac{m}{n}
\]

where \(m \) is a positive integer. Further, when parameter \(\eta \) meets the expression below, the amplitude of fundamental is largest.

\[
\eta = \frac{n - 2}{4n} = \frac{n + 2}{4n}
\]

VERIFICATION
The results are validated by comparison of the ILPMLSM with FEA. The forces of three ILPMLSMs are calculated by analytical solution and FEA. The first of the three motors is original motor. The second of the three is the motor which magnet array has been optimized to eliminate higher harmonics. And the third of the three is the motor which windings and magnet array have been optimized to eliminate higher harmonics. The parameters of the motors are the following: number of phases, \(s = 6 \); number of magnets in one period, \(t = 4 \); pitch, \(l = 72\) mm; depth, \(w = 50\) mm; length, \(L = 2l \); winding thickness, \(\Gamma = 8\) mm; magnet array thickness, \(\Delta = 5\) mm; air gap thickness, \(x_0 = 1\) mm; remanence, \(\mu M_0 = 1.45\) T. There’re 356 turns of coil in each winding of the first and second motors, and 329 turns of coil in each winding of the third one.

The first three orders non-zero higher harmonics of the force are 5, 13 and 17 in the original motor. Optimization of the length of the x-directed magnetization magnet eliminates the 5th order higher harmonics, and optimization of the clearance between neighboring windings eliminates the 13th order higher harmonics. According to the analysis in the section above, the optimized parameters are the following: \(\varepsilon = 0.05 \); \(\alpha = 0.013 \). The forces and force ripples of three ILPMLSMs calculated by analytical solution and FEA are shown in figure 4 and table 1. The methods proposed in the section above are effective of eliminating certain higher harmonics to reduce force ripples in the type of ILPMLSM researched in this paper.

![Figure 4](image)

CONCLUSIONS
The main purpose of this paper is to provide a general design and analysis method for a type of ILPMLSM with little force ripples. A novel design theory of ILPMLSM is proposed, which easily meets the requirement of little force ripples by eliminating higher harmonics as more as possible. The expression of higher harmonics of force is derived via magnetic vector potential and Maxwell stress tensor. The analysis result shows that the first order non-zero higher harmonic is the main component of the force
ripples caused by higher harmonics. Further, methods to eliminate certain order non-zero higher harmonics of force are proposed: appropriate clearance between neighboring windings, appropriate clearance between neighboring magnets and appropriate length of the \(x\)-directed magnetization. The results are effective validated by comparison of the ILPMLSM with FEA.

TABLE 2. The forces and force ripples of three ILPMLSMs calculated by analytical solution and FEA.

<table>
<thead>
<tr>
<th></th>
<th>force/N</th>
<th>force ripples/%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>analytical solution</td>
<td>FEA</td>
</tr>
<tr>
<td>1st</td>
<td>31.05</td>
<td>29.56</td>
</tr>
<tr>
<td>2nd</td>
<td>25.81</td>
<td>24.57</td>
</tr>
<tr>
<td>3rd</td>
<td>23.95</td>
<td>22.83</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENT

This work was supported by the National Natural Science Foundation of China under Grant 51175296.

REFERENCES

In this paper, we present the characterization and precision control of a flexure-based roll-to-roll (R2R) printing system as well as the adaptation of a Microcontact Printing (MCP) process to the R2R platform for fabricating submicron resolution flexible photonic devices, including 600 nm optical gratings and various gold and silver electrodes for organic electronic devices. High-resolution continuous R2R printing is enabled by the fully automated flexure-based R2R machine with multi-axis misalignment correction capability.

MECHANICAL CHARACTERIZATION

As shown in Figure 1, we have developed a flexure-based R2R printing system for submicron resolution printing [4]. Nanometer repeatability and multi-axis error correction capabilities are achieved through the flexure-based positioning system. PID control is implemented in all sub-modules of the R2R system, including the positioning stage, the web tension controller, and the web guide system [4].

PARASITIC MOTION CHARACTERIZATION

Figure 2 shows the CAD model of the core positioning stage, where two monolithic compliant stages are installed to support the two ends of a print roller with air bearing and integrated load cells.

Although each monolithic X-Y stage presents a completely decoupled design, unwanted motion coupling at micron to submicron level is still present due to limited manufacturing tolerance and imperfect constraint and loading conditions. In addition, motion coupling across different X-Y stages is present due to a rigid connection of print roller.

To further improve positioning precision, we devised four experiments to understand and characterize the motion coupling behavior between two X-Y compliant stages. Since
parasitic motions in a flexure mechanism are highly repeatable (~20nm), these results can be used to eliminate parasitic motions with a properly designed controller.

FIGURE 2. CAD model of the positioning stage with integrated actuators and sensors

As shown in Figure 2, both X-Y stages are driven by linear stepper motors (M230.10S, PI) in the X direction, and voice coil actuators in the Y direction (NCC03-15-050-2X, H2W). The position sensing is performed by capacitance probes (C30/CPL290, Lion Precision). To reduce the external disturbances such as ground vibration, all experiments were performed on an air table (Smarttable Top/S-2000 isolators, Newport) so as to reduce the ground vibration to within 40 nm.

In the first experiment, stage 1 was commanded to move in the Y direction (Y1) for ±200 µm, and the coupling Y motion on stage 2 (Y2) was measured. In the second experiment, stage 1 was commanded to move in the X direction (X1) for ±90 µm, and the coupling X motion on stage 2 (X2) was measured. The results are shown Figure 3A and 3B respectively. The results suggest a strong, yet linear, motion coupling effect, which may be largely removed by a correction matrix with open-loop control or completely removed by a closed-loop controller.

The relationship between Y1 and Y2 as well as X1 and X2 can be described by equation (1) and (2) respectively:

\[
Y_2 = 0.02 + 0.336 \times Y_1 \quad (1)
\]

\[
X_2 = -0.02 + 0.402 \times X_1 \quad (2)
\]

In the third experiment, stage 1 was commanded to move in the Y direction (Y1) for ±200 µm, and the coupling X motions on both stage 1 (X1) and stage 2 (X2) were measured. In the fourth experiment, stage 1 was commanded to move in the X direction (X1) for ±90 µm, and the coupling Y motions on both stage 1 (Y1) and stage 2 (Y2) were measured. The results are presented in Figure 4A and 4B respectively. These results prove that each monolithic compliant stage has excellent motion decoupling capability and that motions from different direction cause parasitic motions on the scale of 100-200 nm. More importantly, these parasitic motions are relatively linear and can be eliminated by proper control strategy.

Linear relationships between Y1 and X1/X2 as well as X1 and Y1/Y2 can be described by equation (3)-(6) respectively:

\[
X_1 = 4.12e^{-3} + 3.29e^{-3} \times Y_1 \quad (3)
\]

\[
X_2 = 4.15e^{-4} + 9.52e^{-4} \times Y_1 \quad (4)
\]

\[
Y_1 = -5.32e^{-4} - 4.06e^{-4} \times X_1 \quad (5)
\]

\[
Y_2 = 8.7e^{-5} + 1.53e^{-3} \times X_1 \quad (6)
\]

FIGURE 3. Cross-stage motion coupling behavior between the two X-Y stages in the Y direction (A) and X direction (B)
CONTROL STRATEGY
A PID controller that precisely controls the contact force and yaw/roll angle of the print roller was developed based on the results of the motion coupling experiments. The goal of this controller is to set a uniform contact force at any desired value (0-15N) with minimized settling time and no overshoot. To reach high force uniformity, the yaw angle (θ_Y) and roll angle (θ_X) of the print roller should be minimized.

An iterative approach was adopted as our control strategy to minimize the yaw and roll angle. First, a target positioning (i.e. printing force) signal is sent to two Y actuators in both stages, where each stage is controlled by an independent PID controller. If the measured X/Y positions are different, new target positioning signals of X and Y axis for each stage will be calculated based on the linear relationships presented in Equation (1) – (6) and set to be the new target signals for individual controllers. For example, if roll angle errors are present, the new target signals will command the Y actuators to generate a torque on the print roller to reduce the angular error. After 3-5 iterations, both the contact force and the yaw/roll angle will settle on the target value, thereby achieving motion decoupling.

R2R PRINTING EXPERIMENTS
We devised two experiments to verify the roll angle and contact force control capability. In the first experiment, the print roller was commanded to move down and up in 2 N force steps. The results are shown in Figure 5, where throughout the experiment contact force can be controlled within ±0.02 N without any overshoot.

In the second experiment, we recorded the average contact force and position of the print roller for one revolution (360°) with and without the PID controller. Figure 6 shows the printing force data with a target printing force of 15N. The closed-loop results show consistent precision throughout the experiments (±0.05N), while the open-loop results show significant deviation due to roller eccentricity that cannot be avoided at submicron level. More experiments indicate slowing down the printing speed can further improve the force and angular control accuracy.

STAMP PREPARATION
To adapt the MCP process for R2R operation, we replaced the normal substrate with a 4" wide metal coated PET roll. For stamp preparation, PDMS stamps are first fabricated by standard MCP procedures [1], following which the stamp is bonded to a glass cylinder that is then securely mounted to an air-expandable, motor-driven print roller shaft. Figure 7 shows an image of the glass cylinder with a bonded PDMS stamp. We have also developed new etching
recipes for both gold and silver to be compatible with the fast R2R process (etch time < 1 ms).

FIGURE 6: Open-loop and closed-loop printing force data

FIGURE 7: PDMS stamp securely bonded to a glass cylinder by oxygen plasma treatment

DEVICE FABRICATION
Figure 8 and 9 show various metal patterns printed by the R2R system on a 4” PET web. Figure 8A shows an image of flexible gold electrodes around 2” x 2” in size (cut from a 4” web). Figure 8B shows four SEM images of both gold and silver square/hexagonal grids with line widths ranging from 20-50 microns. Figure 9 shows the SEM image of a R2R patterned optical grating with a line width of 600 nanometers, printed on the 4” web. These exciting results present the highest resolution patterns produced by a large area R2R system for the first time.

CONCLUSION
We have developed a flexure-guided R2R machine and achieved nanometer-level positioning resolution and uniform force control over a 4” web within ±0.05N. By adapting MCP, we have, for the first time, scaled up the MCP process over a large area (4” PET web) and achieved 100 nanometer print resolution. The printed metal electrodes were used to fabricate various photonic devices including an organic photovoltaic cell and photodetector.

FIGURE 8: R2R printed samples on PET web (A); SEM images of printed gold (1 & 2) and silver (3&4) electrodes; scale bars in 1-4 are 350 microns

FIGURE 9: R2R printed sample of optical grating (gold lines); the line width in the SEM image is 600 nanometers; scale bar = 6 micron

ACKNOWLEDGEMENT
This work is supported by the HKSAR Innovation and Technology Commission (ITC) Innovation and Technology Fund (ITF), ITS/251/11: Precision Microcontact Printing for Roll to Roll Fabrication of Flexible Photonic Devices

REFERENCES
A NOVEL QUASI-ZERO MAGNETIC BEARING IN LONG STROKE OF RETICLE STAGE

Zhu Yu. Author1,2, Ye Weinan. Author1,2, and Zhang Ming. Author1,2
1State Key Laboratory of Tribology, Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control
Beijing, China
2Department of Mechanical Engineering
Tsinghua University
Beijing, China

INSTRUCTIONS
In many industrial equipment, workpiece or workpiece-stage needs to be driven and positioned in 6 degree of freedom, such as the wafer stage and the reticle stage in lithography. Conventional wafer stage and reticle stage, which are supported by machine guide and air bearing, are complicated and require high environmental control. Magnetic bearing with gravity compensators can achieve their levitation with simple structures, excellent environmental adaptability and low power consumption.

This document provides a novel quasi-zero magnetic bearing in long stroke of reticle stage in step & scan lithography. This magnetic bearing consists of the actuators for adjusting the position and attitude of five degrees of freedom except the scanning direction and the magnetic gravity compensators. The actuators and the magnetic gravity compensators are optimized and verified by finite element simulation and experiment. The magnetic gravity compensators achieve a quasi-zero stiffness in the range of ±1mm of stepping and vertical directions.

THE STRUCTURE OF MAGNETIC BEARING
The magnetic bearings are symmetrically disposed below the long stroke’s corners. Its structure is presented in Figure 1. The actuators are moving-coil linear motors, which provide the forces in stepping and vertical directions, for adjusting the position and attitude of five degrees of freedom except the scanning direction. Magnetic gravity compensators are special magnet array. The repulsion between the permanent magnet array of moving-coil linear motor and the magnetic gravity compensator is used to compensate the gravity of moving stage.

ACTUATOR
Structure of the Actuator
Figure 2 shows the structure of actuator. The actuator is a three-phase moving-coil linear motor1. Its stator is a one-dimensional Halbach array composed of five magnets. In order to achieve a large stroke in the scanning direction, the length of the permanent magnet array in the scanning direction is one meter.

In order to obtain sufficient thrust, the rated current of the actuator is 10A. When it works, a large amount of heat is generated. The heat must be taken away to avoid changing the work environment of lithography. So, a cooling structure is designed for this purpose.

Optimization of the Actuator
Due to space constraints, the dimensions of the actuator in stepping and vertical directions are determined value. In order to minimize the power consumption of actuator, the dimensions of the magnet with different magnetization directions, and the thickness of coil are optimized. After
optimization, when the current is 1A, both the maximum step and vertical thrust in the equilibrium position of the actuator achieve 10.7N in the finite element simulation of Two-dimensional model.

FIGURE 2. The structure of the actuator
b. coils of actuator; c. permanent magnet array of actuator.

FIGURE 3. The two-dimensional model of the actuator
b. coils of actuator; c. permanent magnet array of actuator.

Verification of the Actuator

When we complete the design of the actuator, several actuators and some experimental devices were manufactured for verifying the thrust and cooling performance of actuators.

Based on past experience of motor simulation, the experimental results is about 80 percent of the finite element simulation results of Two-dimensional model. In the test, both the maximum step and vertical thrust in the equilibrium position of the actuator achieve 8.5N when the current is 1A, 79 percent of the finite element simulation results, in line with expectations. Figure 4 shows the experimental device.

In reticle stage, the actuators of magnetic bearing are not always working on rated current. We estimate that the average current is 3A. The surface temperatures of actuators working on average current are tested by thermal imager. The maximum temperature rise is less than 2.4°C. Figure 5 and 6 show the measurement results.

FIGURE 4. The experimental device of the actuator
b. coils of actuator; c. permanent magnet array of actuator.

FIGURE 5. Measurement results by thermal imager
FIGURE 6. The surface temperatures of actuators working on average current

MAGNETIC GRAVITY COMPENSATOR
Structure of the Magnetic Gravity Compensator

Figure 7 shows the structure of the magnetic gravity compensator. It is mounted above the permanent magnet array of actuator, and consists of three magnets with different magnetization directions. The direction of the force between the middle magnet and the permanent magnet array is different from the ones between the both sides of the magnet and the permanent magnet array. The resultant force between the magnetic gravity compensator and the permanent magnet array is used to compensate the gravity of moving stage.

FIGURE 7. The structure of the magnetic gravity compensator (After optimization, the left structure is better.)

- c. permanent magnet array of actuator;
- d. magnetic gravity compensator.

Optimization of the Magnetic Gravity Compensator

To obtain a stable compensation force when long stroke had a small stroke ±1mm movement in the stepping and vertical directions, the stiffness of magnetic gravity compensator in the stroke ±1mm is expected to be as small as possible. Zero stiffness is ideal.

In order to calculate the stiffness, the numerical integral analytical solution of the force between the magnetic gravity compensator and the permanent magnet array is established by equivalent magnetic charge method, equivalent current method and Ampere equation. Because the numerical integration solution cannot be optimized, Multi-island genetic algorithm is used to find the optimal solution.

After optimization, the magnetic gravity compensator achieves a quasi-zero stiffness near the equilibrium position. The stiffness by the analytical solution is less than 0.5N/mm, and the stiffness by the finite element simulation solution is less than 3N/mm. Figure 8 shows the compensation force curve by the analytical solution and the finite element simulation solution.

FIGURE 8. The compensation force curve by the analytical solution and the finite element simulation solution

Verification of the Magnetic Gravity Compensator

Three magnets are bonded to the shell, they together constitute the magnetic gravity compensator. A force sensor in 6 degree of freedom mounted on the magnetic gravity compensator is used to test the forces and torques.

The forces and torques in 5 degree of freedom except vertical are almost zero. The vertical force is about 251N, and the stiffness is less than 4.8N/mm, in line with expectations. Figure 9 shows the experimental device for verifying the quasi-zero stiffness of the magnetic gravity compensator. Figure 10 shows the experimental results.
THE VERIFICATION OF MAGNETIC BEARING
A reticle stage, which used the magnetic bearing provided herein, has been designed and manufactured. Its commissioning is in progress. The reticle stage is expected to achieve maximum acceleration of 70m/s², MA of 2nm and MSD of 5nm.

SUMMARY
This quasi-zero magnetic bearing can provide a stable compensation force when long stroke had a small stroke ±1mm movement in the stepping and vertical directions, and adjust the position and attitude of five degrees of freedom except the scanning direction. It can help reticle stage realize high speed and high acceleration precision motion.

ACKNOWLEDGEMENTS
This work was supported by the National Natural Science Foundation of China under Grant 51175296.

REFERENCES
SPECTRAL IMAGING METROLOGY USING CHROMATIC ABERRATION

Nasim Habibi1,2, Mehrdad Abolbashari3, Faramarz Farahi1,2
1Center for Optoelectronics and Optical Communications
2Center for Precision Metrology
University of North Carolina at Charlotte
Charlotte, NC, USA
3Optoniks Inc.
Charlotte, NC, USA

1. INTRODUCTION
Spectral imaging has found application in many fields such as remote sensing \cite{1}, biomedical imaging \cite{2}, agriculture \cite{3}, etc. Spectral imaging is measuring the intensity of light as a function of wavelength, λ, for any point (x,y) on the object. The results is a three-dimensional data cube, which gives intensity as a function of (x,y,λ). In conventional spectral imaging techniques, there is a tradeoff between spectral and spatial resolutions. In this paper, a spectral imaging technique is proposed based on the images obtained from a dispersive imaging system. In this spectral imaging method, the spectral and spatial resolutions are decoupled and can be improved both at the same time.

Shape from focus (SFF) method \cite{4} is applied to images obtained from a dispersive lens to compute the data cube containing spectral images. SFF is a popular method used for depth recovery problem. In this method several images are taken from a three-dimensional object at different distances from the imaging lens and then an algorithm is used to obtain the sharpness of images versus distance from imaging lens for each pixel. Depth information is determined based on the location of focus or maximum sharpness. Similar scenario happens if spectral information of a two-dimensional object is of interest and imaging is done by a dispersive imaging system. A dispersive imaging lens system has a focal volume instead of focal plane and will spread the wavelength information of the object over the optical axis, the z-axis of image volume. Images taken at different locations of this axis contain unique wavelength information of the object at a given wavelength. SFF is applied to images of such system in order to calculate the sharpness of the images versus wavelength, instead of distance, for each pixel. This way the wavelength information of the whole object is determined and the spectral images are formed.

Our spectral imaging system will be a powerful tool for optical metrology of contaminated surfaces or surfaces with complex composition. Since different materials have different wavelength signatures, images of contamination and the original material can be distinguished by use of spectral imaging. It also has the capability to be used for high speed surface metrology. A conventional chromatic confocal microscope \cite{5} requires a point by point scanning of the object. In comparison, our spectral imaging system is much faster because it gives the spectral images of the whole object at once and doesn't need point by point scanning.

This paper is written as follows: in next section, a new spectral imaging system is described and in section 3, a dispersive lens system, which is a critical part of our spectral imaging system, is presented. Applying SFF to obtain images and forming the data cube is explained in section 4. Results of proposed system are given in section 5. Conclusive remarks are given in section 6.

2. DISPERSSIVE SPECTRAL IMAGING SYSTEM
Our novel spectral imaging system includes a highly dispersive imaging lens system (see figure 1). The idea is to make use of the chromatic aberration of such imaging system to separate and disperse spectral information of object over the focal volume of the lens system. By taking several images of the object at different planes of this volume, wavelength information of the object can be determined. For instance, if the image plane is located at the focal plane of the red wavelength, all the information related to red wavelength would be in-focus on this image plane and information related to other wavelengths would be out-of-focus. Based on this fact and by mean of SFF.
Instead of a focal plane, dispersive imaging system has a focal volume which is wavelength dependent.

method, spectral images can be extracted from proposed spectral imaging system. What we need is to design an imaging lens system, which is dispersive, i.e. has large chromatic aberration. Then several images of the object produced by this lens system are taken and synthesized by SFF. For each pixel of the image, SFF gives us the locations of focus and each location of focus corresponds to a specific wavelength. As mentioned before, the spectral and spatial resolutions are decoupled in this spectral imaging system. Spectral resolution depends on the number of images taken over the focal volume of the lens system. However, the spatial resolution depends on the resolution of the camera. Since spectral and spatial resolutions are decoupled, both can be improved simultaneously.

3. DISPERSIVE IMAGING LENS SYSTEM DESIGN

As can be seen from figure (1), dispersive imaging lens system is a key component in our spectral imaging technique. Designed imaging lens system should have large chromatic aberration while other types of aberration are minimized. The larger is the chromatic aberration the better wavelength resolution can be achieved. At the same time, other types of aberration are desired to be eliminated to maintain the quality of images. In order to satisfy mentioned requirements, a triplet lens system was designed. Triplet design gives us enough degrees of freedom to achieve our objectives. The design method introduced in [6] was followed here with one difference. While designing an imaging system, designers normally try to eliminate chromatic aberration of the system. A constraint can be imposed on the design to make sure the focal planes of blue and red wavelengths coincide. However, in our case we are making advantage of the chromatic aberration of the imaging system. Not only we don’t want the red and blue focal points to coincide but we want them to be separated as much as possible to improve the spectral resolution of the spectral imaging system. Same constraints as [6] were used here except for the constraint that makes the distance between blue and red focal points equal to zero. Instead of zero, this constraint was imposed to be equal a non-zero constant, which determines the wavelength resolution of spectral imager. The larger is this number, the farther away are the blue and red focal planes and the better spectral resolution can be achieved.

4. CALCULATING SPECTRAL IMAGES BY APPLYING SFF

SFF is a well-known method used for depth recovery problem [4]. The basic idea behind the method is that if we know the location of focus, we can figure out what was the object distance using the lens formula. Several images of a three dimensional object are taken at different distances from a lens system and the location of focus is determined for each pixel. Various criteria functions can be defined in order to measure the sharpness of an image [7]. The value of the criteria function is calculated for all taken images at each pixel and the maximum of this function determines the location of focus. We are dealing with a similar problem to depth recovery in our case of spectral imaging. The difference is that the object is two-dimensional and it is the wavelength information of each pixel that determines the location of focus not the depth.

In our spectral imaging system, we have a two dimensional object and an imaging system, which its imaging properties are highly wavelength dependent i.e. is highly dispersive. If a pixel has information at a specific wavelength, that pixel would be in-focus on image plane of the lens system corresponding to that specific wavelength. For example, assume that we are looking for all the pixels containing information at specific wavelength of λ_0 and the image plane corresponding to this specific wavelength is at distance d_0 from the lens system. Any pixel which its corresponding focus measure function has a maximum at d_0 contains information at λ_0. A pixel can have information at several wavelengths. In that case focus measure function has multiple maximums.

Once the imaging lens system with large chromatic aberration is designed, several
images are taken from the object at different locations between red and blue image planes. A criteria function is chosen and its values are calculated over all image planes. To extract the specific wavelength information, we look at the image plane corresponding to that specific wavelength and look for pixels which are in focus on that plane.

5. RESULTS
A dispersive imaging lens system is designed in Zemax based on the method of section 3. The layout of final design is shown in figure (2). The triplet lens system shown in figure (2) has an effective focal length of 50 mm and image space f-number of 2.5. The distance between F (486.13 nm) and C (656.27 nm) image planes of designed system at paraxial magnification of -1 is 4.52 mm. Considering diffractive depth of focus [6] as limiting factor for the maximum number of taken images, the best spectral resolution that can be achieved by this system is approximately 4.3 nm.

In order to show the functionality of spectral imaging system, object in figure (3) was chosen. The object contains information at three different wavelengths. Dispersive properties of the lens system bring each wavelength in-focus at different location. Images were taken at 50 μm steps between F and C image planes and were analyzed by SFF technique. The criteria function used to measure the sharpness at each image was grey-level variance and 9-by-9 window was used around each pixel [7]. The result is shown in figure (4). Pixels containing information at blue color became in focus at a distance of 85.8 mm from the last surface of the lens system. This distance is 88.9 mm and 90.3 mm for green and red color, respectively. Since the dispersive properties of the lens system is thoroughly known, we can say each distance corresponds to what wavelength. The calculated spectral images of the final data cube are shown in figure (5).

<table>
<thead>
<tr>
<th>Surface</th>
<th>Type</th>
<th>Comment</th>
<th>Radius</th>
<th>Thickness</th>
<th>Glass</th>
<th>Semi-Diameter</th>
<th>Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJ</td>
<td>STANDARD</td>
<td>Infinity</td>
<td>88.141</td>
<td>5.657</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>STANDARD</td>
<td>18.659</td>
<td>4</td>
<td>PMMA</td>
<td>9.543</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>STANDARD</td>
<td>47.243</td>
<td>4.811</td>
<td></td>
<td>9.476</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>STANDARD</td>
<td>-17.445</td>
<td>3</td>
<td>BK7</td>
<td>8.074</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>STG</td>
<td>STANDARD</td>
<td>17.784</td>
<td>5</td>
<td></td>
<td>7.864</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>STANDARD</td>
<td>48.644</td>
<td>4</td>
<td>PMMA</td>
<td>9.397</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>STANDARD</td>
<td>-18.618</td>
<td>89.863</td>
<td>9.403</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WMA</td>
<td>STANDARD</td>
<td>Infinity</td>
<td>-</td>
<td>7.690</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE (2) Layout of the imaging lens system along with summary of surface data

FIGURE (3) Object contains information at three different wavelengths
FIGURE (4): SFF is applied to images of object shown in figure (2) obtained from designed system shown in figure (3). Three different heights correspond to three wavelengths in object. Pixels containing information at blue, green and red color became in focus at 85.8 mm, 88.9 mm and 90.3 mm distance from the last surface of the lens system, respectively.

FIGURE (5): Spectral images of the object in figure (3). These images form a data cube which is the output of spectral imaging.

Results from an experimental setup are also presented here. A triplet lens system was used along with a CCD camera to capture images of object shown in figure (6). The object consists of three slits and was illuminated by a red LED positioned behind the right slit and by a blue LED positioned behind the left slit. 106 images were taken at different distances from the lens system in 0.005 inch steps. Size of each image was 1280 x 1024. Same as before, images were analyzed by SFF method and the spectral images are shown in figure (7). Since the red (blue) LED was positioned behind the right (left) slit, the spectral image corresponding to red (blue) wavelength fades by moving toward left (right) direction. Most part of the middle slit is illuminated by both LEDs and thus criteria

FIGURE (6): Object used in experimental setup. A red LED was positioned behind the right slit on the object and a blue LED was positioned behind the left slit.
function has two maximums over this part of images; each maximum representing one color.

FIGURE (7): Spectral images of object shown in figure (6).

CONCLUSION
A new spectral imaging technique has been presented in this paper that will be a useful tool for metrology. In this technique, spectral and spatial resolutions are independent of each other and can be improved simultaneously. A dispersive lens system was designed and images produced by this system were analyzed by SFF to compute spectral images of an object.

REFERENCES
INTRODUCTION
Displacement measuring interferometry provides high resolution and accuracy for dimensional metrology and is used in a number of precision applications. Heterodyne interferometers use a two-frequency laser source that separates the two optical frequencies (typically via polarization) into reference and measurement arms. The reference arm is stationary, while the measurement arm includes the moving target. An interference signal is obtained by the recombination of the reference and measurement arms, resulting in a measurement signal at the heterodyne frequency of the laser source. This measurement signal is compared to an optical reference signal. Motion in the measurement arm causes a Doppler shift of the heterodyne frequency which is measured as a continuous phase shift that is proportional to displacement. In practice, undesirable frequency mixing occurs due to misalignment of optical components, component imperfections, and elliptical polarization of the input; this leads to periodic errors [1-3]. Typically, both 1st and 2nd order periodic errors occur, which correspond to the number of periods (one or two) per fringe displaced, as shown in Figure 1. The periodic errors can limit the linearity of the heterodyne interferometer to approximately the nanometer level.

Researchers have analyzed and applied different methods to measure and compensate periodic error [4], including the frequency domain approach. In this approach, the periodic error is measured by calculating the Fourier transform of the time domain data collected during constant velocity motion [5]. This method is not well suited to non-constant velocity profiles due to the inability of the Fourier transform to account for transient characteristics. An alternate digital algorithm is available for measuring and compensating 1st and 2nd order periodic error [6]. This method can be applied in real-time for constant or non-constant velocity motions.

In previous work, a wavelet transform technique was used to account for non-constant velocity motions and the resulting periodic errors [7].

In this work, the continuous wavelet transform (CWT) is used to measure the amplitude and phase of the periodic error in heterodyne interferometry, for both constant and non-constant velocity motion. Using the amplitude and phase information, the periodic error can be reconstructed and subsequently used for compensation.

CONTINUOUS WAVELET TRANSFORM
The wavelet transform is a signal processing tool, which can be used to analyze time series data containing non-stationary (time-varying) power at multiple frequencies [8]. Wavelet functions refer to either orthogonal or non-
orthogonal wavelets. Depending on the application, either a continuous or discrete wavelet transform can be used [9].

A wavelet function \(\psi(t) \) is a finite energy function [10] with an average of zero,
\[
\int_{-\infty}^{\infty} \psi(x) \, dx = 0. \tag{1}
\]

A wavelet family is generated by dilating the mother wavelet via the scale \(s > 0 \) and translating it via the location \(\xi \in \mathbb{R} \). This series of wavelets can be expressed as
\[
\psi_{s,\xi}(x) = \frac{1}{\sqrt{s}} \psi\left(\frac{x-\xi}{s}\right). \tag{2}
\]

In this research, a continuous wavelet transform (CWT) is used to analyze the signal \(f(x) \), with a wavelet function \(\psi_0(x) \). For a one-dimensional signal \(f(x) \), the CWT is defined as the correlation of \(f(x) \) with a scaled and translated version of \(\psi_0(x) \) via
\[
W_f(s, \xi) = \int_{-\infty}^{\infty} f(x) \overline{\psi_{s,\xi}(x)} \, dx = \int_{-\infty}^{\infty} f(x) \frac{1}{\sqrt{s}} \psi^*\left(\frac{x-\xi}{s}\right) \, dx, \tag{3}
\]
where \(* \) indicates the complex conjugate and \(x \) represents the time variable.

In the present work, the complex Morlet wavelet is used as the mother wavelet
\[
\psi^*\left(\frac{x-\xi}{s}\right) = \pi^{-\frac{1}{4}} e^{i2\pi \frac{x-\xi}{s}} e^{\frac{1}{2} \left(\frac{x-\xi}{s}\right)^2}. \tag{4}
\]

After applying the complex Morlet wavelet to the signal, the CWT result is a two-dimensional complex array. This array can be used to extract the CWT “ridge” and, therefore, the period of the periodic errors. The ridge is the location where the CWT coefficient reaches its local maximum along the scale direction [11]; the period is maximum when the analysis frequency equals the signal frequency [12]. The ridge and period are
\[
\text{ridge}(\xi) = \max\left|W_f(s, \xi)\right| \quad \text{and} \quad \phi(\xi) = \arctan\left(\frac{\text{Im}(W_f(s, \xi))}{\text{Re}(W_f(s, \xi))}\right). \tag{5}
\]

where \(s_{\text{ridge}} \) is the scale at the ridge and \(\text{Im} \) and \(\text{Re} \) represent the imaginary and real parts of the CWT coefficient, respectively.

COMPENSATION ALGORITHM

The periodic error compensation, which can be processed in real-time, is depicted in Figure 2. Each time a new data point is obtained, an \(n \)-size buffer array is populated with the last \(n \) data points. With this series of data, the CWT is computed at the last data point (i.e., location \(\xi \) in Equation 3 is fixed at the end of the buffer array). Therefore, an array of coefficients at the end point along scales is obtained and the ridge can be determined at scale \(s_1 \). This scale corresponds to the 1st order periodic error frequency. Because the scale is inversely related to the frequency, the scale \(s_2 = s_1/2 \) corresponds to the 2nd order periodic error frequency.

FIGURE 2. Flow chart for the compensation algorithm.

For each new data point, the ridge and phase is calculated, so the periodic error phase information is determined. One array for the reference 1st order periodic error is constructed, \(r_1 = \{\sin(\phi(1)), \sin(\phi(2)), ..., \sin(\phi(n))\} \). Similarly, \(r_2 = \{\sin(2\phi(1)), \sin(2\phi(2)), ..., \sin(2\phi(n))\} \) for 2nd order periodic error. Only these two periodic errors are considered here, but other orders could be included as well [13]. Using the end point and applying the CWT to these two arrays at two scales, \(s_1 \) and \(s_2 \), we obtain four results, \(r_{11} \) and \(r_{21} \) for \(r_1 \) at \(s_1 \) and \(r_{12} \) and \(r_{22} \) for \(r_2 \) at \(s_2 \). If we consider only 1st and 2nd order periodic errors, i.e., \(f(x) = A_1 r_1(x) + A_2 r_2(x) \), where \(A_1 \)
and A_2 are the periodic error amplitudes, the linear relationship exists before and after the CWT calculation. Let c_1 and c_2 be the CWT result for the buffer array at scale s_1 and s_2. The corresponding equations are

$$\begin{align*}
A_1 r_{11} + A_2 r_{12} &= c_1 \\
A_1 r_{21} + A_2 r_{22} &= c_2
\end{align*}$$

(7)

The amplitudes are obtained and then the periodic error is reconstructed as $A_1 \sin(\phi(n)) + A_2 \sin(2\phi(n))$. Finally, this result is subtracted from the original data to determine the compensated displacement data point.

SIMULATION RESULTS

Simulated and experimental displacement signals with periodic error were used to assess the validity of this wavelet-based compensation algorithm.

The algorithm was applied to a simulated constant velocity motion (50 mm/min) with 1st and 2nd order periodic error amplitudes of 4 nm and 2.5 nm, respectively. The measured amplitudes are shown in Figure 3. The compensated result is displayed in Figure 4. The RMS error is reduced to approximately 14.8%.

The algorithm was also verified using a simulated accelerating motion (50 mm/min2 acceleration, 5 nm and 2 nm amplitudes for 1st and 2nd order periodic errors, respectively). The measured amplitudes are shown in Figure 5. The compensated result is provided in Figure 6. The RMS error is reduced to approximately 16.3%.

![FIGURE 3](image1.png)

FIGURE 3. Comparison between measured and nominal amplitudes of (a) 1st and (b) 2nd order periodic errors in the simulated constant velocity motion.

![FIGURE 4](image2.png)

FIGURE 4. Comparison between original and reconstructed periodic errors, and the compensated result in the simulated constant velocity motion.

![FIGURE 5](image3.png)

FIGURE 5. Comparison between measured and nominal amplitudes of (a) 1st and (b) 2nd order periodic errors in the simulated accelerating motion.
The algorithm was also applied to experimental data with an acceleration of 50 mm/min2 and a sampling rate of 62.5 kHz. The compensated result is shown in Figure 7.

CONCLUSIONS

A compensation algorithm based on the continuous wavelet transform is used in this research to measure and compensate phase and amplitudes of 1$^{\text{st}}$ and 2$^{\text{nd}}$ order periodic errors in heterodyne interferometer displacement signals. Future work will focus on hardware implementation of the algorithm for real-time use.

ACKNOWLEDGEMENT

This work was supported by the National Science Foundation CMMI division under award collaborative research awards 1265881, 1265842, and 1265824.

REFERENCES

BEAM ABERRATION ANALYSIS OF DIFFERENTIAL WAVEFRONT INTERFEROMETRY

Xiangzhi Yu¹, Steven R. Gillmer¹, Chen Wang², Jonathan D. Ellis¹,³
¹Department of Mechanical Engineering
²Department of Electrical and Computer Engineering
³The Institute of Optics
University of Rochester
Rochester, NY, USA

INTRODUCTION
Heterodyne displacement interferometry is a widely accepted method for linear stage calibration with sub-nanometer resolution and nanometer-level uncertainty under a strictly controlled environment and measurement conditions [1]. Typically, calibrating the stage in three degrees of freedom (DOF) requires three different setups. However, we have developed a 3-DOF fiber-delivered heterodyne interferometer which uses a single beam to simultaneously measure target displacement and changes in pitch and yaw [2]. Each DOF can be decoupled and measured using differential wavefront sensing (DWS). This technique has been developed and tested as part of the Laser Interferometer Space Antenna (LISA) Program, which measures changes in the separation of inertia test masses housed in spacecrafts. For the LISA project, an analytical model and simulations have been developed to describe DWS on the condition that the beam diameter is much smaller than the detector size [3,4].

In this proceedings, we present ongoing work towards the theoretical modeling and simulation of beam interference under the condition that the beam and detector have similar dimensions. Our model will investigate how beam diameter, beam aberrations, detector size, and beam centroid mismatch affect DWS.

INTERFEROMETER CONFIGURATION
The 3-DOF interferometer [2] uses two acousto-optic modulators (AOMs) that are driven at slightly different RF frequencies and then individually fiber-coupled into polarization maintaining fibers to build a fiber coupled heterodyne laser source, shown in Figure 1. The two optical beams are collimated back into free space at the interferometer. The \(f_1 \) beam passes through the top non-polarizing beamsplitter (BS), reflects from the fixed reference surface and interferes with the \(f_2 \) beam that is reflected from the bottom BS.

Likewise, the \(f_2 \) beam passes through the bottom BS, reflects from the measurement mirror target on the stage, and interferes back at the bottom BS with the \(f_1 \) beam that is reflected from the top BS. The measurement wavefront will rotate in two directions as a function of stage pitch and yaw, which can be detected and decoupled using DWS.

DIFFERENTIAL WAVEFRONT SENSING
In differential wavefront sensing, the interference wavefront is detected on a quadrant photodetector and processed to determine the individual phase (and thus displacement) at each quadrant on the photodiode relative to the

optical phase on the reference photodiode. By creating a weighted phase average over symmetrically adjacent quadrant detector pairs, changes in pitch and yaw can be determined with nanoradian resolution [5]. The overall stage displacement is determined by averaging the phase between all four quadrants.

![Diagram](image)

FIGURE 2. DWS measuring changes in pitch using a rectangular quadrant photodiode. As demonstrated in this figure, the top half of the quadrant detector senses a characteristically different phase reading compared to the bottom half.

The three DOFs are expressed as,

\[z_d \propto \theta_A + \theta_B + \theta_C + \theta_D \] \hspace{1cm} (1)

\[\text{Pitch} \propto \frac{(\theta_A + \theta_B) - (\theta_C + \theta_D)}{L_p} \] \hspace{1cm} (2)

\[\text{Yaw} \propto \frac{(\theta_A + \theta_D) - (\theta_B + \theta_C)}{L_y} \] \hspace{1cm} (3)

where \(\theta \) represents detected phase of quadrant A, B, C or D and \(L_p, L_y \) represent an equivalent length in pitch and yaw measurements that is primarily dependent on beam diameter, detector size, and beam wavefront. Since there is sufficient signal processing to detect the optical phase change with microradian resolution, the critical factor for pitch and yaw measurements relies on precise knowledge of the equivalent length.

BEAM INTERFERENCE ANALYSIS

Each beam incident on the quadrant detector is assumed to be a fundamental-order Gaussian as described by,

\[E(r) = \left| E \right| \frac{\omega_0}{\omega(z)} e^{-\frac{r^2}{\omega(z)^2} - \frac{i}{2} \left(\frac{r^2}{2R(z)} + i\zeta + i\omega t \right)} \] \hspace{1cm} (4)

\[\omega(z) = \omega_0 \sqrt{1 + \left(\frac{z}{z_R} \right)^2} \] \hspace{1cm} (5)

\[R(z) = z \left[1 + \left(\frac{z_R}{z} \right)^2 \right] \] \hspace{1cm} (6)

\[\zeta(z) = \arctan \left(\frac{z}{z_R} \right) \] \hspace{1cm} (7)

\[z_R = \frac{\pi \omega_0^2}{\lambda} \] \hspace{1cm} (8)

where \(r \) is the distance from the origin, \(z \) is the axial distance from the beam waist, \(i \) is the imaginary unit, \(\omega_0 \) is the waist size, \(k \) is the wave number, \(\omega(z) \) is the beam waist, \(R(z) \) is the radius of curvature of the wavefront, \(\zeta(z) \) is the Gouy phase shift, and \(z_R \) is the Rayleigh range.

Since our detector is square, it is convenient to describe the two beams in Cartesian coordinates. The expressions for reference and measurement beam respectively are

\[E_1(x, y) = \left| E_1 \right| \omega_1 e^{-\frac{(x^2 + y^2)}{\omega_1^2} + \frac{i}{2} \left(\frac{(x^2 + y^2)}{2R(z_1)} + i\zeta_1 + i\omega t \right)} \] \hspace{1cm} (9)

\[E_2(x, y) = \left| E_2 \right| \omega_2 e^{-\frac{(x^2 + y^2)}{\omega_2^2} + \frac{i}{2} \left(\frac{(x^2 + y^2)}{2R(z_2)} + i\zeta_2 + i\omega t \right)} \] \hspace{1cm} (10)

where \(\alpha \) is pitch, \(\beta \) is yaw, \(\delta x \) and \(\delta y \) are the measurement beam centroid coordinates compared to the reference beam centroid. The two interfering beams are incident on the quadrant photodiode, so the irradiance is proportional to the modulus squared of each electric field,

\[I(x, y) \propto \left| E_1(x, y) + E_2(x, y) \right|^2 \] \hspace{1cm} (11)

Thus, the resulting optical power on quadrant A, for example, is

\[P \propto \int_{-w/2}^{w/2} \int_{-h/2}^{h/2} I(x, y) \, dx \, dy \] \hspace{1cm} (12)

Similarly, the power on the other three quadrants B, C, D are given by changing the limits of integration using the center of all four detectors as the origin. After applying the lock-in detection technique the individual phase changes in these four quadrants \(\theta_A, \theta_B, \theta_C, \theta_D \), can be extracted.
Modeling the beam as a perfect fundamental-order Gaussian profile is not accurate enough for DWS in practice. The final beams will have aberrations due to alignment errors, optical components’ manufacturing errors, etc. To account for this we introduce the extra phase shift caused by aberrations in our model.

Zernike polynomials are widely used for fitting a wavefront over a circular aperture [6]. Figure 3 is the plot and order of the first 15 Zernike terms. In experiments, we use a Shack-Hartmann wavefront sensor (WFS150-5C;Thorlabs) to measure the coefficients of the first 15 Zernike terms with a wavefront accuracy of $\lambda/15$ rms. Thus, the total measured wavefront variation, $W(n)$, for a particular mode is

$$W(n) = C(n) \cdot N(n) \cdot Z(n),$$

where $C(n)$ is the measured wavefront coefficient, $N(n)$ is the normalization factor, which is used to convert the orthogonal set of Zernike polynomials into unity variance (RMS=1), and $Z(n)$ is Zernike function in Cartesian Coordinates to describe different modes. A reasonable representation of the aberrations in the beam is the combination of the first 15 Zernike polynomials. The extra phase shift can be calculated using

$$\Delta \theta(x, y) = \frac{2\pi W(x, y)}{\lambda}.$$ (14)

We will add the term $e^{i\Delta \theta}$ to the mathematical expression for reference and measurement beams in the simulation.

The above model is based on perfect Gaussian beams; we now investigate which aberrations will affect DWS most. In the following simulation, we keep the beam diameter at 6 mm and set each mode of aberration at 1 μm. From Table 1, the Tilt x and Coma x will affect yaw measurement (rotation about the y-axis); the other aberrations keep the same equivalent length as a perfect Gaussian beam. Likewise, Tilt y and Coma y will affect pitch measurements (rotation about the x-axis). Therefore, for a reliable experiment, it is critical to quantify these two types of aberrations.

Next, we further investigate how the amount of these two aberrations affects DWS. The value for Tilt x and Coma x will vary from -10 to 10 μm. Figure 5 shows the theoretical calculation over 0 to 200 μrad depending on different aberration values. Figure 6 shows the equivalent length fitting by the linear range (0 to 100 μrad). Figure 7 shows the error map in a DWS measurement using first-order fitting compared with a measurement that utilizes uniform plane wavefronts.
Finally, we investigate how the beam centroid mismatch affects DWS. The model assumes the reference beam centroid is located at origin of the quadrant detector and the measurement beam centroid mismatch is relative to it. It is evident that the mismatch in the y-axis will not affect the yaw measurement (rotated about the y-axis) because the phase change is exactly the same for the left and right halves of the quadrant photodiode. Figure 8 shows the equivalent length variation for a yaw measurement depending on a beam centroid mismatch on the x-axis from -1 to 1 mm.

<table>
<thead>
<tr>
<th>Mode No.</th>
<th>Classical Name</th>
<th>Equivalent Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Tip y</td>
<td>3.7154</td>
</tr>
<tr>
<td>3</td>
<td>Tilt x</td>
<td>3.6972</td>
</tr>
<tr>
<td>4</td>
<td>Astig y</td>
<td>3.7154</td>
</tr>
<tr>
<td>5</td>
<td>Power</td>
<td>3.7154</td>
</tr>
<tr>
<td>6</td>
<td>Astig x</td>
<td>3.7154</td>
</tr>
<tr>
<td>7</td>
<td>Trefoil y</td>
<td>3.7154</td>
</tr>
<tr>
<td>8</td>
<td>Coma y</td>
<td>3.7154</td>
</tr>
<tr>
<td>9</td>
<td>Coma x</td>
<td>3.7635</td>
</tr>
<tr>
<td>10</td>
<td>Trefoil x</td>
<td>3.7154</td>
</tr>
<tr>
<td>11</td>
<td>Tetrafoil y</td>
<td>3.7154</td>
</tr>
<tr>
<td>12</td>
<td>2nd Astig y</td>
<td>3.7154</td>
</tr>
<tr>
<td>13</td>
<td>Spherical</td>
<td>3.7154</td>
</tr>
<tr>
<td>14</td>
<td>2nd Astig x</td>
<td>3.7154</td>
</tr>
<tr>
<td>15</td>
<td>Tetrafoil x</td>
<td>3.7154</td>
</tr>
</tbody>
</table>

TABLE 1. Calculated equivalent length for 1 μrad aberrations for rotations in yaw (about the y axis). It is clear that initial beam tilt and Coma have the largest influence on the equivalent length.

CONCLUSIONS

A model for describing the beam interference for differential wavefront interferometry has been presented and several important parameters such as beam diameters, detector size, beam aberrations have been discussed. Based on this model, the equivalent length for DWS calculations can be determined for pitch and yaw measurements.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the support of the US Department of Commerce, National Institute of Standards and Technology under Award No. 70NANB12H186 and the
REFERENCES

ABSOLUTE THICKNESS METROLOGY WITH HIGH PRECISION USING LOW COHERENCE INTERFEROMETRY

Yang Zhao¹, Greg Schmidt¹, Duncan T. Moore¹, Jonathan D. Ellis¹,²
¹The Institute of Optics
²Department of Mechanical Engineering
University of Rochester
Rochester, NY, USA

ABSTRACT
In refractive index profile measurement for gradient index (GRIN) materials which have designed inhomogeneous refractive index, sample thickness variations across the aperture are required to be measured to obtain accurate index profiles. In this work, instrumentation was developed to measure the absolute thickness map of samples with parallel specular surfaces up to 10 mm thick, with the ability to measure the surface figure of both sides. Using this system, we are able to measure absolute sample thickness currently accurate to sub-micrometer levels, based on the short coherence length of the light source. Besides gradient index materials, this method is also potentially capable of measuring other inhomogeneous and opaque materials.

INTRODUCTION AND BACKGROUND
The thickness of optical components plays a critical role in many aspects in optical applications. In this application, the thickness is particularly important for optical manufacturing purposes. Additionally, the uncertainty of other optical characteristics often depends on the precision of the sample thickness.

For example, all refractive index measurements that use interferometric methods which record optical path difference (OPD) have the refractive index coupled with the thicknesses of the samples that are measured. This is particularly important for manufacturing optical components which are comprised from gradient index (GRIN) materials. To obtain better accuracy in metrology for the gradient index profile in materials, measurements of samples are needed where the thickness can be determined accurately; and the thickness map across the sample can be obtained.

One of the most common methods for precisely measuring thickness of samples is using a micrometer, which has a specified accuracy that is typically on the order of 1 μm. In practice, this method results in worse resolution from clamping force on the sample and environmental instabilities. There are other disadvantages of this method, one of which is that this is a contact measurement; the surface may be scratched or marred from the clamping force.

Interferometric methods have also been developed to measure thickness with high accuracy. However, these methods typically require either precise knowledge of index of refraction [1], or sample to be at least transparent and homogeneous [2]. These prerequisites hamper the application of these metrologies on the optical materials such as opaque materials, e.g. infrared (IR) materials measured with visible light or gradient index materials that are not homogeneous. Gauge block interferometry [3] can also be used, but it may induce non-uniform stresses due to the wringing forces, or the figure error in the sample may prohibit it.

For GRIN materials, thickness measurements are difficult, because OPD measurements through the sample have the thickness directly coupled to the refractive index that is to be measured; and cannot be deconvolved with high accuracy. Additionally, some GRIN materials can create significant figure errors on the surface of the sample, meaning gauge block interferometry is not viable, because good contact is needed between sample and reference surface.

In this paper, we report an optical metrology method that uses low coherence interferometry to measure the absolute thickness of solid materials that has nominally parallel and specular reflective surfaces. This method is independent of the refractive index, transmission, or homogeneity of the sample under test and
can be used to measure the figure error of both surfaces of the sample, and the absolute thickness between them.

LOW COHERENCE INTERFEROMETRY

Low coherence light sources include sources that are temporally low coherent or spatially low coherent. In this work, low coherence interferometry uses light source with low temporal coherence. Low coherence sources such as white light have a short coherence length, attributed to its broad optical spectrum, as opposed to lasers which have long temporal coherence.

The coherence length of a light source is described by the following equation [4],

\[l_C = \frac{c}{\Delta \nu} = \frac{\lambda^2}{\Delta \lambda} \]

where \(l_C \) is the coherence length, \(c \) is the speed of light in vacuum, \(\Delta \nu \) is the spectrum width in frequency, \(\lambda \) is the mean wavelength of the source, and \(\Delta \lambda \) is the wavelength range the source covers.

The position of the sample surface could be measured with low coherence interferometry when a two beam interferometer using low coherence light, e.g. a Michelson interferometer, is formed by sample surface as the test arm and a scanning reference surface as the reference arm, shown in Figure 1.

The expected interference intensity as a function of the OPD between the two arms is illustrated in Figure 2. [5]. The sample surface can be located using coherence profile envelope and 0th order fringe peak with sub-micrometer accuracy.

FIGURE 1. Example Michelson interferometer where the reference surface is scanned to measurement sample surface.

FIGURE 2. A correlogram of low coherence interference is plotted as intensity against OPD [5]. The dotted line shows the envelope of the signal.

SYSTEM SETUP

By using the above method, multiple surfaces can be located in one single system, including sample surfaces and other surfaces used as position references. As all the position information is measured on the same length scale in the reference arm, the low coherence interferometer is capable of converting displacement of reference arm among different surface positions into the sample distance and measuring absolute thickness, illustrated by the schematic diagram in Figure 3.

FIGURE 3. A schematic diagram for the low coherence interferometer that measures absolute thickness.
The system is essentially a Twyman-Green interferometer, with the test arm designed as a ring cavity, where the sample will be mounted. The ring cavity consists of a beamsplitter and two cavity mirrors. The virtual surface where the cavity mid-point location is called the cavity center plane and it is used as the position reference.

The dispersion compensators compensate for dispersion that is introduced by the asymmetry of the two arms of the interferometer due to our design.

The beamsplitter in the ring cavity divides the beam amplitude into equal halves. These two beams are used to measure the positions for both surfaces of the sample as \(S_1 \) and \(S_2 \). When the sample is removed, the reference beam interferes with the beam that loops around the ring cavity. Thus the cavity center plane location is measured as location \(L_0 \).

The sample thickness is calculated as the difference in the displacement from cavity center plane to the two sample surfaces by

\[
t = (L_0 - S_1) - (S_2 - L_0) = 2L_0 - S_1 - S_2.
\]

The measurement does not have requirements on the sample refractive index or the sample transparency, because no light was required to transmit through the sample. Thus the accuracy of the measurement does not depend on sample characteristics like refractive index, transmission, or homogeneity.

The Abbe error of the scanning stage can be greatly reduced by calibrating the stage with traceable calibration tools or by simultaneously measuring the reference mirror location directly behind the reference surface. To achieve high accuracy in absolute thickness, fluctuations in environmental parameters, including temperature, pressure, vibration and index of refraction of air should all be minimized. Also, thermal expansion of the ring cavity should be monitored.

By sampling on multiple points on the surfaces, the surface topography can be measured with respect to the reference surface for both sides. The thickness map for the measured region can be obtained.

PROGRESS AND RESULTS

The low coherence interferometer was built using all off-the-shelf parts including all mechanical and optical components. A tungsten lamp with a broad spectrum was used as the low coherence source, while a visible camera was used as detector. The spectrum of the lamp and the spectrum that was modified by the camera sensitivity curve are shown in Figure 4.

![FIGURE 4. The spectrum of the tungsten lamp was measured with a Newport OSM-100 spectrometer, shown as the blue curve. The red curve shows the combined light source spectrum and camera sensitivity, which is the effective spectrum of this system.](image)

Since the interferometer is a white light system, the dispersion compensators played an important role, preventing the signal envelope from broadening by dispersion. When zero OPD interferences in different wavelengths are separated out by the dispersion, the determination of envelope and 0th order fringe would be inaccurate or even impossible. The signal is then flattened with a widened envelope, which is not desirable in this application. This is demonstrated in Figure 5.

By comparison, Figure 6. shows a plot where the dispersion was considerably corrected. Additionally, interferograms of the cavity center plane measurement are shown in Figure 7., both in color and in grey scale.
The measurement was made using grey scale mode. Figure 8. shows an example of a surface position measurement. Through curve-fitting on the central 5 fringes, the position of the surface can be obtained with a 95% confidence interval as small as ±0.04 μm.

FIGURE 5. The measurement made in RGB mode showed that signals from three channels are separated, indicating the system has dispersion that must be corrected.

FIGURE 6. The signals from RGB channels were all aligned together, as the majority of the dispersion was compensated.

FIGURE 7. The interferogram of interference from reference mirror and the ring cavity are shown. Tilt was intentionally added to the reference mirror to create fringes.

In the colored interferogram on the left, it is obvious that the 0th order fringe peak is located between the two black fringes in the middle. And the colored fringes are symmetric about the 0th order fringe peak, indicating that the system is well corrected for dispersion. This was supported by the grey scale interferogram on the right, where the fringe contrast drops drastically from the center to the edge, indicating a relatively narrow coherence profile envelope.

FIGURE 8. The correlogram was measured for interference between reference mirror and the ring cavity.

CONCLUSIONS
To measure the absolute thickness of optical plane parallel samples accurate to sub-micrometer, a low coherence interferometer was developed and built to measure several surfaces with the same scanning reference arm to obtain distance information from the displacement between different surfaces.

Currently, the surface positions could be measured with low coherence interferometry with a resolution down to ±0.04 μm. Further research will be done to determine the measurement uncertainty of the methodology.

ACKNOWLEDGEMENTS
This work is supported by Defense Advanced Research Projects Agency (DARPA contract HR0011-10-C-0111-P00006)

REFERENCES

This paper presents a rectangular voice coil motor (VCM) design and implementation with magnetically levitated gravity compensation. The rectangular actuators comprise a permanent magnet, which produces a magnetic field, and a current coil positioned in the magnetic field. They work on the Lorentz principle as an electric motor which charge carriers moving through a magnetic field experience a force mutually perpendicular to their velocity and the magnetic field, known as the Lorentz force. The Lorentz force is used to induce motion or to provide a bias force between the moving parts of the actuator against the gravity.

One problem with traditional Lorentz actuators in applications is that there is no force without current flows. When a constant current is caused to flow to overcome the gravity of the mover, it leads to introduce dissipation of heat in the equipment. The power dissipation can cause problem with motion applying system, so it necessary is added a cooling water system. Usually, isolation bearings are designed by air bearing or flexibility structure in such system in order to support a load. And the stiffness of the bearing should be low so as to avoid the transmission of vibrations. Another problem is that it is difficult to provide such low stiffness isolation bearings.

This paper provides a new magnets structure of voice coil motor with magnetically levitated linear actuator. A general design method and working principle are provided in this paper. In the later part of this paper, preliminary experimental data and real-time control results are presented.

FUNDAMENTAL STRUCTURE AND PRINCIPLE

Traditional voice coil motor electromagnetic structure cross section as shown in Figure.1, is mainly composed of back iron, magnet and coil, black arrow in the figure represents the magnetization direction of the magnet. The coil is wound around the coil holder, mostly using nonmagnetic materials. When the current go through the coil, both sections of the coil produces the force with the same direction, make the magnet array and coil move relatively.

![Figure 1. Traditional rectangular voice coil motor.](image)

Rectangular Actuator Design

When adding a horizontal magnetization direction magnet H1 between the two main pole permanent magnets, and an auxiliary magnet with horizontal magnetization direction in the coil holder, as shown in Figure.2, these additional magnets would produce a relative vertical bias force. The bias force can be used to compensate for a weight applied to the moving system.

![Figure 2. The type of RVCM-H with horizontal auxiliary magnetic members, which produce a relative vertical bias force.](image)
FIGURE 3. The type of RVCM-V with vertical auxiliary magnetic member, which produces a relative horizontal bias force.

Analysis of Magnetic Model

Applying the equivalent magnetic potential method to simplifying the flux density distribution of the motor’s 2D model shown in Figure.2, and the simplified model is shown in Figure.4.

FIGURE 4. Simply analysis model for the motor with center magnet.

The main pole magnets and H magnets between the main pole magnets can be simplified into four equivalent infinite thin coils. A Cartesian coordinate system can be established at the center of the motor geometry as shown in Figure.5. The magnetic potential distribution function can be described as:

\[F_x = (-1)^k F_0 k \tau \leq x < k \tau + \tau \]

Where: \[F_0 = \frac{B_r}{\mu_r} h_m \]

And \(B_r \) is the remain magnetization of the magnetic pole magnet, \(h_m \) is the thickness of the pole magnet, \(\mu_r \) is the relative magnetic permeability of the pole magnetic, \(k = 0,1 \).

Fourier series expansion of equation 1 is

\[F(x) = \sum_{k=1}^{\infty} F_{mk} \sin\left(\frac{2k-1}{2}\pi x\right) \]

Each component’s amplitude is

\[F_{mk} = (-1)^{k+1} \frac{4}{(2k-1)\pi} F_0 \sin\left(\frac{2k-1}{2}\pi\right) \]

Due to the parse area is a field without source, the magnetic scalar in the air gap can be written in Laplace equation in \(xy \) coordinates:

\[\frac{\partial^2 \varphi_m}{\partial x^2} + \frac{\partial^2 \varphi_m}{\partial y^2} = 0 \]

The general root can be written as:

\[\varphi_m(x,y) = \sum_{k=1}^{\infty} \left(A_k \cos m_k x + B_k \sin m_k x \right) \]

Due to the parse area is a field without source, the magnetic scalar in the air gap can be written in Laplace equation in \(xy \) coordinates:

\[\frac{\partial^2 \varphi_m(x,y)}{\partial x^2} + \frac{\partial^2 \varphi_m(x,y)}{\partial y^2} = 0 \]

The general root can be written as:

\[\varphi_m(x,y) = \sum_{k=1}^{\infty} \left(A_k \cos m_k x + B_k \sin m_k x \right) \]

Suppose the back iron surface as the magnetic potential scalar surface, there are boundary conditions:

\[\left\{ \begin{array}{l} \varphi_m(x,y) \big|_{y=-\delta/2} = F(x) \\ \varphi_m(x,y) \big|_{y=\delta/2} = -F(x) \end{array} \right. \]

The root (EQ5) can be written as:

\[\varphi_m(x,y) = \sum_{k=1}^{\infty} \left(A_k \cos m_k x + B_k \sin m_k x \right) \]

In the formula:

\[m_k = \frac{2k-1}{\tau} \]

\[F_{mk} = (-1)^{k+1} \frac{4B_r h_m}{(2k-1)\pi}\mu_r \sin\left(\frac{2k-1}{2}\pi x\right) \]

The each component can be written as:

\[B_i(x,y) = -\mu_0 \frac{\partial \varphi_i(x,y)}{\partial x} \]

\[= \sum_{i=1}^{\infty} \frac{\mu_0 m_i F_{mk}}{sh(m_i \delta/2)} \cdot sh(m_i y) \cos(m_i x) \]
Because of
\[
\begin{align*}
B_x(x,y) &= -\frac{\mu_0}{\pi} \frac{\partial \varphi_m(x,y)}{\partial \varphi_y} \\
&= \sum_{k=1}^{\infty} \frac{\mu_0 m_k E_{m_k}}{s h(m_k \pi/2)} \cdot \sin(m_k y) \sin(m_k x)
\end{align*}
\]

(10)

Calculating of Lorentz Force

In order to calculate force produced by the permanent magnet in the coil holder shown in Figure.2, the magnet can also be equivalent to two rectangular current sources, as shown in Figure.6. \(X\) is the length of the permanent magnet of which width can be infinitely thin, and line current density is \(J_s = -H_{cb} \text{[A/m]}\). \(H_{cb}\) is the magnet coercive force.

\[
B_y = \frac{2 \mu_0 B h_m}{\mu_r} \left[\frac{3\pi r y}{r} \sin(\frac{3\pi r y}{r}) - \frac{3\pi x}{r} \sin(\frac{3\pi x}{r}) \right]
\]

(11)

\[
B_y = \frac{2 \mu_0 B h_m}{\mu_r} \left[\frac{3\pi r y}{r} \cos(\frac{3\pi r y}{r}) - \frac{3\pi x}{r} \cos(\frac{3\pi x}{r}) \right]
\]

(12)

According to the calculation of Lorentz force:
\[
\vec{f} = \vec{J} \times \vec{B}
\]

(13)

Then:
\[
\vec{f}_{mag} = \vec{J}_s \times \vec{B} |_{y=H_m/2} - \vec{J}_s \times \vec{B} |_{y=-H_m/2}
\]

(14)

Substituted by:
\[
\vec{J}_s(x,y,z) = [0,0,J_s] \\
\vec{B}(x,y,z) = [B_x,B_y,B_z]
\]

\[
\vec{f}_{mag} = J_s \frac{2 \mu_0 B h_m' \sin(\frac{3\pi r y}{r})}{\mu_r} [0,f_s,0], \text{ where}
\]

(15)

EQ15 illustrates that only force component on the y direction supports the gravity of load, and which is depended on the size of magnet H1,H2, the weight of load, the size of auxiliary magnet \((w_m', h_m')\), pole pitch of main pole permanent magnets. All of these parameters can make the motor meets the requirements of different gravity compensation. The bias force of the second type structure shown in Figure.3 is parallel to the coil force output direction can be also calculated using this model.

DESIGN OF MAGLEV LORENTZ MOTOR

The indexes of rectangular voice coil motor RVCM-H and RVCM-V are designed by listing Table.1. The explosive view of the motor structure, as shown in Figure.7, auxiliary magnet for gravity compensation is fixed by two separate winding moulds, and then the coil is wound around the mould.

<table>
<thead>
<tr>
<th>TABLE 1. The indexes of motor are designed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVCM-H</td>
</tr>
<tr>
<td>Maglev force(N)</td>
</tr>
<tr>
<td>Force constant(N/A)</td>
</tr>
<tr>
<td>Stroke(mm)</td>
</tr>
</tbody>
</table>

RVCM Simulation

Electromagnetic model of the both types of motor are set up in the FEM software. Then maglev force, coil force constant, and force ripple can be simulating.
For the vertical motor, simulation curve of bias force and motor constant are shown in Figure 8, within the stroke of ±1mm, gravity compensation ranges from 36.07N to 36.80N, of which fluctuation ratio is about 2.0%. And force constant ranges from 18.25N/A to 18.25N/A, of which fluctuation ratio is 0.7%. Figure 9 is for the simulation results of horizontal motor. Gravity compensation value fluctuation ratio is about 2.2%. Force constant fluctuation ratio is 0.8%.

According to results of the electromagnetic simulation of two types of motors, gravity compensation and force constant all are achieved the design target of Table 1. Both have some fluctuations within the whole stroke, but the amount of the fluctuation is small, which can be compensated of control current.

Test and Confirmation

A single motor gravity compensation test jig, shown in Figure 10, is for testing the bias force of voice coil motor for gravity compensation in micro-motion stroke. At the top, a 3 DOF positioning device with a load cell that can test the force of three directions fixes magnet stator of rectangular voice coil motor. At the bottom, a yellow part is the coil plate with coil and the compensation magnet inside. The coil plate is fixed, and the magnet array is driven by the three-dimensional positioning device. Using the test jigs, bias force and force constant of a single motor was tested. The test results of RVCM-H are shown in Figure 11 and Figure 12.

Test of Gravity compensation and force constant

MICRO-MOTION STAGE INTEGRATION

Those types of rectangular voice coil motor RVCM-H and RVCM-V are applied to a moving stage as test bench, for verifying that the vertical power dissipation is reduced. The weight of the motion part of the micro-motion stage is designed about 24.4kg.

A schematic diagram of the 6 DOF stage with definition of the individual force components generated by motors 1, 2, 3 and 4.

FIGURE 8. Vertical motor output.

FIGURE 9. Horizontal motor output.

FIGURE 10. A photograph of the maglev motor test jig.

FIGURE 11. Bias force test of RVCM-H (range: ±1mm).

FIGURE 12. Force constant test of RVCM-H (range: ±1mm).

FIGURE 13. Schematic diagram of the 6 DOF stage with definition of the individual force components generated by motors 1, 2, 3 and 4.
It uses the over actuators to generate all six axis motions. The distribution of the 8 motors is shown in Figure.13. The vertical motors are placed symmetrically on the coordinate axis. Those vertical motor can provide force on z direction and torque on Rx/Ry. Four horizontal motors are staggered by the vertical motors one by one, in order to avoid the mass center laying on the direction of the force, that can provide torque on Rz and force on x/y direction.

Control System Design

The motion control system of the 6 DOF micro-stage is a MIMO system; through decoupling achieve 6 DOF SISO control. General control structure is shown in Figure.14, including the trajectory generator, controller, actuator system, actuator interface, power amplifier, actuators, motion stage structure and measurement system, sensors, sensor interface.

![Figure 14. Control system of 6 DOF stage](image)

EXPERIMENT AND VERIFICATION

A prototype test bench with maglev voice coil motors is being constructed and verified, as shown in Figure.15. This test bench is built under dSpace environment. The control system of the micro-motion stage includes: trajectory planning generator, controller, actuator system, measuring system, etc.

![Figure 15. Photograph of the maglev micro-stage](image)

The success of the experiments on the 6 DOF micro-motion stage resulted in the application of RVC-M-H and RVC-M-V motors onto a 6 DOF actuator with moving magnets. In the testing, only 0.27A current of vertical motor is needed, to achieve the mover part of the stage maglev. The power consumption of 8 motors is about 0.40W. This results a very low dissipation. In another hand, the Bode plots of the 6 DOF mechanical transfer functions with a resonance peak at 142Hz are shown in Figure.15. At the low frequency range there is some phase delay caused by the motor damping and stiffness.

![Figure 15. 6 DOF mechanical transfer function](image)

Due to the nonlinearity of the attraction force with the gap, the maglev stiffness is much high and also vary with the displacement. Table.2 shows that at the center of 6 DOF strokes the maglev stiffness and damping of the test bench are much larger.

TABLE 2. The maglev stiffness and damping of 6 DOF motor are tested.

<table>
<thead>
<tr>
<th>axis</th>
<th>stiffness[N/m]</th>
<th>damping[N/(m/s)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>845.80</td>
<td>141.99</td>
</tr>
<tr>
<td>Y</td>
<td>1127.91</td>
<td>656.02</td>
</tr>
<tr>
<td>Rz</td>
<td>5.58</td>
<td>5.99</td>
</tr>
<tr>
<td>Z</td>
<td>1250.89</td>
<td>314.48</td>
</tr>
<tr>
<td>Rx</td>
<td>13.72</td>
<td>2.56</td>
</tr>
<tr>
<td>Ry</td>
<td>17.23</td>
<td>2.23</td>
</tr>
</tbody>
</table>

CONCLUSIONS

By 8 rectangular voice coil motors with gravity compensation integration, the 6 DOF micro-motion stage can be realized motion control and gravity compensation function by both simulation and test, greatly reduce the vertical motor consumption of power. It shows that the combination form of two types of flat voice coil motor can be used for stages with demand of vertical motion.

In this paper, the simulation and test results of a single motor in which an auxiliary magnet was embodied into the coil was realized the function of stage’s gravity compensation. The effect on
the output of the motor coil can be neglected, and ripple of the compensation value within the stroke can also be in required. The both forms of the motor have high practicability.

REFERENCES
MODELING OF PLANAR MOTORS WITH MOVING CIRCULAR COILS FOR LONG-STROKE MOTION ALONG AXES AND FULL ROTATION IN Θ_z DIRECTION

Feng Liu, Ming Zhang, Yu Zhu, Anlin Chen and Zhao Liu
State Key Laboratory of Tribology
Beijing Key Lab of Precision/Ultra Precision Manufacturing Equipments and Control
Tsinghua University
Beijing, China

INTRODUCTION
Planar motors with the ability of both movement along axes and rotation around z-axis are needed in high-precision industrial areas, such as chip detection, PCB (Printed circuit board) manufacturing, and wafer inspection. In previous literatures, planar motors with circular coils have been studied for such applications [1] [2].

The objective of this work is to present a modeling method for planar motor with moving circular coil. The model is used to predict the force and torque exerted on the translator, which are calculated with Lorentz force law. Due to the symmetry of the circle, the force and torque caused by a single circular coil remain the same when the coil rotates around its z-axis. By using this characteristic, the calculation of the Lorentz force and torque can be simplified, which can be expressed as three independent integrals respectively. Then two models are proposed: a harmonic model and an analytical-numerical model. The first model includes all the harmonics of the magnetic field. When the values of parameters of the planar motor are determined, the analytical-numerical model can be used for real-time control. Finally experiment is performed to present verification of the models in this paper.

ROTATION INVARIANCE OF THE CIRCULAR COIL
The circular coil has countless axes of symmetry in the xy-plane, and thus the force and torque remain the same when a single circular coil rotates about its z-axis, as shown in FIGURE 1. That means the force and torque caused by a circular coil are determined by the location of the coil center and have no relation with the rotation angle θ_z. Usually, the translator contains more than one coil. When the translator rotates about the z-axial, the location of the center of each coil can be determined according to the rotation angle θ_z and the position of the translator. The force and torque of the translator are the sum of the contribution of each coil. Therefore, a partial planar motor, which is constructed of a magnet array and a single moving circular coil, is used for the modeling in this paper.

FIGURE 1. Rotation Invariance of the circular coil

COORDINATE SYSTEM DEFINITION
The structure of the partial planar motor is shown in FIGURE 2. The angle between the circular coil and the magnet array can be considered as zero. According to the rotation invariance, the rotation of the coil around its z-axis will not change the model. Three coordinate systems are defined to model the planar motor. The global coordinate system is defined at magnet array, and a local coordinate is defined on the center of the moving coil. The global coordinate system is defined at magnet array, and a local coordinate is defined on the center of the moving coil. The global coordinate is donated with superscript m and the local coordinate is with superscript c. As the shape of the coil is circular, a second local coordinate system, which is a cylindrical coordinate system, is used to model the coil, as shown FIGURE 3. The second local coordinate system can be transformed into the first one with
A vector \vec{p}_c is used to link the global coordinate and the first local coordinate

$$\vec{p}_c = [p_x \ p_y \ p_z]^T \quad (2)$$

The torque of the circular coil can be expressed as

$$\vec{T} = \sum_{k=1}^{m} \sum_{l=1}^{m} \int \vec{x}_c \times \left(m \vec{J} \times m \vec{B} \left(\vec{p}_c + \vec{x}_c, k, l \right) \right) dV_c \quad (4)$$

As shown above, the force and torque of the planar motor are expressed as the sum of infinite harmonics. We called this model as the harmonic model. Substituting (1) and (2) into (3) or (4), the volume integral can be split into three integral over r, θ and z.

ANALYTICAL-NUMERICAL MODEL

The commutation algorithm of the planar motor has to determine the values of the current in the coils over the magnet array at every sampling time. Therefore, a simple and fast model is needed. The analytical-numerical model for the commutation algorithm can be derived from the harmonic model by only taking into account the first harmonic of the magnetic field.

Substituting (1) and (2) into (3), and letting $k=l=1$, the force can be simplified. The integral over r and z is solved analytically. However, the integral over θ is difficult to express with analytical equations. In this paper, numerical techniques have been used to calculate the integral over θ. Finally, the force can be expressed as
\[
F_x = \frac{i\mu_0 K(11)}{\pi^2 b_h c} e^{-\frac{\pi \rho}{2\tau}} \sinh(\frac{\pi h}{\sqrt{2}\tau})
\]
\[
\cdot (K_x \cos(\frac{\pi P_x}{\tau}) \sin(\frac{\pi P_y}{\tau}) + K_z \sin(\frac{\pi P_x}{\tau}) \cos(\frac{\pi P_y}{\tau}))
\]
\[
F_y = \frac{i\mu_0 K(11)}{\pi^2 b_h c} e^{-\frac{\pi \rho}{2\tau}} \sinh(\frac{\pi h}{\sqrt{2}\tau})
\]
\[
\cdot (K_y \cos(\frac{\pi P_x}{\tau}) \sin(\frac{\pi P_y}{\tau}) + K_z \sin(\frac{\pi P_x}{\tau}) \cos(\frac{\pi P_y}{\tau}))
\]
\[
F_z = \frac{i\mu_0 K(11)}{\sqrt{2\pi^2 b_h c}} e^{-\frac{\pi \rho}{2\tau}} \sinh(\frac{\pi h}{\sqrt{2}\tau})
\]
\[
\cdot (K_x \cos(\frac{\pi P_x}{\tau}) \cos(\frac{\pi P_y}{\tau}) + K_z \sin(\frac{\pi P_x}{\tau}) \sin(\frac{\pi P_y}{\tau}) + K_z \cos(\frac{\pi P_x}{\tau}) \cos(\frac{\pi P_y}{\tau}) + K_z \sin(\frac{\pi P_x}{\tau}) \sin(\frac{\pi P_y}{\tau}))
\]
\[
T_x = \frac{i\mu_0 K(11)}{2\pi^2 \lambda(1,1) b_h c} e^{-\frac{\pi \rho}{2\tau}} \cdot \left(\cos(\frac{\pi P_x}{\tau}) \sin(\frac{\pi P_y}{\tau}) \cdot \right.
\]
\[
\cdot \left.\left(\frac{\lambda(1,1) h}{2} \cos\left(\frac{\pi h}{2}\right) + \sin\left(\frac{\pi h}{2}\right) \cos\left(\frac{\pi h}{2}\right) \sinh\left(\frac{\pi h}{2}\right) + \cosh\left(\frac{\pi h}{2}\right) T_{x_2} + 2(T_{x_2} + T_{x_3})\right) \right)
\]
\[
T_y = \frac{i\mu_0 K(11)}{2\pi^2 \lambda(1,1) b_h c} e^{-\frac{\pi \rho}{2\tau}} \cdot \left(\cos(\frac{\pi P_x}{\tau}) \sin(\frac{\pi P_y}{\tau}) \cdot \right.
\]
\[
\cdot \left.\left(\frac{\lambda(1,1) h}{2} \cos\left(\frac{\pi h}{2}\right) + \sin\left(\frac{\pi h}{2}\right) \cos\left(\frac{\pi h}{2}\right) \sinh\left(\frac{\pi h}{2}\right) + \cosh\left(\frac{\pi h}{2}\right) T_{y_2} + 2(T_{y_2} + T_{y_3})\right) \right)
\]
\[
T_z = 0
\]

Similarly, the torque can be written as

\[
T_x = \frac{i\mu_0 K(11)}{2\pi^2 \lambda(1,1) b_h c} e^{-\frac{\pi \rho}{2\tau}} \cdot \left(\cos(\frac{\pi P_x}{\tau}) \sin(\frac{\pi P_y}{\tau}) \cdot \right.
\]
\[
\cdot \left.\left(\frac{\lambda(1,1) h}{2} \cos\left(\frac{\pi h}{2}\right) + \sin\left(\frac{\pi h}{2}\right) \cos\left(\frac{\pi h}{2}\right) \sinh\left(\frac{\pi h}{2}\right) + \cosh\left(\frac{\pi h}{2}\right) T_{x_2} + 2(T_{x_2} + T_{x_3})\right) \right)
\]

EXPERIMENT

The models above are validated by measurement on a partial planar motor, which contains only one circular coil and a magnet array, as shown in FIGURE 4. The values of the parameters are listed in TABLE 1.

A 6-DOF load cell (ATI Gamma) was used to measure the force and torque, which is mounted between the spindle and the coil. The coil was glued on the center of a circular nylon plate. The magnet array was glued into an aluminum plate and then was fixed on the x-y table of a milling and drilling numerical control (NC) machine. Thus the magnet array can move along the x- or y- directions. The coil was energized by a variable adjustable DC power supply with a direct current of 1 A/Turn.

FIGURE 4. The measurement setup

The force and torque were measured when the magnet array moved along the x-direction with the x-y table. FIGURE 5 - FIGURE 10 show the predicted and measured force and torque. In the harmonic model, only the top 20 harmonics are taken into account for short calculation time. It indicates that both the harmonic model and the analytical-numerical model are in good agreement with the measurement data.

FIGURE 5. Prediction and measurement data of Fx, p_y=4 mm
CONCLUSION

This paper presents a modeling method of planar motor with moving circular coil, which is based on the Lorentz force law. We notice that the force and torque caused by a single circular coil remain the same when the coil rotates around its z-axis. That means the rotation angle of a single coil can be omitted for the modeling. By using this characteristic, the calculation of the Lorentz force and torque is simplified, which is expressed as three integrals. Two integrals can be solved analytically and the other one is calculated numerically. Then two models are presented: a harmonic model and an analytical model. The harmonic model takes all the harmonics of the magnetic field into account and can be used for design and optimization. The analytical-numerical model only includes the first harmonic. If the geometry parameters of the planar motor are valued, the result of the numerical integral will be constant. Therefore, the analytical-numerical model can be calculated quickly and used in the real-time control. Finally, experiment has been carried out and the models in this paper are verified.

APPENDIX

The variables K_{x1}-K_{z4} are the solutions of the numerical integrals for the prediction of force and are equal to

\[K_{xi} = \int_{-\pi}^{\pi} f_{xi} (\theta, R, b_z) \, dx, i = 1 \sim 2 \] \hspace{1cm} (11)

\[K_{yi} = \int_{-\pi}^{\pi} f_{yi} (\theta, R, b_z) \, dx, i = 1 \sim 2 \] \hspace{1cm} (12)

\[K_{zi} = \int_{-\pi}^{\pi} f_{zi} (\theta, R, b_z) \, dx, i = 1 \sim 4 \] \hspace{1cm} (13)

f_{x1}-f_{z4} are functions of the parameters of the planar motor. The subscript x, y and z stand for the direction of the force components. Expression of function f_{x1} is listed below:
\[f_{s_1}(\theta, R, b_c) = \cos(\theta) \cdot (\pi(b_c - 2R)\cos(\theta)\cos(\frac{\pi}{r}(\frac{b_c}{2} + R)(\cos(\theta) - \sin(\theta))) - \pi(b_c - 2R)\sin(\theta)\cos(\frac{\pi}{r}(\frac{b_c}{2} + R)(\cos(\theta) - \sin(\theta))) + 2\tau\sin(\frac{\pi}{r}(\frac{b_c}{2} + R)(\cos(\theta) - \sin(\theta)))) / (-2 + 2\sin(2\theta)) + (\pi(b_c + 2R)\cos(\theta)\cos(\frac{\pi}{r}(\frac{b_c}{2} + R)(\cos(\theta) + \sin(\theta))) - \pi(b_c + 2R)\sin(\theta)\cos(\frac{\pi}{r}(\frac{b_c}{2} + R)(\cos(\theta) + \sin(\theta))) + 2\tau\sin(\frac{\pi}{r}(\frac{b_c}{2} + R)(\cos(\theta) + \sin(\theta)))) / (-2 + 2\sin(2\theta)) \]

\[f_{s_2}(\theta, R, b_c) = \cos(\theta) \cdot (\pi(b_c - 2R)\cos(\theta)\cos(\frac{\pi}{r}(\frac{b_c}{2} + R)(\cos(\theta) - \sin(\theta))) - \pi(b_c - 2R)\sin(\theta)\cos(\frac{\pi}{r}(\frac{b_c}{2} + R)(\cos(\theta) - \sin(\theta))) + 2\tau\sin(\frac{\pi}{r}(\frac{b_c}{2} + R)(\cos(\theta) - \sin(\theta)))) / (-2 + 2\sin(2\theta)) + (\pi(b_c + 2R)\cos(\theta)\cos(\frac{\pi}{r}(\frac{b_c}{2} + R)(\cos(\theta) + \sin(\theta))) - \pi(b_c + 2R)\sin(\theta)\cos(\frac{\pi}{r}(\frac{b_c}{2} + R)(\cos(\theta) + \sin(\theta))) + 2\tau\sin(\frac{\pi}{r}(\frac{b_c}{2} + R)(\cos(\theta) + \sin(\theta)))) / (-2 + 2\sin(2\theta)) \]

Function \(f_{s_1} \) is very long and cannot be simplified with functions mentioned above. It’s equal to

\[t_{s_1}(\theta, R, b_c) = \sin(\theta)^2 \cdot (\pi(b_c - 2R)\cos(\theta)\cos(\frac{\pi}{r}(\frac{b_c}{2} + R)(\cos(\theta) - \sin(\theta))) + \pi(b_c - 2R)\sin(\theta)\cos(\frac{\pi}{r}(\frac{b_c}{2} + R)(\cos(\theta) - \sin(\theta))) + \pi^2(\frac{b_c}{2} + R)^2 - 2\tau^2 - 4\pi^2(b_c - 2R)^2\sin(2\theta)\sin(\pi(\frac{b_c}{2} + R)) \cos(\theta) - \sin(\theta)]^2 + (\pi^2(\frac{b_c}{2} + R)^2 - 2\tau^2 - 4\pi^2(b_c + 2R)^2\sin(2\theta)\sin(\pi(\frac{b_c}{2} + R)) \cos(\theta) - \sin(\theta)]^2 \]

The torque function \(t_s \) is as follows. Function \(t_{s_1} \) is very long and cannot be simplified with functions mentioned above. It’s equal to

\[t_{s_1}(\theta, R, b_c) = \sin(\theta)^2 \cdot (\pi(b_c - 2R)\cos(\theta)\cos(\frac{\pi}{r}(\frac{b_c}{2} + R)(\cos(\theta) - \sin(\theta))) + \pi(b_c - 2R)\sin(\theta)\cos(\frac{\pi}{r}(\frac{b_c}{2} + R)(\cos(\theta) - \sin(\theta))) + \pi^2(\frac{b_c}{2} + R)^2 - 2\tau^2 - 4\pi^2(b_c - 2R)^2\sin(2\theta)\sin(\pi(\frac{b_c}{2} + R)) \cos(\theta) - \sin(\theta)]^2 + (\pi^2(\frac{b_c}{2} + R)^2 - 2\tau^2 - 4\pi^2(b_c + 2R)^2\sin(2\theta)\sin(\pi(\frac{b_c}{2} + R)) \cos(\theta) - \sin(\theta)]^2 \]
\[-(\pi(b_c - 2R) \tau \cos(\theta) \cos(\frac{\pi}{r}(\frac{b_c}{2} + R)(\cos(\theta) \pm \sin(\theta))))
-\pi(b_c - 2R) \tau \sin(\theta) \cos(\frac{\pi}{r}(\frac{b_c}{2} + R)(\cos(\theta) \pm \sin(\theta)))
+\pi^2(\frac{b_c}{2} + R)^2 - 2\tau^2 + \frac{1}{4}\pi^2(b_c - 2R)^2 \sin(2\theta)) \sin(\frac{\pi}{r}(\frac{b_c}{2} + R))
\langle(\cos(\theta) + \sin(\theta))\rangle / (\cos(\theta) \pm \sin(\theta))^3\]
+(\pi(b_c + 2R) \tau \cos(\theta) \cos(\frac{\pi}{r}(\frac{b_c}{2} + R)(\cos(\theta) \pm \sin(\theta))))
+\pi(b_c + 2R) \tau \sin(\theta) \cos(\frac{\pi}{r}(\frac{b_c}{2} + R)(\cos(\theta) \pm \sin(\theta)))
+\pi^2(\frac{b_c}{2} + R)^2 - 2\tau^2 + \frac{1}{4}\pi^2(b_c + 2R)^2 \sin(2\theta)) \sin(\frac{\pi}{r}(\frac{b_c}{2} + R))
\langle(\cos(\theta) + \sin(\theta))\rangle / (\cos(\theta) \pm \sin(\theta))^3\]

(27)

\[t_{x4}(\theta, R, b_c) = \tan(\theta) t_{x3}(\theta, R, b_c) / 2\]
(28)
\[t_{y1}(\theta, R, b_c) = -\cot(\theta)^2 t_{x1}(\theta, R, b_c)\]
(29)
\[t_{y2}(\theta, R, b_c) = \cot(\theta) t_{x2}(\theta, R, b_c)\]
(30)
\[t_{y3}(\theta, R, b_c) = \cot(\theta) t_{x3}(\theta, R, b_c)\]
(31)
\[t_{y4}(\theta, R, b_c) = -\cot(\theta) t_{x4}(\theta, R, b_c) / 2\]
(32)
\[t_{y5}(\theta, R, b_c) = -\cot(\theta) t_{x5}(\theta, R, b_c)\]
(33)

ACKNOWLEDGEMENTS
The authors would like to acknowledge support from the National Natural Science Foundation of China under Grant 51175296.

REFERENCES
INTRODUCTION
Machine tools require high capability for the ultrafine machining and for micro/nano positioning. In order to achieve high resolution, piezoelectric actuators (piezos) are used. Some small-scale hexapods have great advantages in optical, semiconductor, and micromachining industries [1].

A six-degree-of-freedom (6-DOF) stage for multi axis positioning was reported [2]. The stage realized approximately 10 nm linear displacement. The reported 6-DOF stage is based on a Stewart platform.

This paper describes the design of a 6-DOF inchworm-type positioning stage. The linear displacement of the stage is indicated. The stage also showed the parasitic motion which is the displacement orthogonally to the motion plane [3]. Finally, the stability of the stage is described.

A 6-DOF INCHWORM-TYPE STAGE
The stage described in this paper is similar to the Stewart-platform combined with the inchworm. The structure of the stage imitates that of a cyclohexane molecule in chair conformation.

Concept
Figure 1 illustrates the 6-DOF inchworm-type positioning stage. Six stacked-type piezos compose a hexagon as shown in the top view. They are not on a flat horizontal plane as shown in the side view. They are three-dimensional structure. The six piezos are linked with six electromagnets and metal connectors, and the bond angle of the piezos is 109.5 degrees.

The stage is not fixed on a base, although a conventional hexagon usually has a fixed base. The stage is not fixed on a platform whose shape determines the motion of the platform. Three electromagnets A, C, E touching on a base can connect and disconnect the stage and the base. The other electromagnets B, D, F supporting the platform can connect and disconnect the stage and the platform.

In Figure 1, a hemispherical platform is used. Hence, the stage moves in three directions (x, y, and θz), and the platform moves in three directions (θx, θy and θz). The platform also realizes minute displacement in the six directions (x, y, z, θx, θy and θz), since the stage is a hexapod. Sub-micron preciseness is obtained by the principle of the parallel mechanism, and an unlimited working area is realized by the principle of the inchworm.

Structure
Figure 2 shows the developed stage. Six piezos and six electromagnets are used. The number of turns of the electromagnets is about 3000 turns. Magnetic core is inserted in the coil windings. A hemispherical platform is supported by three electromagnets with steel balls whose diameter is 10 mm. The piezo which is 10 mm in length deforms 6 µm when 100 VDC is applied. The electromagnetic force is 5 N when 10 VDC is applied. The size of the stage is about 75 mm by 75 mm and 40 mm in height, which depends on the dimensions of the piezos and
electromagnets. The electromagnets and piezos are controlled synchronously.

FIGURE 2. Photographs of a 6-DOF inchworm-type stage. (a) Top view of the stage without a platform. Six piezos and six electromagnets are linked. (b) Side view of the stage with a hemispherical platform. Electromagnets B, D, F with steel balls support a hemispherical platform.

Control
The proposed stage uses two operation principles. One is the principle of a parallel mechanism, and the other is the principle of an inchworm.

While all the electromagnets are excited, the platform realizes minute displacement by the principle of a parallel mechanism. The desired position and orientation is expressed by $P=JX$ with the use of the inverse kinematics, where P, J and X denote the position and orientation vector, the Jacobian matrix, and the deformation vector of the piezos, respectively. Since the deformation of the piezo is so small that the displacement of the platform is limited in several microns.

The principle of an inchworm is applied to the stage, when unlimited working range is needed. While five electromagnets are excited, the other non-excited electromagnet is thrust by the longitudinal deformation of the piezos. Although the principle of an inchworm helps overcome the problem of poor working range, it causes the parasitic motion.

Figure 3 illustrates one example of the model for the rotational displacement. The non-excited electromagnets B, D, F move sequentially by the deformation of adjoined piezos. For example, in Figure 3(2), the electromagnet B is not excited. It moves by the deformation of the piezos a and b. In Figure 3(3), the non-excited electromagnet D moves by the deformation of the adjacent piezos c and d. Next, the non-excited electromagnet F in Figure 3(4) moves by the piezos e and f. Finally, all electromagnets are excited and return to their initial length as shown in Figure 3(5). The repetition of the displacement of the non-excited electromagnets generates the rotational displacement of the positioning stage.

FIGURE 3. Model of rotational displacement. Non-excited electromagnet B, D, F moves in (2), (3), (4) in clockwise direction and they moves in (5) in counter clockwise direction.

Figure 4 shows control signals used for the rotational displacement in counter clockwise direction shown in Figure 3. One electromagnet which is not excited moves by the deformation of two adjacent piezos. The rotational displacement is obtained by the inchworm motion.

In the first interval in Figure 4, the non-excited electromagnet B moves by the deformation of piezos a and b. The non-excited electromagnet D moves in the second interval by the deformation of piezos c and d. In the third interval, the non-excited electromagnet F moves by the piezos e and f. In the final interval in
Figure 4, all electromagnets are excited and the piezos return to the initial position and the platform rotates as shown in Figure 3.

FIGURE 4. Control voltages applied to the piezos and electromagnets. Non-excited electromagnets move by two adjacent piezos.

PERFORMANCE OF THE STAGE

First, we examine a linear displacement in the linear (y-) direction which is measured by optical displacement sensors. Then, the stability of the stage in time domain and frequency domain are evaluated.

Linear Displacement of the Stage

Figure 5 shows the y-displacement of the platform for eight cycles. One control cycle is 1 s. In the experiment, the electromagnets B, D, F are excited, and they fix the stage to the platform. The electromagnets A, C, E are sequentially excited and moved by the deformation of two piezos. After non-excited electromagnets moved, the deformation of six piezos moves the platform while all electromagnets are excited. The parasitic z-displacement is also shown in Figure 5. The maximum voltage applied to the piezo is 100 V in Figure 5(a) and 50 V in Figure 5(b).

In Figure 5(a), the y-displacement is 24 µm for eight cycles, while the z-fluctuation is 2.7 µm. In Figure 5(b), the y-displacement is 12 µm for eight cycles and z-fluctuation is 1.4 µm. The y-displacement to z-fluctuation ratio is 8.9 and 8.6, respectively. Although the fluctuation in z-direction reduces by the use of small applied voltage to the piezos, the ratio is inherent of the structure of the stage.

In order to investigate the stability of the 6-DOF stage, an impact force was applied to the base on which the stage is put. The vibration of the platform in xy- and z-direction is measured.

Stability of the Stage

The use of stacked-type piezos provides high mechanical stiffness in the longitudinal direction of the piezo. Although the structure causes parasitic motion, the solid state actuators increase the stiffness of the stage. In addition, the structure of the parallel mechanism increases the stiffness. The stiffness of the stage is investigated.

Figure 6 shows the vibration of the stage, when the mechanical impact is applied to the base by a small hammer. The mechanical vibration in z-direction indicates the low frequency, although the vibration in xy-direction contains high
frequency. This implies that the vertical vibration with high frequency is eliminated by the stage.

Figure 6 shows the frequency spectrum corresponding to Figure 6. The vibration of the stage in z-direction is relatively smaller than those in xy-directions. The stage therefore reduces the vertical vibration from the base. These results indicate that the stage is suitable for a vibration isolator.

SUMMARY
The motion of the 6-DOF inchworm-type positioning stage in horizontal y-direction and parasitic vertical z-direction was measured and described. The parasitic displacement which was caused by the structure of the stage prevented the stage from precise trajectory control. When an impact force was applied to the base, the displacements in the xy- and z-direction were measured. The stage reduced the vibration from the base. This result implies that the stage is suitable for not only a point-to-point control stage but also a vibration isolator.

ACKNOWLEDGEMENTS
This project was financially supported by the Japan Society for the Promotion of Science (JSPS), “Grant-in Aid for Scientific Research (C)”.

REFERENCES

DEVELOPMENT OF A PRECISE POSITIONING STAGE TRAVELING ON A MICRO-PITCH RACK

Satoshi Honda
Department of Mechanical Engineering
Tokyo Metropolitan University
Hachioji, Tokyo, Japan

INSTRUCTIONS
Recently, a precise positioning stage is installed in a precise machine tool, a measuring instrument and IC/LSI manufacturing equipment. These precise stages require many mechanical properties and many control properties. The mechanical properties are as follows; their positioning accuracies are super-fine; their structures are simple and compact; their stiffnesses are high. The control properties are as follows; their drive algorithms are simple; their control systems are easily constructed.

Several precise stages with the mechanical properties or the control properties have been developed [1],[2],[3],[4]. First stage consists of a ball screw, an air slider and a laser interferometer. Second stage is formed into a linear motor with a precise linear encoder. Third stage composes an inchworm mechanism driven by piezoelectric actuators. Fourth stage is positioned by the inchworm motion on micro-pitch racks as shown in Figure 1 and 2. However, the first stage is bulkier because individual elements are assembled without merging. If stiffness of the ball screw and the air slider should be more rigid, or if measurement accuracy of the laser interferometer should be finer, those elements become bigger and heavier. Control system is complicated for combining those elements. Although second stage is compact, a control system is complicated because the linear motor cannot control the position without regulating of electric current accurately. Control system of the third stage is easily constructed because inchworm motion is controlled with an open-loop system, yet the stage is positioned with a little slipping between a guide rail and driving plates of the inchworm motion. Forth stage consists of micro-pitch racks, micro-pitch teeth and an elastic hinge frame. The elastic hinge frame is sequentially deformed to practice the inchworm motion by piezoelectric actuators. The stage is positioned at the location where the micro-pitch tooth engages with the micro-pitch rack, and the
location of the stage is kept without slipping. However, the minimum stride of the stage is same as the pitch of the micro-pitch rack; besides, it is difficult to make the micro-pitch rack which pitch is less than several tens of micrometers. Moreover, the elastic hinge frame is not tough because the elastic hinge frame expands the displacement of the piezoelectric actuator, yet the force pushing the micro-pitch teeth to the micro-pitch rack is reduced.

In this paper, a novel precise positioning stage has been developed. The stage is accurately positioned every 60 micrometers by inchworm motion traveling on a micro-pitch rack. The structure is compact and the open-loop control system is used; besides, the stage does not slip in the inchworm motion. Additionally, a new product method to make the micro-pitch rack with pitch of 60 micrometer is developed, and a new inchworm mechanism driven by a triangle cam mechanism and a reduction mechanism are also developed.

NEW PRODUCT METHOD FOR THE MICRO-PITCH RACK
Figure 3 shows the micro-pitch rack with pitch of 60 micrometer. The micro-pitch rack is made as follows. Firstly, two extra-fine wires are bonded around parallel pins without spacing as shown in Figure 4. Secondly, the extra-fine wires are soldered to the parallel pins. Finally, one wire is peeled from the parallel pins. Pitch of the micro-rack corresponds to distance of double diameter of the extra-fine wire. This product method for the micro-pitch rack is easy and simple.

The micro-pitch rack was made by using stainless steel wires (SUS304) and copper pins. Diameter of stainless steel wires was 30 micrometers. Diameter of the copper pins was 4 millimeters. Average pitch of the micro-pitch rack was 61.2 micrometers. Pitch accuracy was ±8.1 micrometers under evaluation value of 3σ.

STRUCTURE OF THE PRECISE POSITIONING STAGE
Figure 5 shows the structure of the precise positioning stage traveling on the micro-pitch rack. The stage consists of the micro-pitch rack, four micro-pitch teeth, five elastic hinge frames, and five triangle cams. The triangle cams are attached at a cam shaft with phase difference of 90 degrees. The triangle cams are installed in the square sockets of the elastic hinge frame. The micro-pitch tooth are attached at the tips of the elastic hinge frames, and the micro-pitch teeth are engaged with the micro-pitch rack. The micro-pitch rack is assembled underside of the stage board and the stage board is supported by the liner guide.

When the triangle cams rotate by one stepping motor, the elastic hinge frames are sequentially deformed, the micro-pitch teeth are engaged with the micro-pitch rack in the inchworm motion. Although the radius difference of the triangle cam is several millimeters, stroke of the micro-pitch tooth for engaging or for releasing is reduced to several tens of micrometers because the elastic hinge frame acts as the reduction mechanism. The stage board is positioned to the next tooth of the micro-pitch rack per one inchworm motion.
PROFILE OF THE TRIANGLE CAM
Figure 6-a shows the profile of the triangle cam. The triangle cam consists of a quarter circle (AB) which radiation is \(R \), a quarter circle (CD) which radiation is \(r \) and quarter ellipses (BC, DA) which radiation is \(R \) or \(r \). These arcs are smoothly connected, and the tangential line of the one arc at point A, B, C or D corresponds to the tangential line of the other arc. Outer width of the triangle cam becomes the constant width added radiation of \(R \) and radiation of \(r \) except for some width. However, the difference for the constant width is smaller as shown in Figure 6-b. The practical cam is manufactured with compensating the difference of the outer width.

ENGAGING PROCESS OF THE INCHWORM MOTION BY THE TRIANGULAR CAM MECHANISUM
Figure 7 shows engaging processes of the inchworm motion by using the triangular cam mechanism and the reduction mechanism of the elastic hinge frame. When the rotational angle of the triangular cam is 0 degrees, the triangular cam of \(\bigcirc_1 \) contacts to the square sockets of the elastic hinge frame \(\Box_1 \) as shown in Figure 7-a, where the elastic hinge frame is represented by a pivot joints and three links of L1, L2 and L3. In this case, the elastic hinge frame shapes in straight, and linkage of L1 and L2 are arranged in straight line; therefore, the micro-pitch tooth \(\bigdiamond \) engages with the micro-pitch rack. In Figure 7-a, the micro-pitch tooth is attached at the link L3, and the link L3 slides on a liner guide. When the rotational angle of the triangular cam is from 0 degrees to 90 degrees, although the triangular cam of \(\bigcirc_1 \) rotates, posture of the elastic hinge frame is kept in straight as shown in Figure 7-b. In this case, the micro-pitch tooth is kept engaging with the micro-pitch rack. When the rotational angle of the triangular cam is from 90 degrees to 180 degrees, the triangular cam of \(\bigcirc_1 \) rotates, and the elastic hinge frame is bended as shown in Figure 7-c. The micro-pitch tooth is released from the micro-pitch rack. When the rotational angle of the triangular cam is from 180 degrees to 270 degrees, the triangular cam of \(\bigcirc_1 \) rotates, and posture of the elastic hinge frame is kept in the bended shape as shown in Figure 7-d. The situation in which the micro-pitch tooth is releasing from the micro-pitch rack is kept. When the rotational angle of the triangular cam is from 270 degrees to 360 degrees, the triangular cam of \(\bigcirc_1 \) rotates, and posture of the elastic hinge frame becomes straight as shown in Figure 7-a. The micro-pitch tooth is engaged with the micro-pitch rack again. Figure 8 shows the theoretical displacement of the micro-pitch tooth in the engaging process, where radiuses \(R \) and \(r \) are \(R=10 \) mm and \(r=8.8 \) mm, length of Link L1 and L2 are \(L_1=30 \) mm and \(L_2=20 \) mm.

The triangular cans of \(\bigcirc_2 \) and \(\bigcirc_3 \), the elastic hinge frames \(\Box_2 \) and \(\Box_3 \) also execute same
engaging process with phase different of 90 degrees. When the rotational angle of the triangular cam is from 0 degrees to 270 degrees, the micro-pitch teeth ◇1, ◇2 and ◇3 are alternately engaged with the micro-pitch rack, and the stage board is kept at the same location.

EXPANDING PROCESS OF THE INCHWORM MOTION BY THE TRIANGULAR CAM MECHANISUM

Figure 9 shows expanding process of the inchworm motion by using the triangular cam mechanism and the reduction mechanism of the elastic hinge frame.

When the angle of cam shaft is from 270 degrees to 0 degrees, the micro-pitch teeth ◇1, ◇2 and ◇3 are not engaged with the micro-pitch rack; therefore, the micro-pitch tooth ◇5 is engaged with the micro-pitch rack by the elastic hinge frame □5. The micro-pitch rack is shifted to the left direction by the elastic hinge frame □4 for the expanding. When the angle of cam shaft is from 0 degrees to 90 degrees, the micro-pitch tooth ◇5 is engaged and the micro-pitch tooth ◇1 is released. When the angle of cam shaft is from 90 degrees to 180 degrees, the micro-pitch tooth ◇1 is shifted to the right direction without engaging, and the micro-pitch tooth ◇5 is released and the micro-pitch tooth ◇1 is engaged. When the angle of cam shaft is from 180 degrees to 270 degrees, the micro-pitch tooth ◇5 is engaged, and the micro-pitch tooth ◇3 is released. By repeating the expanding process and engaging process, the stage board is positioned.

CONCLUSIONS

The new product method to make the micro-pitch rack was developed, and a new inchworm mechanism driven by a triangle cam mechanism and a reduction mechanism were developed.

ACKNOWLEDGEMENTS

This work was supported by JKA and its promotion funds from KEIKIN RACE.

REFERENCES
Design and control of a millimeter-range piezoelectric stage using self-guided displacement-amplification flexure mechanisms

Daewoong Hong1, Young-Man Choi2, and Jaehwa Jeong1
1Department of Control and Instrumentation Engineering, Korea University, Sejong city, Republic of Korea
2Printed Electronics Lab. KIMM, Daejon, Republic of Korea

INSTRUCTIONS
Piezoelectric flexure stages are widely used as nano-positioning systems since they have several advantages such as high resolution, fast dynamics, compact size, and simple mechanical structure. However, one of their major drawbacks is small range of motion. To enlarge the limited motion range, most conventional flexure-based nano-positioning stages use serial combinations of motion guide and displacement-amplification mechanisms. (Fig.1 (a)) These serial combinations make the stage large and its application to small scale applications such as nano-manipulation, micro-coordinate measuring machine (CMM), and micro-factor is limited.

A new self-guided displacement-amplification flexure mechanism was proposed in this paper. The prototype stage was manufactured and the performances were evaluated.

DESIGN
Self-guided displacement-amplification flexure mechanism
The self-guided displacement-amplification mechanism has a skewed double-compound parallelogram structure which plays both guiding and amplifying motion roles as shown in figure 1. It can contribute to increasing volume efficiency, a performance index defined as the product of travel range and resonant frequency per unit volume of the stage.

A millimeter-range flexure stage actuated by a piezoelectric actuator has been implemented using the self-guided displacement-amplification mechanism. The input displacement is amplified by the inclination of the links. Four inclined links in the upper and lower half form bridge type amplification mechanisms.

The stage was designed through design optimization frameworks to obtain the highest resonant frequency under the constraints of a predetermined travel range, stress, and form factor. The details of optimal design process were presented in the reference [1].

Stage prototype and performances
Figure 2 shows the picture of the manufactured stage and experimental setup for evaluating its performance. The stage was monolithically machined from 7075-T6 aluminum using the wire electric discharge machining (WEDM) method. A piezo-actuator (P-235-40, Piezojena, Germany) has the maximum displacement of 80 μm at 150 V and a stiffness of 50 N/μm. The input voltage to the piezo-actuator is amplified by a voltage amplifier (SVR 500, Piezomechanik gmbh, Germany). The total size of the mechanism is 120mm×120mm×15mm. The displacement of the moving body was measured by a laser interferometer (RLU10, Renishaw, UK) with a resolution of 2.47 nm.

Figure 1. (a) Conventional flexural guide and amplification mechanism (b) Self-guided displacement-amplification flexure mechanism

Figure 2. Manufactured stage and its experimental setup
The measured frequency response function of the stage is presented in figure 3. The first and second resonance frequencies of the manufactured stage were 83 Hz and 380 Hz. A damping controller is required to suppress the resonant mode since it is a low damping flexible system.

Figure 3. Measured frequency response function

Figure 4 represents the output displacement when an input voltage from 0 to 150 V was applied. The measured maximum displacement was 963 μm.

Figure 4. Measured working range

CONTROL
The mathematical model used for designing controller was fitted and derived from the measured frequency response function. In order to attenuate the stage’s first resonant mode, one of damping control technique, integral resonant control, was simulated and its results were compared with those of integral control.

Figure 5 shows the simulation result of the closed loop frequency response functions of two algorithms, integral resonant control (IRC) and integral control (IC). The gain of the IC was restricted by the lightly damped resonance mode and its gain margin was set as 2.5 dB.

Figure 5. Closed loop frequency response function

Figure 6. Reference following performance

ACKNOWLEDGEMENTS
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (numbers 2010-0023337).

REFERENCES
INTRODUCTION
Ultra-precision motion stages (X-Y stages) are widely used in lithography machine, microscopic measurement equipment, precision CNC machine tools and other areas. In general, the ultra-precision motion stage is expected to only have large displacements along X- and Y-direction and small displacement along Z-direction. In practice, however, because of the installation error, deformation of mechanical components, environmental vibration and many other factors, the motion stage will inevitably have small displacements in the remaining three degree-of freedoms, as shown in Figure 1. In some applications, the motion control system need to regulate stage’s position and pose with high accuracy in real time. Therefore, it is critical task to measure the stage’s 6-DOF displacements with high accuracy and real-time property based on the sensors’ measured values.

FIGURE 1 Schematic diagram of 6-DOF motion of ultra-precision stage

Grating interferometer has advantages of large measurement range, high accuracy, and fast measurement speed etc. Compared with the laser interferometer, the grating interferometer is more robust to environmental disturbances for the length of the optical path in a grating interferometer is small and almost constant. Therefore, grating interferometers are increasingly applied to the displacement measurement of ultra-precision motion stage. The accuracy and real-time property of the measuring result depend on not only the performance of the sensors, but also the accuracy and effort of the displacement computational algorithm. Castenmiller et al. proposed a grating interferometer-based measurement system that consists of four 2-axis grating interferometers [1,2], which had been applied to ASML’s latest lithography machine. In these papers, however, the computational algorithm of 6-DOF displacements was not introduced. Y. Shibazaki et al. proposed a hybrid measurement system that consists of several grating encoders and laser interferometers [3,4,5], which had been applied to Nikon’s latest lithography machine. A simple computational algorithm of in-plane 3-DOF displacements (Δx, Δy, θz) was introduced. In the algorithm, the measurement values of X- and Y-encoders were considered equal to the actual displacements of the motion stage along X- and Y-direction respectively, and the influences of other error motions on measurement values were not taken into consideration. Consequently, the accuracy of this algorithm was low and can not meet the requirements of the ultra-precision motion stages.

In this paper, a grating interferometer-based 6-DOF measurement setup of motion stages is designed and a corresponding 6-DOF displacement computational algorithm is derived, which can achieve high accuracy and fast computation simultaneously. In section 2, the measurement model of grating interferometer is established when the 6-DOF displacements of the stage are all considered. In section 3, the layout of 6-DOF measurement system is introduced, and a corresponding computational algorithm is derived. In addition, the computational accuracy of each displacement is analyzed. Conclusions are given in the last section.

MEASUREMENT MODEL OF GRATING INTERFEROMETER

Measurement principles
In the past few years, a large number of researches about grating interferometer were carried out [2, 6, 7, 8, 9, 10]. Although there is a great diversity of structures of grating interferometer, the measurement principle is almost the same, which is based on Doppler Effect, laser diffraction effect and interferometry. A basic structure of grating interferometer is shown in Figure 2. The incident beam from laser is projected onto the scale grating and diffracted; the X-directional ±1st order diffracted beams are projected into photo-detectors PD1 and PD2 respectively. Thus, the translational displacements along X- and Z-axes can be obtained by detecting the phase change of the diffracted beams.

\[\Delta \Phi_{\pm 1,0} = \Delta x' + \Delta y' + \frac{\Delta OPL}{\lambda} \]

Wherein, \(\Delta x' \) and \(\Delta y' \) denote the X- and Y-directional displacements of the incident spot on the grating, \(\Delta OPL \) denotes the change of the optical path length of \((m, n)\)-order diffraction beam. These parameters are related to the 6-DOF displacements of stage. Substituting Eq.3 into Eq.1, the measurement outputs \(X \) and \(Z_x \) can be expressed as Eq.(4).

\[\begin{align*}
X &= \Delta x' - \frac{1}{2\xi} \left(\Delta OPL_{-1,0} - \Delta OPL_{1,0} \right) \\
Z_x &= \frac{1}{2 \left(1 + \sqrt{1 - \xi^2} \right)} \left(\Delta OPL_{-1,0} + \Delta OPL_{1,0} \right)
\end{align*} \]

Forward kinematic analysis

In order to design and analyze the measurement setup, the relation between the measurement outputs and the 6-DOF displacements of stage, which is called the measurement model of grating interferometer, should be established firstly. Two coordinate systems are set, as shown in Figure 3. The stationary coordinate system OXYZ is affixed to the frame and the motional coordinate system O'X'Y'Z' is affixed to the motion stage and its origin is at the center of top surface of the stage. At initial time \(t_0 \), these two coordinates coincide with each other, as shown in Figure 3(a), and the relationship between them when the stage moves at a certain moment \(t_1 \) is shown in Figure 3(b).

Assume that three translational displacements of the stage at moment \(t_1 \) are denoted by \((\Delta x, \Delta y, \Delta z)\), and three rotational displacements are denoted by \((\theta_x, \theta_y, \theta_z)\).

At any moment, assume that the position coordinate of one point in OXYZ is \((x, y, z)\) and its position coordinate in O'X'Y'Z' is \((x', y', z')\). Then, they have the following relation:

\(x' = X + 1 + \Delta z \quad y' = Y + 1 + \Delta y \quad z' = Z + 1 + \Delta z \)
Where \(Q \) is transformation matrix. For any rotation order, \(Q \) can be expressed as Eq.(6).

\[
Q = \begin{pmatrix} Q_R & r_s \\ 0 & 1 \end{pmatrix}
\]

(6)

Where \(A_{1-3}, \ B_{1-3}, \ C_{1-3} \) are direction cosines related to the rotational displacements of the stage, \(Q_R \) denotes rotational matrix, \(r_s \) denotes the translational displacements of the stage. For different rotation order, \(Q_R \) has different expression. When the stage rotates around X-, Y- and Z-axis successively, the parameters in the rotational matrix can be expressed as Eq.(7).

\[
\begin{cases}
A_x = \cos \theta_x \cos \theta_y \\
v_n \sin \theta_x \sin \theta_y - \cos \theta_x \sin \theta_z \\
\sin \theta_x \cos \theta_y + \cos \theta_x \cos \theta_z \\
A_y = \sin \theta_x \sin \theta_y \sin \theta_z + \cos \theta_x \sin \theta_z \\
B_y = \sin \theta_x \sin \theta_y \cos \theta_z - \cos \theta_x \cos \theta_z \\
\sin \theta_x \cos \theta_y - \cos \theta_x \sin \theta_z \\
C_y = \sin \theta_y \sin \theta_z + \cos \theta_y \cos \theta_z \\
A_z = \sin \theta_y \cos \theta_z - \cos \theta_y \sin \theta_z \\
B_z = \sin \theta_y \cos \theta_z + \cos \theta_y \sin \theta_z \\
\sin \theta_y \\
C_z = \cos \theta_y \\
\end{cases}
\]

(7)

According to Eq.(4), in order to establish the measurement model, the change of optical path length should be calculated, which is related to the structure of the sensor head. However, this is not the focus of this paper. In order to facilitate modeling process, the sensor head is simplified to an equivalent form with one laser and two photo-detectors, and the optical path length in the head is equivalently transformed into the optical path length in the air. This simplification is feasible because most grating interferometers are based on the same principle. The equivalent model of sensor head is shown in Fig 4(a), where LH is laser device, PD1 and PD2 are photo-detectors. Assume that the incident beam is perpendicularly projected to the grating at moment \(t_0 \), the eye-point of laser is at point A, the reverse extension line of the incident beam and the intersecting line of PD1 and PD2 are intersect at point B, the incident spot is at point C. At moment \(t_0 \), assume that the distance from point A to point C is \(h-w \), the distance from point A to point B is \(d_{AB} \), and \(w \) and \(d_{AB} \) are constant values related to the structure of the sensor head. It is easy to obtain the position coordinate of incident spot \((x_{C0}, y_{C0}, z_{C0})\) and the optical path length of X-directional \(\pm 1 \)st order diffracted beams at moment \(t_0 \).

At moment \(t_1 \), assume that the motion stage has 6-DOF displacements \((\Delta x, \Delta y, \Delta z, \theta_x, \theta_y, \theta_z)\), as shown in Fig 4(b). The sensor head is fixed on the motion stage and the position coordinate of its eye-point A in O’XYZ’ is \((u, v, w)\). The equation of incident beam in OXYZ can be derived by using Eq.(5). Combining the incident beam’s equation with grating plane’s equation, the coordinate of point C \((x_C, y_C, z_C)\) can be obtained. Thus, the X-directional displacement of the incident spot on the grating \((\Delta x')\) can be achieved. The equations of diffraction beams can be derived by using grating diffraction equation and the coordinate of point C. Combining the diffracted beam’s equation with photo-detectors’ equation, the optical path length of X-directional \(\pm 1 \)st order diffracted beams at moment \(t_1 \) can be obtained. Thus, the changes of the optical path lengths of X-directional \(\pm 1 \)st order diffracted beams (i.e. \(OPL_{(+1, 0)} \) and \(OPL_{(+1, 0)} \)) can be obtained. Due to the space limitation in this paper, the detailed mathematical deduction is omitted and the final expressions of the measurement model of X/Z head is given as follows:

\[
\begin{align}
X &= \Delta x - u + \left[A_x (h - \Delta z) + B_x u - B_y v \right] C_z + \\
&\left[h - \Delta z - C_x u - C_y v - C_z (w - d_{AB}) \right] (R_x - R_z) / 2 C_x C_z \\
Z &= \left(h - w \right) + \left(2 \cos \theta_x - R_x - R_z \right) d_{AB} / 2 \left(1 + \cos \theta_z \right) - \\
&\left(h - \Delta z - C_x u - C_y v - C_z w \right) (2 + R_x + R_z) / 2 C_z (1 + \cos \theta_z) \\
\end{align}
\]

(8)

Where \(R_x \) and \(R_z \) are parameters related to the rotational displacements of stage, \(\theta_0 \) denotes the diffractive angle at moment \(t_0 \). Similarly, for sensor head that measure the Y- and Z-directional displacements, which is defined as “Y/Z head”, the derivation process of its measurement model is similar to that of X/Z head. Its measurement outputs Y and Z can be expressed as follows:
\[
Y = \Delta y - v + \left[B_r \left(h - \Delta z \right) - A_r + A_v \right] / C_1 + \left[h - \Delta z - C_\mu - C_v \left(w - d_{ab} \right) \right] / 2 C_\xi z (9)
\]

\[
Z_r = (h - w) + (2 \cos \theta_r - R_3 - R_4) d_{ab} / 2 \left(1 + \cos \theta_r \right) - \left(h - \Delta z - C_\mu - C_v \left(w - d_{ab} \right) \right) (2 + R_3 + R_4) / 2 C_1 (1 + \cos \theta_r)
\]

Where \(R_3 \) and \(R_4 \) are parameters related to the rotational displacements of stage.

So far, the measurement models of X/Z head and Y/Z head have been established. From the measurement models, it can be found that the measurement outputs of the sensor head are related to the 6-DOF displacements of the stage and the expressions of the outputs have complicated nonlinear forms. If consider only a part of DOFs or use simple method to compensate error motions, the accuracy is low and cannot meet the requirements of high precision measurement. In the following section, a proper measurement setup for measuring the 6-DOF displacements of motion stage will be designed based on the derived measurement models, and a corresponding computational algorithm will be proposed.

LAYOUT OF THE MEASUREMENT SYSTEM AND DISPLACEMENT COMPUTATION

Layout of the measurement system

In order to compute the 6-DOF displacements from the given measurement outputs in real-time, at least six independent measurement values at that moment is required, which means that at least three 2-axes grating interferometers is required for computing the 6-DOF displacements of the stage. In practice, however, it is necessary to apply one or more additional sensors for some reasons such as the size of grating is not big enough and switch over problem of sensors etc.\[5,11,12\]. According to the above analysis, four sensor heads are mounted at the four corners of stage. Correspondingly, four planar gratings are fixed on the stationary measurement frame. The layout of the measurement system is shown in Figure 5. The definition of the coordinate systems is similar to that in the above section. Assume that the coordinates of the eye-points of four heads in OXYZ are S1(\(e, f, w\)), S2(\(-e, f, w\)), S3(\(-e, -f, w\)), and S4(\(e, -f, w\)) respectively. Where S1 and S3 are X/Z heads, S2 and S4 are Y/Z heads, the measurement outputs of these heads are S1(\(X_1, Z_1\)), S2(\(Y_2, Z_2\)), S3(\(X_3, Z_3\)), and S4(\(Y_4, Z_4\)) respectively.

Assume that at a given moment, sensor heads S1, S2 and S3 are working simultaneously, and their measurement outputs are \((X_1, Z_1)\), \((Y_2, Z_2)\) and \((X_3, Z_3)\) respectively. Then the computation of the 6-DOF displacements by using these values can be equivalent to a problem of solving the nonlinear equations. In general, the nonlinear equations can be solved by iteration algorithm such as Newton-Raphson method. However, the expressions of the measurement outputs have complicated form and contain large number of nonlinear terms, and hence the computational cost is large and the real-time property cannot be ensured. Moreover, there may be problems such as no convergence if the initial values are chose inappropriately. In the following part, a computational algorithm with simple form will be introduced, which can meet the requirements in both the accuracy and the real-time property.

The computational algorithm

Rotational displacements

The rotational displacements of the stage can be computed by the difference between two head’s measurement outputs divided by the distance between the heads. The computational expressions of \(\theta_x \), \(\theta_y \) and \(\theta_z \) are listed below:

\[
\hat{\theta}_x = (Z_2 - Z_1) / 2f
\]

\[
\hat{\theta}_y = (Z_3 - Z_1) / 2e
\]

\[
\hat{\theta}_z = \left[-f + \sqrt{f^2 + (X_1 - X_4 + \hat{\theta}_x^2 e)} \right] / e
\]

Translational displacements

Based on the computed rotational displacements, the elements of the rotation matrix and the parameters \(R_1 \sim R_4 \) can be derived. Then the closed form solutions of the translational displacements of the stage can be
computed. The computational expressions of Δz, Δx, and Δy are listed below:

$$
\Delta \hat{z} = h - C_3w - \frac{2C_6(1 + \cos \theta_z)}{2 + R_1 + R_2} \left(h - w - \frac{Z_1 + Z_3}{2} \right) - \frac{C_3(2\cos \theta_z - R_1 - R_2)}{2 + R_1 + R_2} \left(d_{AB} \right)
$$

$$
\Delta \hat{x} = \left(X_1 + X_3 \right)/2 - A_1 \left(h - \Delta \hat{z} \right)/C_1 - \left[h - \Delta \hat{z} - C_1 \left(w - d_{AB} \right) \right]/2C_1 \left[(R_1 - R_2)/2C_1 \right]
$$

$$
\Delta \hat{y} = Y_2 + f - \frac{1}{C_3} \left[B_1 \left(h - \Delta \hat{z} \right) - A_2 \left(-e \right) + A_1 f \right] - \frac{(R_1 - R_2)}{2C_1} \left[h - \Delta \hat{z} - C_1 \left(-e \right) - C_2 f - C_1 \left(w - d_{AB} \right) \right]
$$

Simulation test of computational accuracy

Taking 65 nm lithography with 300 mm wafer as example, the typical ranges of the 6-DOF displacements of the wafer stage are $\Delta x, \Delta y \in [-200 \text{mm}, 200 \text{mm}]; \Delta z \in [-1 \text{mm}, 1 \text{mm}]; \theta_x, \theta_y, \theta_z \in [-100 \mu \text{rad}, 100 \mu \text{rad}]$. The layout parameters of the sensor heads are $e=200 \text{mm}, f=200 \text{mm}, w=-20 \text{mm}, \text{and } h=10 \text{mm}$. In addition, the pitch of the grating is $\Lambda=1 \mu \text{m}$, the wavelength of the laser is $\lambda=632.8 \text{nm}$, the equivalent distance $d_{AB}=12.5 \text{mm}$.

In the simulation, assume that the rotation matrix has the form like Eq. (7). Traversal method is used for simulation test. Specifically, for each DOF, traversing the motion range of the displacement and choosing 11 values with equal interval, then we can obtain 11^6 poses of stage. The computational errors of each displacement are calculated at these poses and the results are shown in Figure 6.

FIGURE 6 Computational errors of 6-DOF displacements. (a) θ_x; (b) θ_y; (c) θ_z; (d) Δx; (e) Δy; (f) Δz.

From Figure 6 we can find that in whole motion spaces, the maximum computational errors of $\theta_x, \theta_y, \text{and } \theta_z$ are at $10^{-10} \text{ rad}, 10^{-10} \text{ rad} \text{ and } 10^{-12} \text{ rad}$ range respectively; for translational displacements, the maximum computational errors of $\Delta x, \Delta y \text{ and } \Delta z \text{ are at } 10^{-12} \text{ m}, 10^{-12} \text{ m} \text{ and } 10^{-13} \text{ m}$ range respectively.

CONCLUSIONS

In order to ensure high precision and real-time motion control of stages, the measurement system is required to measure the stage’s 6-DOF displacements with high accuracy and real-time property. The accuracy and real-time property of the measuring result depend on not only the performance of the sensors, but also the accuracy and effort of the displacement computational algorithm. As the relation between measurement outputs of the sensors
and the displacements of the stage is complicated and, usually, is described as strong nonlinear-coupled equation when 6-DOF displacements are all considered, it is difficult to ensure computational accuracy and effort simultaneously.

In this paper, the measurement model of 2-axes grating interferometer has been established based on the measurement principles and kinematics. On this basis, a proper measurement setup for measuring the 6-DOF displacements of stage has been designed, and the corresponding computational algorithm has been derived. The algorithm has simple form, so that computational effort was relatively small and the real-time property could be ensured. In order to test the computational accuracy of the algorithm, simulation tests have been carried out by taking the wafer stage of lithography as example. Simulation results show that the computational accuracy of θ_x, θ_y and θ_z were 10^{-10} rad, 10^{-10} rad and 10^{-12} rad respectively; for translational displacements, the computational accuracy of Δx, Δy and Δz were 10^{-12} m, 10^{-12} m and 10^{-15} m respectively.

It should be noted that the focus of this paper is the influences of multi-DOF motions on the measurement outputs. In the derivation of the measurement model, the alignment errors of the grating interferometers are not taken into consideration. In addition, there are also some other error sources such as environment errors, grating manufacturing error, optical errors etc. exist in practical applications, and they will distinctly affect the final measurement accuracy. Some calibration and compensation technology can be used to reduce these errors. These do not belong to the scope of this paper at present and will be discussed in the future research.

ACKNOWLEDGEMENT
This work was supported by the National Natural Science Foundation of China under Grant 51175296.

REFERENCES
Development of a Three-DOF Dual-servo System for Static, Quasi-static and Dynamic Errors of a Linear Axis

Jae-Chang Lee, Kwang-Il Lee and Seung-Han Yang
School of Mechanical Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, Republic of Korea

INSTRUCTIONS
The form accuracy of product is one of most critical consideration in the manufacturing [1-3]. The performance of linear axis affects directly the quality of product. However, the performance is affected inevitably by the unwanted multi-DOF errors. These errors can cause significant deviation between the tool and product thus leading to geometric inaccuracies in machined workpiece. To produce accurately machined parts, it is particularly important to achieve accurate tool position and orientation. The primary potential sources of error are classified as static, quasi-static and dynamic errors [4-5]. The geometric errors as static error generally are categorized the PIGEs (Position Independent Geometric Errors) and PDGEs (Position Dependent Geometric Errors) [6-8].

The position means the command for a controlled axis. PIGEs are caused mainly by imperfect geometry and dimensions of components and PDGEs are caused by assembly process. The thermal error as quasi-static error is caused by deformation or expansion of the elements due to temperature changing. This error is more complicated than geometric errors because the temperature field changes constantly according to environmental conditions [9]. The dynamic errors caused by accelerations or decelerations.

Numerous research have already been introduced to compensate these errors of a linear axis to achieve the ultra-precision positioning. Kim was developed the new type decoupled dual-servo stage to minimize the disturbance of coarse stage [10]. The linear displacement error is compensated under the high speed. Huang was developed the dual-servo system with dual-controller to achieve high precision motion control [11]. And Wang was suggested the methodology for real-time error compensation of a three-axis machine tool using a laser interferometer [12].

However, the previous research is only focused compensation for specific errors and number of measuring equipment is required to measure the errors thus it is difficult to define the errors from the identical coordinate system. Also the system size is large inevitably to install the measuring equipment in outside. And the some system uses the moving reference mirror to measure the errors but it causes the bigger standard uncertainty of specific errors such as straightness error.

In this research, the 3-DOF dual-servo system is suggested to compensate the static, quasi-static and dynamic errors of a linear axis. The measuring coordinate system and driving coordinate system are defined from identical coordinate system to ensure the measurement and compensation. And the joint based on flexure hinge used to obtain advantage such as extremely high resolution, frictionless and low maintenance operation. Also recursive compensation mythology is used to remove the errors of linear axis and inverse technique was implemented to determine the corrected position and orientation of dual-servo system. The errors with compensation under static, quasi-static and dynamic conditions are evaluated quantitatively.

DEVELOPMENT OF THREE-DOF DUAL-SERVO SYSTEM
The dual-servo system is consists of three capacitive sensors, reference mirror and three PZT actuators as shown in figure 1. The system can measure and compensate simultaneously the errors of a linear axis. Also the system have

FIGURE 1. Configuration of three-DOF dual-servo system
advantages in high accuracy, rigidity and load to weight ratio by adapting the parallel mechanism. The measuring CS (Coordinate System) and driving CS locate the center of moving platform to define in the identical CS thus it can realize the accurate measurement and compensation of errors by minimizing the Abbe’s error. And the joint based on flexure hinge used to obtain advantage such as extremely high resolution, frictionless and low maintenance operation. Two type joint is used to play the role of spherical joint and revolute joint and each joint with 3-DOF motion and 1-DOF motion is respectively connected to the moving platform and base platform so the dual-servo system can realize the 3-DOF motion (one translational motion and two rotational motions) by kutzbach criterion. The displacement of PZT actuators $\Delta l_i (i=1,2,3)$ for compensation of specific errors are calculated using inverse kinematic. The CS of moving platform $\{M\}$, base platform $\{R\}$, joints $\{i\}, \{j\}$ define as shown in Figure 2. Where, the parameters h_b, r_b denote the height and radius between RCS (Reference Coordinate System) $\{R\}$ and origin of joints CS $\{i\}$ in the base platform, respectively. Similarly, the parameters h_u, r_u are relevant CS $\{M\}$ and joints CS $\{j\}$ in the moving platform. The relationship between the CS $\{i\}$ and $\{j\}$ is determine by kinematic chain as given in Eq. (1) and the relative distance $||P||$ between the origins of CSs is calculated using Euclidean norm. The displacement of PZT can obtain from difference between the initial length l_0 at installation and relative distance $||P||$ as given in Eq. (3).

$\text{FIGURE 2. CS modeling for inverse kinematic}$

$\text{FIGURE 3. Principle concept of the compensation algorithm}$

$\begin{align*}
\tau_i^j &= (\tau_i^j)^{-1} \tau_{R,i} = \begin{bmatrix} R & P \\ 0 & 1 \end{bmatrix} \\
P &= (x \ y \ z)^T \\
\Delta l &= l_0 - ||P|| \\
\mu &= (\delta_{xx} \ \delta_{ys} \ \delta_{ys} \ \epsilon_{xx} \ \epsilon_{ys} \ \epsilon_{ys})^T \\
\Delta \mu_i &= (\delta_i \ \epsilon_i)^T \\
\end{align*}$

where,

$\begin{align*}
\delta_i &= (\delta_{xx,i} \ \delta_{ys,i} \ \delta_{ys,i})^T \\
\epsilon_i &= (\epsilon_{xx,i} \ \epsilon_{ys,i} \ \epsilon_{ys,i})^T \\
\end{align*}$

advantages in high accuracy, rigidity and load to weight ratio by adapting the parallel mechanism. The measuring CS (Coordinate System) and driving CS locate the center of moving platform to define in the identical CS thus it can realize the accurate measurement and compensation of errors by minimizing the Abbe’s error. And the joint based on flexure hinge used to obtain advantage such as extremely high resolution, frictionless and low maintenance operation. Two type joint is used to play the role of spherical joint and revolute joint and each joint with 3-DOF motion and 1-DOF motion is respectively connected to the moving platform and base platform so the dual-servo system can realize the 3-DOF motion (one translational motion and two rotational motions) by kutzbach criterion. The displacement of PZT actuators $\Delta l_i (i=1,2,3)$ for compensation of specific errors are calculated using inverse kinematic. The CS of moving platform $\{M\}$, base platform $\{R\}$, joints $\{i\}, \{j\}$ define as shown in Figure 2. Where, the parameters h_b, r_b denote the height and radius between RCS (Reference Coordinate System) $\{R\}$ and origin of joints CS $\{i\}$ in the base platform, respectively. Similarly, the parameters h_u, r_u are relevant CS $\{M\}$ and joints CS $\{j\}$ in the moving platform. The relationship between the CS $\{i\}$ and $\{j\}$ is determine by kinematic chain as given in Eq. (1) and the relative distance $||P||$ between the origins of CSs is calculated using Euclidean norm. The displacement of PZT can obtain from difference between the initial length l_0 at installation and relative distance $||P||$ as given in Eq. (3).

$\text{PROSEDURE OF COMPENSATION ALGORITHM}$

The positioning accuracy of a linear axis is adversely affected by geometric error, thermal induced error and dynamic errors as well as manufacturing error and assembly error of dual-servo system. Thus the compensation algorithm to cover these errors is necessary. The CS $\{X\}_{\text{ideal}}$ should follow ideally the x-axis of RCS $\{R\}$ as shown in Figure 3. However due to the mentioned errors, the CS $\{X\}_{\text{actual}}$ has the distorted pose. The pose ε is the vector which indicates the three translational and three rotational errors, as given in Eq (4). The CS $\{X\}_{\text{actual}}$ should match to the CS $\{X\}_{\text{ideal}}$. However it is complicate and difficult to match the two CSs due to manufacturing and assembly errors of a dual-servo system and time variant errors such as the quasi-static error and dynamic errors. Thus the CS $\{X\}_{\text{ith compensated}}$ after i-th compensation presents marginal error $\Delta \mu$. The error $\mu + \sum \Delta \mu$ is compensated to supplement the residual error $\Delta \mu$ after i-th
compensation. The iterative process is complete until the residual error $\Delta \mu$ is satisfy within tolerance. Therefore, the dual-servo system controls the CS $\{X\}_{\text{actual}}$ to match properly the CS $\{X\}_{\text{ideal}}$ within the tolerance.

The flowchart of suggested compensation algorithm is shown in figure 4. As mentioned before, the displacement of PZT actuator Δl_i for specific error is determined through the inverse kinematic. The errors are calculated from measurement data m_i ($i=1,2,3$) of sensors. The three errors (one translational and two rotational errors) are determined using simple simultaneous equation. Thus the compensation value Δl_i for measurement is calculated using the measured errors to minimize the residual errors $\Delta \mu$ within the tolerances.

EXPERIMENT AND EVALUATION

The developed system is installed to compensate the three errors of an ultra-precision linear axis (ABL1000, Aerotech Inc., U.S.A), as shown in figure 5. The capacitive sensors (4810 module, 2812 probe, ADE Technology Inc., U.S.A.), PZT actuator (P-840.10, PI GmbH, Germany) and reference mirror (L-type mirror, Nitto Optical Co. Ltd., Japan) are used in the experiments. The dual-servo system is installed in the linear axis and the reference mirror is stationary on the fixture to minimize the effect by Abbe’s error.

With the suggested compensation algorithm, the geometric errors of a linear axis are measured and compensated. The experiments are conducted for ten times and the average of measured data is shown in figure 6. The laser interferometer (XL80, Renishaw Plc., U.K.) are used to verify the measured geometric errors and two errors which can be measured using a laser interferometer, are compared. The maximum difference between two measurement methods is within the repeatability of measured results therefore, the validity of measured results from sensors is verified. The
PV values are 0.75 μm for positional error and 6.86 arcsec for rotational errors. These errors are compensated using developed system and the results show that the measured errors have been greatly reduced to zero. There are distinct improvement comparing with before compensation, as shown figure 7. The experimental results are summarized in table 1. The PV values of positional error and rotational errors with compensation are 0.06 μm and 0.04 arcsec respectively. It is reduced 92% for positional error and 98% for rotational errors compared to before compensation. Also the RMSE of after compensation greatly reduces comparing with before compensation. The RMSE of compensation results are reduced 92% for positional error and 99% for rotational errors compared to before compensation.

<table>
<thead>
<tr>
<th>Condition</th>
<th>w/o compensation</th>
<th>w with compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSE PV</td>
<td>RMSE PV</td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ε_xx</td>
<td>1.08 2.34</td>
<td>0.03 0.04</td>
</tr>
<tr>
<td></td>
<td>(98%) (98%)</td>
<td>(98%) (98%)</td>
</tr>
<tr>
<td>ε_yx</td>
<td>4.29 6.82</td>
<td>0.02 0.04</td>
</tr>
<tr>
<td></td>
<td>(99%) (99%)</td>
<td>(99%) (99%)</td>
</tr>
<tr>
<td>δ_zx</td>
<td>0.24 0.75</td>
<td>0.02 0.06</td>
</tr>
<tr>
<td></td>
<td>(92%) (92%)</td>
<td>(92%) (92%)</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ε_xx</td>
<td>1.12 2.49</td>
<td>0.17 0.32</td>
</tr>
<tr>
<td></td>
<td>(85%) (87%)</td>
<td>(85%) (87%)</td>
</tr>
<tr>
<td>ε_yx</td>
<td>4.45 8.43</td>
<td>0.22 1.08</td>
</tr>
<tr>
<td></td>
<td>(95%) (87%)</td>
<td>(95%) (87%)</td>
</tr>
<tr>
<td>δ_zx</td>
<td>0.29 1.11</td>
<td>0.08 0.22</td>
</tr>
<tr>
<td></td>
<td>(72%) (80%)</td>
<td>(72%) (80%)</td>
</tr>
</tbody>
</table>

TABLE 1. Experimental results with compensation under the static and dynamic conditions (unit: μm and arcsec)

Also, the experiments under the dynamic conditions (10mm/s) are conducted. The errors without compensation have the larger deviation relatively than the errors under the static conditions as shown in figure 8. The PV values of positional and rotational errors with compensation is reduced 80% and 87% respectively. Also RMSE are reduced 72% for positional error and 85% for rotational errors. The positional error has a tendency to increase compare with rotational errors. The three errors are dependent relationship to determine the compensation value in compensation algorithm. This result is suspected due to compensation of two rotational error which has the distinct tendency under dynamic conditions. However the experimental results under total travel range has the marked improvement.
FIGURE 8. Errors with compensation under the dynamic condition (10mm/s)

(a) Vertical straightness error

(b) Roll error

(c) Pitch error

CONCLUSIONS
We have described the development of a dual-servo system to compensate for static, quasi-static and dynamic errors in a linear axis for application to ultra-precision machining. A three-DOF joint based on flexure hinge was developed to achieve the ultra-precision positioning. Also the measuring coordinate system and driving coordinate system are defined from identical coordinate system to ensure the measurement and compensation. The geometric errors were therefore accurately measured, which greatly improved the reliability of the system. A compensation algorithm based on recursion was described, and was used to achieve a marked reduction in the errors of the linear axis under the static and dynamic conditions.

ACKNOWLEDGEMENTS
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (2010-0020089) and the Korea Government (MSIP) (2013R1A2A2A01067917).

REFERENCES

EVALUATION OF PERIODIC ERROR COMPENSATION USING A TIME DOMAIN REGRESSION ALGORITHM

John R. Troutman1, Vasishta Ganguly1, Nhan Nguyen2, and Tony L. Schmitz1

1Department of Mechanical Engineering and Engineering Science
University of North Carolina at Charlotte, Charlotte, NC, USA
2Agilent Technologies, Inc., Santa Clara, CA, USA

ABSTRACT
Heterodyne interferometry offers high accuracy, resolution, and range for noncontact displacement measurement. However, periodic error due to frequency mixing can reduce the achievable measurement accuracy. Due to semiconductor manufacturing demands, interest in real-time compensation of periodic errors has increased. In this paper, the time domain regression (TDR) algorithm as implemented on the Agilent N1225A four-channel laser axis card is discussed and performance of the compensation algorithm is evaluated experimentally.

INTRODUCTION
Heterodyne displacement measuring interferometers (DMIs) split a laser beam into reference and measurement components using polarizing elements. The fixed length reference path and variable length measurement path recombine to provide an interference signal which is converted to displacement. Heterodyne DMIs use a two frequency laser which emits two orthogonal, linearly polarized beams at frequencies f_1 and f_2, each of which ideally travels to one path only. The recombination of the measurement and reference legs has a split frequency, $f_2 - f_1$. Unlike the optical frequencies, this split frequency is measurable with available electronic detectors. As the target object moves, the split frequency is Doppler shifted depending on the direction of travel and velocity. Misalignment of the optical system or defects in the optical components can result in periodic error due to frequency mixing of the f_1 and f_2 beams.

Periodic error has been explored in the literature [e.g., 1-3]. As described in [4], periodic error for any motion profile can be characterized as first and second order errors which are non-cumulative and repeat with each unit wavelength change in optical path length. First order errors have a spatial wavelength λ_1, which is equal to the laser wavelength divided by the interferometer's fold factor (two for a single pass setup). Second order errors have spatial wavelength of λ_2, which is half of λ_1.

ALGORITHM OVERVIEW
The time domain regression (TDR) algorithm [5] is an extension of a scheme first proposed by Chu and Ray [6]. First and second order periodic errors can be modeled as sine/cosine pairs. Using this observation, a mathematical model for approximating up to constant acceleration motion with both first and second order periodic error is given in Eq. 1, where ϕ_j is the position value measured in cycles (i.e., one cycle is 2π rad) and x_0, x_1, x_2, x_c, x_{2c} and x_{2s} are parameters to be determined by curve fitting.

$$x_0 + x_1 \cdot j + x_2 \cdot k + x_c \cdot \cos(2\pi \phi_j) + x_{2s} \cdot \sin(4\pi \phi_j) \approx \phi_j$$ (1)

Because the presence of second order error does not significantly affect the measurement of first order error, the first order error can be measured separately using Eq. 2, an abbreviation of Eq. 1. Equation 2 enables first order error measurement and compensation using the Chu and Ray algorithm [6] by removing both the fundamental and second harmonic of first order error.

$$x_0 + x_1 \cdot j + x_2 \cdot k + x_c \cdot \cos(2\pi \phi_j) + x_{2s} \cdot \sin(2\pi \phi_j) \approx \phi_j$$ (2)

The resulting first order compensated phase is denoted by $\hat{\phi}_j$, which includes the second order error as well as the macro-scale motion; see Eq. 3.

$$x_0 + x_1 \cdot j + x_2 \cdot k + x_{2c} \cdot \cos(4\pi \hat{\phi}_j) + x_{2s} \cdot \sin(4\pi \hat{\phi}_j) \approx \hat{\phi}_j$$ (3)
Equation 3 is not solvable by the Chu and Ray scheme; however, Eq. 3 takes on an identical form to Eq. 2 by a change of variables:

\[\psi_j \equiv 2 \phi_j, \quad y_0 \equiv 2 x_0, \quad y_1 \equiv 2 x_1, \quad y_2 \equiv 2 x_2, \]
\[y_{2c} \equiv 2 x_{2c}, \quad y_{2s} \equiv 2 x_{2s}. \]

The result is provided in Eq. 4.

\[y_0 + y_1 \cdot j + y_2 \cdot k + y_{2c} \cdot \cos(2\pi \psi_j) + y_{2s} \cdot \sin(2\pi \psi_j) = \psi_j \quad (4) \]

Equation 4 can be used to compensate for second order errors, resulting in \(\psi_j \), a first order compensation of \(\psi_j \), equivalent to a second order compensation of \(\phi_j \). The corresponding first and second order compensation phase is simply half the value of \(\psi_j \).

To find \(x_0, x_1, x_2, x_{2c}, x_{2s} \) and \(x_{2s} \) from Eq. 2, 320 iterations of a curve fit are performed to yield the best-fit parameters. Judicious matrix design as described in [5] enables determination of the parameters without time-consuming matrix inversions, yielding the first-order periodic error magnitude, \(V \), and phase, \(\theta \), which can be compensated using Eq. 5. Compensation of second order error follows similarly.

\[\hat{\phi}_j = \phi_j + V \sin(2\pi(\phi_j - \theta)) \quad (5) \]

A block diagram illustrating the compensation process is shown in Fig. 1.

FIGURE 1. Block diagram for first and second order error measurement and compensation [4].

Due to practical hardware and software limitations, the algorithm computes compensation values by analyzing one or more fringes observed over a period of \(\sim 1 \) ms. The hardware implementation requires an initial stage motion with a minimum velocity of \(\sim 55.4 \) mm/min (924 nm/ms) over \(\sim 1 \) ms period in order to observe at least three full fringes and acquire

the initial set of compensation parameters shown in Eq. 1. From this point on, position measurements at all velocities are compensated for first and second order non-linearity using these values. Compensation values are updated every \(\sim 1 \) ms while stage velocity is above \(\sim 55.4 \) mm/min and when velocity falls below this value, the last set of compensation values calculated are applied instead. The algorithm is effectively "turned off" for stage motions which begin at zero velocity and remain below the minimum velocity required.

EXPERIMENTAL SETUP

The heterodyne interferometer setup [4-5] is shown in Fig. 2. A Helium-Neon laser source produces orthogonal, linearly-polarized beams with a split frequency of 3.65 MHz, which first pass through a rotating half-wave plate (HWP). The beams are then incident on a non-polarizing (80%) transmission beam splitter. A portion of the light is directed through a fixed 45° polarizing sheet and into a fiber pickup, serving as an optical reference signal. The remaining light continues to a polarizing beam splitter where it is split into its two frequency components which travel separately to a fixed retroreflector and a moving retroreflector which is mounted on an air-bearing stage. The beams recombine again in the polarizing beamsplitter and are directed by a 90° prism through a rotatable linear polarizer (LP) and into a fiber pickup, serving as a measurement signal. Both fiber pickups are mounted on flexures with two rotational degrees of freedom to enable efficient coupling into multimode fiber. The reference and measurement signals are connected to the Agilent N1225A axis card.

FIGURE 2. Schematic diagram of the heterodyne DMI [4-5].

By appropriate displacement of the rotating LP and HWP [7], desired levels of misalignment can
be introduced into the system, resulting in controllable first and second order periodic error amplitudes.

ALGORITHM EVALUATION

To evaluate the performance of the compensation algorithm, the Agilent axis card was configured to record two channels of data: raw position and compensated position (with periodic error removed). Following data collection, Fourier transform (FT) techniques were used to determine periodic error magnitudes, enabling comparison of the pre- and post-compensation signals. FT analysis of constant velocity motion is straightforward in the temporal domain because the periodic error frequencies are fixed. However, as described in [4], for non-constant velocity motions, the temporal frequency content varies. To apply the FT analysis, the non-constant velocity data which is sampled at a constant temporal frequency must first be resampled to increments of equal displacement. The FT analysis is then applied in the spatial domain.

Constant Velocity Motion

The HWP and LP were misaligned to give approximately 1.1 nm of first order error and 1.1 nm of second order error. The air bearing stage was commanded to perform constant velocity motions within the range of ±60 mm/min to ±100 mm/min. At each velocity, 6144 samples of position data were collected at 312.5 kHz using both measurement channels. Figures 3-4 illustrate macro-scale motion and periodic error motions for a constant velocity motion at 100 mm/min. Figure 5 displays the uncompensated and compensated periodic error spectra for this same motion profile.

![Figure 3. Constant velocity motion profile at 100 mm/min.](image)

Each test was repeated three times, and data was analyzed using the spatial FT method. For both first and second order errors, a compensation ratio, CR, was defined as the ratio of compensated to uncompensated error magnitude. Compensation ratios were found to be symmetric for positive and negative velocities; see Table 1, which presents the maximum first and second order CRs (only positive velocity results are shown).

TABLE 1: First and second order periodic error CRs for constant velocity motions.

<table>
<thead>
<tr>
<th>Velocity (mm/min)</th>
<th>1st order CR</th>
<th>2nd order CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>0.045</td>
<td>0.510</td>
</tr>
<tr>
<td>70</td>
<td>0.056</td>
<td>0.514</td>
</tr>
<tr>
<td>80</td>
<td>0.039</td>
<td>0.519</td>
</tr>
<tr>
<td>90</td>
<td>0.039</td>
<td>0.512</td>
</tr>
<tr>
<td>100</td>
<td>0.042</td>
<td>0.509</td>
</tr>
</tbody>
</table>

Sinusoidal Motion

The air bearing stage was commanded to perform sinusoidal (non-constant velocity) motion at 0.25 Hz with a 2mm range. Because the presence of second order error does not notably affect measurement and compensation of first order error, the HWP and LP were configured to give 2.2 nm of first order error and 2.2 nm of second order error. To capture large
portions of the motion cycle, 300,000 data samples were collected for each channel at 62.5 kHz. The motion profile is shown in Fig. 6.

The collected position data was resampled in equal increments of 2 nm displacement. The spatial FT was applied to determine periodic error magnitudes on intervals of 25 cycles of first order error.

At velocities below 5 mm/min, low frequency errors due to the imperfect displacement of the linear motion stage dominate the FT results, so data intervals with corresponding velocities were omitted from the analysis.

Figures 7-8 illustrate uncompensated and compensated error magnitudes throughout the sinusoidal profile for first and second order periodic errors.

Inspection of these figures shows that less first order error compensation is achieved in regions of low velocity (i.e., the compensated error approaches the magnitude of the uncompensated error). Second order error compensation magnitude is constant regardless of velocity. The mean CR as a function of velocity is shown in Figs. 9-10 for first and second order errors.

Ramped Velocity Motion
As discussed previously, motion should begin at a speed above the minimum velocity threshold for initial parameters to be computed, before effective compensation can occur at velocities below the threshold. Two experiments were performed to examine the performance of the algorithm when stage velocity is below the threshold.

With the HWP and LP configured to give 2.2 nm of first order error and 2.2 nm of second order error, the stage was commanded to move at 100 mm/min for 0.5 sec, allowing compensation parameters to be collected, then decelerate uniformly over 1 sec to a lower velocity and maintain that speed for 1.5 seconds. Displacement was sampled at 62.5 kHz to enable recording of longer motion durations. Periodic errors were then examined for the low-velocity portion of the motion; three tests were performed at each velocity. Similar to Table 1, maximum CR is shown in Table 2.
In the second experiment, the stage was commanded to move at 100 mm/min for 0.5 sec to allow collection of compensation parameters and then decelerate uniformly for 3 sec to a stop. An example motion profile, again sampled at 62.5 kHz, is shown in Fig. 11. For convenience, only the portion of the profile with varying velocity is shown.

TABLE 2: First and second order periodic error CRs for low velocity motions.

<table>
<thead>
<tr>
<th>Velocity (mm/min)</th>
<th>1st order CR</th>
<th>2nd order CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.594</td>
<td>0.507</td>
</tr>
<tr>
<td>10</td>
<td>0.573</td>
<td>0.507</td>
</tr>
<tr>
<td>20</td>
<td>0.159</td>
<td>0.511</td>
</tr>
<tr>
<td>30</td>
<td>0.139</td>
<td>0.509</td>
</tr>
<tr>
<td>40</td>
<td>0.109</td>
<td>0.510</td>
</tr>
<tr>
<td>50</td>
<td>0.081</td>
<td>0.510</td>
</tr>
</tbody>
</table>

Analysis of the data was performed in the same manner as discussed for sinusoidal motion. Figures 12-13 illustrate uncompensated and compensated error magnitudes throughout the motion profile shown. Inspection of these figures shows nearly constant error compensation over the entire velocity range. This performance was consistent over multiple runs of the experiment, as well as over experiments with varying levels of induced nonlinearity.

The mean CR is shown in Figs. 14-15 as a function of motion velocity. Marked improvements in first order CR, especially at speeds from 10 mm/min to 30 mm/min are evident over the case of sinusoidal motion, while second order CR differs little.

CONCLUSIONS

Due to current manufacturing demands, there is interest in real time compensation for periodic error in precision positioning applications. The time domain regression (TDR) algorithm enables compensation of first and second order optical non-linearity terms using iterative matrix methods. The Agilent N1225A laser axis card, which offers a hardware implementation of this algorithm, was experimentally evaluated during linear and sinusoidal motions with varying velocities. It was observed that the error compensation was successful overall with up to 90% reduction in first order periodic error.

An initial minimum speed is required to compute starting parameters and update said parameters in real time. Once computed, compensation is
applied at all velocities, and updated periodically when velocity is above the minimum threshold. The performance of the algorithm’s first-order error compensation was shown to be best at speeds above the minimum threshold velocity; however, effective compensation was observed at velocities below the threshold provided that motion is initiated above this minimum velocity and compensation parameters are computed before transitioning to low-velocity motion. The effectiveness of second order error compensation was seen to be consistent over the velocities tested and largely unaffected by the method of testing, generally evidencing approximately 50% reduction in second order error magnitude.

ACKNOWLEDGEMENT
This work was partially supported by Agilent Technologies and the National Science Foundation (CMMI-1265842).

REFERENCES
PNEUMATIC VOLUME DE-AMPLIFICATION MECHANISM FOR A HANDHELD PIPETTE

Justin Beroz1,2, Sheng Jiang2, John Lewandowski1 and A. John Hart1,2
1Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, MA, USA
2Department of Mechanical Engineering
University of Michigan
Ann Arbor, MI, USA

BACKGROUND
Precision liquid handling is an essential capability in all wet laboratories, and often influences the consistency of results and the amount of chemical waste [1]. While there are many types of automated precision liquid handling systems, the handheld micropipette (Fig. 1a) remains the most ubiquitous device due to its versatility and simple operation. It is operated in one hand by depressing the spring-loaded push-button with the thumb. This button is mechanically attached to an internal piston, which undergoes an equal linear displacement (Fig. 1b). The piston’s volume displacement – and thereby its volumetric precision – is approximate to that of the liquid drawn into the tip. The piston stroke can be adjusted in most pipette models, typically by twisting the thumb button, which is coupled to a mechanism that translates an internal piston stop. Typically, the volumetric capacity per pipette is limited to approximately one order of magnitude, where the absolute volume range is proportional to the piston’s cross-sectional area (Fig. 1b). As a result, typical volume ranges per micropipette are, for instance, 1–10µl, 10–100µl, 20–200µl, and 100–1000µl. Therefore, researchers commonly buy micropipettes in commercially available sets that collectively span a larger range, such as 1µl – 1ml, to perform liquid mixing and transfer tasks.

PIPETTE DESIGN
We present the design and analysis of a tunable-volume handheld pipette that incorporates an intermediate elastic diaphragm between the piston and tip (Fig. 1c, [2]). This simple addition de-amplifies the volume displacement of the piston, \(V_p \), at the diaphragm, \(V_d \), via compression of the entrapped air volume. This serves to scale the pipette’s native resolution and volume capacity as a function of the amount of entrapped air and stiffness, \(k \), of the diaphragm. The de-amplification be scaled by several orders of magnitude, and therefore enables a tunable increase in the pipette’s volumetric range and precision without changing its functional design or operating procedure. Using interchangeable diaphragms, we propose that this design enables a single handheld mechanical pipette to achieve drawing and dispensing of liquids over a 1µl–10ml range (i.e., the range of the entire micropipette suite), with volumetric resolution and precision comparable to commercially available counterparts.

FIGURE 1. (a) Typical handheld commercial micropipette that aspirates liquid through a pipette tip by (b) direct action of the piston. In contrast, (c) our design de-amplifies this displacement with an intermediate elastic diaphragm.
ANALYSIS

We have derived a closed-form analytical model that captures the characteristics of volume transmission between the piston, \(V_p \), and diaphragm, \(V_d \), to 2nd-order (Fig. 2). From this, we have calculated the exact mechanical behavior of the diaphragm necessary to achieve linear de-amplification. Notably, we find that nonlinearities arising from the stiffness of the diaphragm and compression of the air are opposite-signed, and may exactly cancel one another to achieve linear de-amplification.

![Diagram](image)

FIGURE 2. Volume de-amplification mechanism, which enables \(V_d < V_p \) by compression of the transmission fluid due to the diaphragm stiffness, \(k \).

PROTOTYPE PIPETTE

In order to validate the derived model, we constructed a custom-machined prototype device (Fig. 3) interfaces with commercial 1-10\(\mu l \) and 20-200\(\mu l \) pipette tips, and operates according to the conventional pipetting procedure for micropipettes (Fig. 1d). The prototype is handheld (Fig. 3b) and features a spring-loaded thumb-button mechanism similar to that found in commercial micropipettes. The piston stroke may vary from 0-350\(\mu l \) (i.e., 5.8mm piston diameter, 12mm max stroke), and is adjusted by changing the position of a threaded nut that acts as the piston stop (Fig. 3c). Additionally, the entrapped air volume may be adjusted by rotating the outermost casing, which translates the large piston indicated in Fig. 3a. The (red) hashed regions in the cross-section (Fig. 3c) indicate the entrapped air volume and are all in fluid communication. There is also a pressure relief (Fig. 3a) for equalizing the internal volume to the ambient air. The front of the pipette may be removed to interchange the elastic diaphragm – here, a latex sheet.

Initial results pipetting deionized water with the prototype agree with the corresponding analytical model and demonstrate the importance of accounting for leading-order nonlinearities (Fig. 4).

![Diagram](image)

FIGURE 4. Using a circular latex sheet as the diaphragm (picture inset), the relation between the drawn liquid and piston stroke is linear due to cancellation of nonlinearities from the diaphragm and the entrapped air.

REFERENCES

INTRODUCTION
In the context of the design, characterization, and manufacture of engineered surfaces, the evolute surface is highly sensitive to changes in curvature and therefore, if the corresponding evolute geometry can measured, the functional surface can be controlled to higher tolerances.

“The evolute [not to be confused with involute] of a curve, a surface, or more generally a submanifold, is the caustic of the normal map.” [1] For two adjacent normal lines to intersect, curvature must be present and since curvature is related to the second derivative, this surface may be used in supplement to define a surface. A full mathematical perspective of the evolute is given in [2].

BENEFITS OF MEASURING EVOLUTE SURFACES
Radial Measurement
The measurement of the evolute provides a better inference of the surface, especially for freeform shapes with low sag to radius of curvature ratios. For example, in the simple case of a low sag, h, spherical lens illustrated in Figure 1, if the surface is measured and the resulting point cloud used to fit a spherical surface, the measurement uncertainty in the radius of curvature, r, is heavily dependent on the angle of existence, θ. In fact, the uncertainty in the measured radius of curvature increases non-linearly as the angle of existence is reduced (see fitting to partial arcs in [3], and freeform measurement in [4, 5]). By contrast, if both the location of the surface and its corresponding evolute can be measured, in this case a single point, the distance from the surface to the caustic point is a direct measure of the radius of curvature [6-10].

For many engineered surfaces, accurate direct measurement of curvature is not feasible, and in these cases the supplementary information provided by the evolute can be critical.

Increased Vertical Resolution on Curved Surfaces
In certain cases, the measurement of the evolute enables the use of higher magnifications relative to the measurement of the surface alone. In the case of the hyperbolic profile with a high conic constant illustrated in Figure 2, an area on the profile and the corresponding region on the evolute are indicated. For an axisymmetric surface, a measurement instrument with both a wide field of view and high vertical resolution is required to measure the surface, whereas a narrower field of view and a lower vertical resolution is capable of measuring the evolute surface for the same sample. Typically, in optical instruments, as the field of view is reduced the lateral resolution and sectioning capabilities (ability to discern features along the optical axis) increase.

FIGURE 1: Diagram showing a low aspect ratio spherical lens, its evolute (point), and its angle of existence.

FIGURE 2: Illustrative comparison of the required measurement envelopes when measuring a surface and corresponding evolute.
The increased measurement sensitivity gained from measuring the evolute surface also applies to more complex surface curvatures. For example, Figure 3 illustrates a profile that exhibits a transition from a concave to convex surface. While conventional measurements cannot resolve the transition point from convex to concave, the measurement of the evolute exhibits a theoretically infinite sensitivity.

Sensitivity to High Order Surfaces
Measurement of the evolute enables the measurement of high order surfaces. For example, if a functional surface is specified in the third order (continually differentiable to the second order) then a more sensitive measure can be obtained using the evolute (Figure 4). Differences between the second order and third order geometries are readily apparent in the evolute, however, these changes when measured directly from the surface are relatively difficult to discern.

MEASUREMENT OF THE EVOLUTE
The evolute can be measured optically on specular surfaces using a device similar to a scanning confocal microscope, except that the principal need not be constrained to the microscopic scale. In fact, the evolute, in the form of a single point, has been used to measure the radius of curvature in spherical optics for decades [6]. One example of the use of this application is in the measurement of long radii of curvature on concave optics where the center of curvature is located and the distance between the surface and center of curvature is measured [7-10] (principal similar to Figure 1 and more elaborately illustrated as Figure 5). As shown in Figure 5, a focused and therefore converging set of light rays is presented onto a spherical surface and its reflection is evaluated using a coaxial detector. Only when the focal point coincides with the center of curvature or with the surface of the optic is a complete return of light observed. Thus, the difference in relative location between the two conditions can be considered its radius of curvature.

In more general cases where an evolute profile is measured, the focal spot must be scanned over the measurement envelope and the response evaluated at each location relative to the others. To increase the sectioning capability, the returning light must be limited by an aperture. The key to being able to measure the evolute of surfaces is due to both the simultaneous lateral imaging capabilities that a scanning system presents, and the ability to correlate the depth of the lateral features with the confocal technique. The capability to isolate features to

FIGURE 3: An arbitrary freeform shape exhibiting a transition from a convex surface to a concave and its evolute.

FIGURE 4: Series of profiles and their evolutes. a) a non-smooth but continuous 1st order profile with no evolute, b) a smooth and continuous 2nd order profile with a single point evolute, and c) a smooth and continuous 3rd order profile with a discontinuous evolute.

FIGURE 5: Conditions that make it possible to measure the radius of curvature of spherical objects using a coaxial light source and detector [10].
within a single confocal plane enables the capability to measure multiple evolute geometries.

For spherical wave fronts converging and reflecting from spherical surfaces, the measurement and interpretation of the evolute is straightforward (Figures 1 and 5). For non-spherical wave fronts or when measuring non-spherical artifacts, the analysis becomes more complex. A measurement of a hyperbolic profile with a low conic constant and converging spherical wave front is illustrated in Figure 6, where the true evolute and a measured evolute do no coincide. This shifted response is due to the light rays not reflecting normally from the measured surface.

A further complication is that the concept of curvature is related to a profile and not a surface. Therefore there are many mathematical devices that attempt to deal with curvature of surfaces, including mean curvature (the average of the two radii of curvature from two principal axes and Gaussian curvature (the product of the two principal radii). Interestingly, in mathematics, both the choice of curvature type and the choice of principal axes impacts the result, however the concept of the evolute is independent of the choice of principal axes. This counterintuitive concept can be confirmed with the measurement of a cylinder using a scanning confocal microscope, where a bright line will be visible in the confocal planes coincident with the axis of the cylinder, no matter the orientation under the microscope.

Difficulty with Conceptualization

If the surface is at least twice differentiable, then the evolute will be continuous (but not necessarily smooth). If the surface is not twice differentiable or the surface exhibits at least two different curvatures, the evolute is not easily conceptualized. A simple shape that demonstrates this principal is the toroid, which has two evolute geometries; one is the circle enclosed by the toroid surface and the other is the point at the center of the revolution. An example of a complicated evolute is that from the upper hemisphere of an ellipsoid having three different axial dimensions (Figure 7).

Notice that the evolute of one principal axis overlaps the evolute of the other and that the capability to section the image along the xy-plane provides the ability to decipher the features from each other.

PRACTICAL APPLICATION OF TECHNIQUE

The representation of experimental data is currently difficult to capture and present. Typically, in commercially available scanning confocal microscopes, the raw confocal plane data (3D matrix of irradiance values) is not preserved, rather the gigabytes of data are processed and deleted as the measurement output (2D matrix of surface heights) is returned to the user for analysis; therefore the software must be overridden or the planes must be captured manually. Computational pre-processing of the data set to return the measured surface with a surface fit to the evolute features is optimal; however this may not be intuitive to the user. Rather a visualization of the actual data set is more immediately apparent. For axisymmetric features, a simple vertical slice through the axis of symmetry may suffice. A theoretical 2D scan of a fully reflective sphere was generated by Weise et al. [11] and is shown as Figure 8.
One practical limitation that will slow the implementation of this technique is the challenge of presenting both theory and experimental measurement of evolutes when complicated geometries are measured. For example, imagine a set of three surfaces intersecting, all exhibiting individual curvature, and all skewed by perspective and the 3D matrix of intensities will need to be viewed or mathematically analyzed to identify and differentiate multiple surfaces. Fortunately, these challenges have been overcome in computer tomography techniques developed for the medical industry.

EVOOLUTE GEOMETRY AS A SPECIFICATION.

Because the evolute of a surface or profile is highly sensitive to changes in curvature, there may be applications where the definition of the evolute may better suit the function of the engineered surface. Take an airfoil for example, a device that is designed to minimize flow separation in fluids, which is heavily dependent on the curvature of the surface. In these applications, it may be beneficial to define a surface with its evolute as the driving specification. The simplest case is used unknowingly when specifying a radiused edge. In this example, a start and end point are implied via a tangential transition, and the evolute is a line along the center of curvature. In more elaborate cases, rather than specifying a radius, the specification of the evolute surface can be used in the same manner. Another example is in the manufacture of aspheric surfaces on turning machines, where the cutting tool or part is constrained to move along the path representing the evolute of the surface to be cut [12].

The obvious benefit of the specification of the evolute is that the result may be directly measured with high sensitivity, and manufactured with relatively simple machines.

REFERENCES:

Static and Dynamic Characterization of Hydrostatic Bearings with Micro Gap Sizes

Matthias Fritz¹, Alexander Stauder¹ und Bernd Kuhfuß²
¹Research & Development
KERN Microtechnik GmbH
Eschenlohe, Germany
²bime Bremen Institute for Mechanical Engineering
University Bremen
Bremen, Germany

INTRODUCTION
Hydrostatic bearings with gap sizes between 20 and 50 µm are state of the art in precision machine applications. Smaller gap sizes would improve the stiffness, the damping and the power consumption. This paper presents an experimental and a theoretical analysis of hydrostatic bearings with micro gap sizes of 5 µm in comparison to standard hydrostatic bearings.

DESIGN OF THE TEST BENCH
The company KERN developed a test bench for the experiments. Within this test bench a static load up to 6 kN per bearing pocket and a dynamic load of 150 N peak to peak with a frequency of 1500 Hz can be applied. An attached personal computer records the supply pressure, the pocket pressure, the gap size and the applied load. The forces are applied parallel. A preloaded package of disc springs delivers the static load. A piezo-electric actuator with a stiff coupling applies the dynamic load, see figure 1. This parallel force design allows high static forces and a wide frequency range of the dynamic force.

The manufacturing tolerances in hydrostatic bearing with micro gap sizes are very small and therefore hard to manufacture. There is a high risk of non-parallel bearing surfaces resulting in a non-parallel gap. For this reason a concept with a self-aligning principle has been chosen with three pockets in an isosceles triangle. The pocket’s surfaces are lapped to a flatness of less than 1 µm over the whole surface. Because of the small partial area of the bearing, (....the parallelism of the gap of one pocket is better than 2 µm). The bearing face is guided by a leaf spring. This guidance has a small influence on the measured dynamic behavior of the hydrostatic gap.

The design of the test bench is modular, so the bearing pocket module can be changed as well as the compensating devices. Therefore, it is possible to experiment with infinite stiffness devices, capillary restrictors and diaphragm valves.

CAPABILITIES OF THE TEST BENCH
Before the characterization, the capability of the test bench has to be evaluated. The force frame and the measurement frame are not fully decoupled. To measure the functioning of the correct load displacement and the stiffness, the stiffness of the combined frame is mapped and compensated. The definition of the contact point is difficult because it is more a contact range. In the beginning of the range the tiny peaks of the surface roughness of the bearing parts get into contact. Over the contact range more and more surface gets into contact. Because of this, it is not possible to measure gaps smaller than 2 µm accurately.
FIGURE 2. Bode plot in contact situation

FIGURE 3. Gap size over applied force with capillary restrictors for an operating point of 5 µm and 20 µm
For the evaluation of the dynamic capabilities of the test set-up, the bearing face is turned down into contact situation. In this position the transfer function of the piezo-electric force with amplitude of 200 N to the displacement sensor is measured, see figure 2. The bode plot shows a horizontal line up to a frequency of 1250 Hz. At higher frequencies system resonances of the test bench are disturbing the measurement. The measurements in this area are not useful for the dynamic characterization. The phase shows a delay characteristic because of the delay characteristic of the electrical signal processing units.

To summarize, the test bench is capable to measure the load deflection function of hydrostatic gaps between 2 and 35 µm with a load of 50 to 6000 N per pocket. The dynamic measurements are reliable up to a frequency of 1000 Hz.

STATIC ANALYSIS
For the static analysis different static loads are applied to the hydrostatic gap. The displacements are measured. The following compensating devices are analyzed:

- Capillary restrictors with operating points at 5 µm and 20 µm
- Infinite stiffness device with operating points at 5 µm and 15 µm

Figure 3 shows the load displacement function of the hydrostatic gap with two different capillary restrictors. One restrictor with the nominal operating point of 5 µm and the other one with the nominal operating point of 20 µm. For both restrictors the experimental and the theoretical data are shown. There are deviations at very small gaps because of the manufacturing tolerances and the surface roughness of the bearing plates. It is also difficult to define the zero point of the gap. The zero point is defined by increasing the load and releasing the load without any oil supply. The position at the end of this procedure was defined as zero. This position is reproducible.

The stiffness of the system with this nominal operation point is higher than the 20 µm system, see figure 3. This is also predicted by the theory. The theoretical prediction fits well to the measured data. For all measured devices the theoretical predictions fit well with the measured data. Thus, there is no need to change or improve the theory for the static behavior of hydrostatic gaps. The advantage of stiffness of small bearing gaps is approved.

DYNAMIC ANALYSIS

Theoretical analysis
The theoretical predictions are done by a dynamic simulink model of the hydraulic and mechanical system. The dynamic behavior of the supply system and the hydrostatic bearing is modeled. The model of the pocket simulates the laminar flow, the compressibility of the fluid, the squeeze film damping and the moving mass. For the capillary restrictor the laminar flow and the compressibility are taken into account. For infinite stiffness devices the laminar flow, the compressibility of the fluid, the squeeze film damping and the moving mass are simulated. The simulations are done by a simulink toolbox for the simulation of hydrostatic circuits. The toolbox is designed by KERN Microtechnic. The modeling follows the approaches of Winterschladen [1] and Pollmann [2].

Experimental Analysis
The experiments are done on the test bench described above. It is the same test setup like for the static measurements.

For the dynamic analysis a static preload and an additional dynamic load are applied to the hydrostatic gap. The resulting displacement is measured. The transfer function is calculated by the time series of the load and displacement records. The resulting transfer function is the dynamic stiffness of the hydrostatic gap. Figure 4 shows dynamic stiffness of hydrostatic gaps with capillary restrictors and operating points of 5 µm and 20 µm. The measurements are done at the operating points.

The prediction works well at low frequencies near the static stiffness. This is already approved by the static analysis. The squeeze film damping at 100 to 1000 Hz is well predicted. The prediction is done by the approach of Pollmann [2]. The damping and the resonance frequency of the 20 µm gap between 10 to 100 Hz are not well predicted. The reason is supposedly the assumed compressibility of the hydrostatic fluid, due to solved air in the oil. This point has to be improved by future works. Also a coherence analysis should be done, to identify the uncertainty of the measurements.

The analysis shows a much higher damping and a higher dynamic stiffness of the micro gaps compared to the standard gaps.
FIGURE 4. Bode plot of the dynamic stiffness of two hydrostatic systems with gap sizes of 5 and 20 µm. Simulation and measurement are shown.

CONCLUSION
This paper presents the design and the capabilities of a test bench for the characterization of hydrostatic bearing with micro gap sizes. It shows the static and the dynamic characterization of hydrostatic gaps in comparison to the theoretical prediction. The static prediction works well for standard and micro gaps. The dynamic stiffness prediction of the resonance frequency has to be improved. The micro gap sizes show a higher static and dynamic stiffness. That makes them interesting for precision machine applications. In future works of KERN Microtechnic a hydrostatic guide way with micro gap sizes will be designed and characterized.

REFERENCES
FIBER LAUNCHING AND COLLIMATING DEVICE WITH POLARIZATION CONTROL AND ALIGNMENT-PRESERVING RECONNECTION

Andrew D. Keene1, Emersyn E. Pullan1, Michael A. Ricci1, Joseph Lanphear1, Michael A. Echter1,2, and Jonathan D. Ellis1,2

1Department of Mechanical Engineering
2The Institute of Optics
University of Rochester
Rochester, NY

INTRODUCTION

The process of coupling light from a source and focusing it into an optical fiber is commonly done to increase reliability and effectiveness of optical systems. Coupling light into a fiber allows the light to be transported to a remote location, some distance away from the source. Light sources often create a large amount of heat, which is detrimental to optical systems and other instrumentation that are sensitive to temperature fluctuations. This is particularly the case for optical metrology applications where thermal perturbations often have the highest influence on the system’s performance. Coupling the light into a fiber can remove this source of error, creating a need for mounts that can do this with minimal power loss. Currently available fiber launching mounts lack robustness, are costly, and/or have limited alignment degrees of freedom (DOFs).

Most commercial fiber launching systems have only 5-DOFs between the lens and the fiber ferrule, three linear and tip/tilt [1,2]. The adjustments are used to accurately position the focal spot of the beam at the entrance tip of the fiber, which is approximately 5 μm in diameter at 633 nm for single mode fibers. Precise, stable positioning is needed to ensure the light can be focused to the exact entrance of the fiber, with the numerical aperture (NA) of the input light less than or equal to the fiber NA [3].

One of the biggest deficiencies based on our experience with these mounts is the lack of repeatability when detaching and reattaching a fiber patch cable. From our experiments shown in Figure 1, the angle at which a standard collimating device emits a beam, can change several milliradians in tip and tilt, which is too high for single mode fiber applications. When the direction of the light is reversed and light is being coupled into an optical fiber this instability leads to a power loss upon reattachment. Often a complete realignment procedure is needed to launch light back into the fiber, often requiring secondary light sources and additional equipment. Thus, there is a need for a compact fiber launching device capable of high accuracy alignment into single mode and polarization maintaining fibers. This device must have precise motion in 6-DOF to control polarization. Additionally, this system should be capable of accommodating different focal length lenses for different wavelengths and has the ability to maintain coupling efficiency after disconnecting and reconnecting a fiber patch cable.

![FIGURE 1. Histogram of the pointing stability of a standard collimator](image)

6-DOF SYSTEM DESIGN

The design we are proposing incorporates 6-DOF motion, polarization control, and a novel alignment preserving connection. As shown in Figure 2, the design has three structural components, a block that holds the lens, a
middle block that holds the fiber-to-ferrule mating sleeve, and a back plate that is necessary to support the middle block.

![Diagram of 6-DOF mount](image)

FIGURE 2. Exploded view of the 6-DOF mount. The mount includes three custom design pieces and off the shelf items to comprise the overall system.

The first component, the lens block (shown in Figure 2) has a threaded, recessed hole on one side into which the lens is screwed. For this prototype, we are using an aspheric lens that is pre-mounted in a stainless steel housing. In the future, this could simply be a recessed hole with adhesive to secure the lens. This block also contains four threaded holes; two holes on each of two adjacent sides. These holes house the compression springs used to push the middle block against the adjustment screws. The springs were selected to have an overall length, compressed length, and stiffness that suited the geometry of the mount. The holes are threaded so once the springs are inserted a set screw follows to force the compression of the springs. Opposite the springs on the corresponding sides are two under-reamed holes into which a threaded bushing was press fit. These threaded bushings accommodate the fine pitch hex adjustment screws used to move the middle block in relation to the lens in the \(\theta_x, \theta_y \), and \(z \) degrees of freedom. These fine pitch screws are the component of the mount that allows for precise alignment, reducing alignment time in comparison to current models. Small cups were milled to hold flat, hard sapphire plates, onto which the adjustment screws contact. The final feature on this block is the mounting holes, which were placed on two sides so the user can orient the mount to fit more easily into a bench top setup. Both English and metric taps were used for added convenience for the user.

The second component, the middle block (shown in Figure 2) houses the novel part of our design: a fiber-to-ferrule mating sleeve. This mechanism was made by taking a standard fiber mating sleeve, which connects two fibers with very high efficiency, and epoxying a ferrule (the end of a fiber) into one side. The idea is that the lens will focus the light down onto the tip of the fixed ferrule instead of the ferrule of the fiber patch cable like most systems. This means that when the fiber is removed the portion onto which the light is focused will remain in place. Testing has shown that this will allow the mount to stay aligned even when the fiber is detached and reattached.

The fiber-to-ferrule connector is recessed into a through hole and held in place by a nut and washer. The middle block also has three bushings press fit into under-reamed holes, like the outer block, which contain the adjustment screws that control movement in \(\theta_x, \theta_y \), and \(z \). Sections of glass were cut to size and epoxied to the sides of this block so that the \(x \) and \(y \) displacement screws impact against a hard flat surface and allow for smooth movement in the orthogonal directions. Cups were milled on the opposite two sides where compression springs are placed to prevent them from slipping.

The final structural piece is a back plate, shown in Figure 2. The back plate has three threaded holes where the springs that resist the motion in \(\theta_x, \theta_y \), and \(z \) are placed along with their corresponding set screws. The back plate has clearance holes that allow for it to be fixed to the lens block by cap screws and also features a large opening that allows for access to the hex adjusters parallel to the input beam.

RESULTS

A series of tests were performed with the new 6-DOF design to determine if this prototype met all of the original design goals. Additionally, we are interested in the stability and qualitative “ease of alignment”.

Efficiency

The coupling efficiency of the mount is determined by the ratio of the transmitted optical power through the fiber divided by the incident optical power on the mount. A frequency stabilized Helium Neon (HeNe) source was used for our experiments. The frequency stability does not ensure the lowest power fluctuations however, after monitoring the output power of the HeNe source, the stability was sufficient for these tests. The beam from the laser was
passed through a free-space optical isolator to ensure that back reflections from the mount and fiber tip do not destabilize the laser and cause unwanted power fluctuations.

The input power to the fiber coupling mount after the free-space isolator was 1030 µW. We tested both our custom 6-DOF mount and a commercial FiberPort fiber coupling mount. The beam size and setup parameters were selected based on the manufacturer's guidelines [1]. The amount of power delivered through each mount and efficiency can be seen in Figure 3. The 6-DOF mount currently has an efficiency of approximately 42% which is slightly lower than FiberPort's efficiency of about 52%. The FiberPort also has >10% power fluctuations over a relatively short measurement period (60 s), whereas the 6-DOF mount's fluctuations are lower. The likely reason for the difference in efficiency is that the 6-DOF mount must first pass into a fixed fiber ferrule and then the light is transferred to a fiber patch cable using a fiber-to-fiber mating sleeve. Decentration of the fixed fiber ferrule can significantly reduce the efficiency in the fiber-to-fiber connection, likely resulting in lower efficiency. However, this fixed ferrule is likely the reason for the decreased power fluctuations in the 6-DOF mount as the surface onto which the beam is incident is stationary and more stable.

![Figure 4. Efficiency of the fiber-to-fiber connection compared to the fiber-to-ferrule connection.](image)

This relative closeness of efficiencies between the fiber-to-fiber connection and the fiber-to-ferrule connection leads us to believe that the main source of power loss in the 6-DOF system is the surface of the free ferrule which the light is focused on to. Since we are using standard ferrules, one end is flat and the other is tapered. The tapered side is the end which is usually polished and, due to the dimensions of the connector, must be the side which contacts the ferrule of the patch cable. This leaves the flat side to accept the light upon coupling. Achieving a good surface finish on the flat side is difficult because our ferrule polisher must be adapted to accept it. We are exploring other ferrule options that have two tapered ends to improve this efficiency.

Qualitatively, the 6-DOF prototype has a quicker alignment process due to the fine pitch screws which allow for finer adjustments than in the FiberPort. The 6-DOF mount was aligned over approximately 5 minutes, whereas the FiberPort
took 15 minutes. The FiberPort alignment time is within reason based on experience with the ~10 mounts we have in our laboratory.

Reattachment

The reattachment stability of the mount is a measure of its ability to maintain alignment upon detaching and reattaching the fiber patch cable. To measure the stability, multiple trials were performed in which the output power of the 6-DOF system measured, the fiber was detached, the fiber was reattached, and the output power was measured again. In the results, shown in Figure 5, the reattachment power was more stable in the 6-DOF mount than in the FiberPort. The 6-DOF mount has fluctuations of ~10% whereas the FiberPort changes upwards of ~30%.

![FIGURE 5. Power output comparing the FiberPort and 6-DOF mount over ten reattachments.](image)

Polarization

Another important consideration for the design was trying to preserve the input polarization state. For many optical applications, a specific polarization state is desired, for example, completely vertically polarized or horizontally polarized light. This is particularly the case in interferometry applications. Ideally, a fiber launching mount would output exactly the same polarization state that is incident on the fiber. This is often not realistic due to the polarization changes induced by stresses on polarization maintaining (PM) fiber and the limited extinction ratio (>20 dB for the patch cable used in this work) [5]. Both thermally and mechanically induced stresses cause the birefringence of the fiber to be altered, changing the polarization of the light within the fiber.

One of the structural differences between the 6-DOF mount and the FiberPort is the fixed fiber ferrule connection in the 6-DOF mount. When light is focused into fiber using the FiberPort, the light is incident directly on the fiber patch cable. In the 6-DOF mount, the light is first transmitted through a fixed piece of single mode fiber in a ferrule, approximately 2 cm long, and then transmitted through the PM fiber after connecting in a fiber mating sleeve. Assessing the effects on the stability of the polarization state from this short piece of fiber is critical in qualifying the system.

An experiment, in which vertically polarized light was coupled into a PM fiber and sent to a Thorlabs polarimeter, was performed using both the 6-DOF prototype and the FiberPort. An hour long test was performed on each mount to determine the output polarization drift. Also, during the test the mount was heated and cooled to determine its thermal stability and the PM fiber was stressed mechanically as a means of comparison. The Stokes parameters were recorded and plotted on the Poincare sphere as shown in Figure 6.

The results show that the 6-DOF mount produces a more stable polarization state in the undisturbed state as well as when additional stresses are applied. The fiber-to-ferrule connection does not appear to scramble the polarization. In fact, the results suggest that due to the increased stability of the fixed ferrule, opposed to the ferrule of the fiber patch cable, the polarization state can be better maintained. This extra stability is also what allows the power through the 6-DOF mount to be a more stable output than that of the FiberPort.

Although we were able to determine that both the FiberPort and the 6-DOF mounts were able to have a relatively stable polarization state, the baseline test in Figure 7(a) shows the polarization state of the input light so we can determine if the polarization state is maintained. The input is nearly vertically polarized and has little ellipticity. Both mounts introduce ellipticity and tilt to the output polarization state. The X and Y components of the Jones vectors should have a minimum ratio of 1:10 determined by the extinction ratio of the PM fiber used and the input state [5]. This means that since vertically polarized light would have an X component of zero and a Y component of one, the fiber may introduce as much error to bring the X component to 0.1 W and the Y component to 0.9...
Figure 7(b) shows that the X component of the Jones vector for the light output from the FiberPort exceeds the range deemed acceptable from the extinction ratio; however, the fluctuations seem to be similar in size to those when the fiber was mechanically stressed. The 6-DOF mount appears to maintain the polarization state to within the limitations of the fiber at all points and has smaller fluctuations when mechanically and thermally stressed. The 6-DOF mount appears to have a more stable output polarization state, although a definite conclusion cannot be reached until a fiber with a high extinction ratio is obtained to eliminate the error introduced by the polarization maintaining fiber. At the time of writing this paper an acceptable fiber is in the process of being procured.

FIGURE 6. Stokes parameters measured over one hour for a vertically polarized beam with disturbances for the (a) FiberPort and (b) 6-DOF mount.

FIGURE 7. Comparison of the Jones vectors (left axis) and the ellipticity (right axis) measured for one hour for a vertically polarized beam from (a) Baseline of input. (b) FiberPort and (c) 6-DOF mount. The graphs are divided into sections describing the disturbances. (1) None, (2) mechanical, (3) heating and (4) cooling.
Figures 7(b) and 7(c) also demonstrate the effects of adding thermal as well as mechanical disturbances to the fiber. The heating and mechanical disturbances have severe and fast acting impacts on the fiber, while the cooling causes large but slow drift. This shows that if polarization is to be controlled, protection from outside disturbances must also be considered.

Polarization Control

The 6-DOF of the mount is supposed to provide polarization control without needing to realign the mount. To test this, the mount was tilted so that it was not at vertical polarization, the mount was rotated in five increments and data was collected at each rotation. The five states went from tilted to vertical and tilted to the other side seen in Figure 8. The sections of the graph that display large fluctuations in the Jones Vectors represent the time at which alignment was lost when adjusting the orientation of the mount.

![Graph showing Jones Vector changes](image)

Figure 8. Test of polarization control of 6-DOF mount

It was expected that when the mount was closest to vertical polarization, the X component of the jones vectors would approach zero and the Y component would approach one. The results do not clearly illustrate precise control over the polarization state of the output beam, but this may be due to the fiber being used. It is clear that the polarization state does change when the mount is moved in the 6th degree of freedom, but this precise movement cannot be qualitatively shown with corresponding changes in output polarization state because the changes being made are on the same order of magnitude as the error of the fiber. Thus the changes in polarization state cannot be shown and instead noise from the fiber is all that can be seen. Again, a fiber with a higher extinction ratio will eliminate this problem and is in process of being acquired. We have determined that the 6-DOF mount can move in all 6 DOFs, but we have not yet proved that this mount has the ability to control and change the output polarization state.

CONCLUSIONS

We have demonstrated a novel design for a 6-DOF alignment mount for fiber launching applications. We are able to produce fiber coupled light which is relatively easier to align than existing systems, has more stable power output, have a more repeatable power output when a patch cable is detached and reattached, and has more stable polarization. However, it is lacking in efficiency and the ability to control the input polarization state.

Future research into finding methods for improving the efficiency must be explored. The likely starting point for this is to use a custom ferrule with two tapered ends allowing for a better surface finish. Additionally, a fiber with a high extinction ratio will be obtained to prove that the 6-DOF of the mount allows the user to control the output polarization state.

REFERENCES

Flexural Transmission Design:
How To Change An Output For A Given Input

Marcel Thomas¹ and Martin Culpepper¹
¹Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, MA, USA

INTRODUCTION
Herein we present a design method to synthesize flexures as transmission elements to change the output type, transmission ratio, and axis of motion from a given input. This work is important for amplifying or attenuating an input displacement or load in a repeatable way and for synthesizing mechanisms where directionality is a functional requirement. This impacts nanopositioners, optical mounts, and microscopy stages [1]. The design approach and the necessary definitions are presented and illustrated through several examples.

DEFINITIONS
The definitions of a stage, input, output, axis, transmission ratio, and transmission elements used in Table 1 are necessary for understanding this work.

TABLE 1. Flexural Transmissions

<table>
<thead>
<tr>
<th>Input</th>
<th>Intermediate Stage</th>
<th>Output Type</th>
<th>Transmission Ratio (TR)</th>
<th>Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>None</td>
<td>T</td>
<td>TR > 0</td>
<td>Same</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>TR = 0</td>
<td>TR < 0</td>
<td>Off</td>
</tr>
<tr>
<td>S</td>
<td>Rigid</td>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A stage is a rigid body that follows a desired motion path. An input is the motion that is supplied to the stage by an actuator described by a twist vector (i.e., a translation, rotation, or a screw). The output is the motion of a stage that results from the input motion, also described by a twist vector. The output stage may be the same as the input stage. There may be an intermediate stage or a plurality of stages that provides the desired output. There may be multiple inputs and multiple outputs (as in [1]).

Flexural transmission elements generate an output motion from a given input motion. A transmission ratio is the ratio of output motion to input motion. These motions may be of different types, so the transmission ratio is defined as the magnitude of the output twist vector divided by the magnitude of the input twist vector. The output motion may be in the opposite direction of the input motion, which is accounted for by a minus sign in the transmission ratio.

A block diagram and an ordered set give the abstract representation of a flexure design. The complete ordered set is given in the same order as listed in Table 1: {input type(s), intermediate type(s), output type(s), transmission ratio (TR), and axis(es)}. The braces encompass the ordered set. Any missing entries are allowed to be any of the possibilities in Table 1.

The “T, R, and S” in Table 1 represent translation, rotation, and screw motions respectively. These are all possible types of motion for a 1 degree of freedom system [1]. These motions are illustrated in Table 2.

TABLE 2. Translations, Rotations, and Screws.

<table>
<thead>
<tr>
<th>Motion</th>
<th>FACT [1]</th>
<th>Example [1]</th>
<th>Block Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screw</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The blocks represent the input, output, or intermediate stage. The double-headed arrows in the block diagrams in Table 2 illustrate the bi-
directionality of the flexures. Block diagrams may also have one direction, indicated by a single-headed arrow. The intermediate stage arrows are drawn with dashed lines.

FLEXURAL TRANSMISSION DESIGN

Table 1 may be used to design flexural transmission trains by combining building blocks, illustrated in Figures 1 and 2.

Building Block Examples

The flexure designs that may be constructed from Table 1 are illustrated in subsequent examples. Some basic building blocks that will be used to construct higher order concepts are illustrated in Figure 1.

Combining Transmissions: Flexural Gears

This subsection illustrates combining flexural transmissions into a single train. The procedure is to design the bi-directional flexure stage for the input and output as disconnected pieces with motion in their respective axes, choose an intermediate stage (if necessary, or choose multiple intermediate stages) to connect them to achieve the desired transmission ratio. The flexure system that gives the necessary motion for each stage may be designed using any technique (e.g. FACT [1]). This procedure is done recursively on subsets of the inputs, outputs, and intermediate stages for multiple inputs and outputs.

This technique may be illustrated with an example of “flexural gears,” i.e. a flexure with an input rotation and output rotation that exhibits conjugate action. First the requirements of the flexural gears must be stated in terms of the ordered set: \{R, R, TR<0, off\}. The block diagrams are drawn, the stages are designed independently, and the intermediate stage are chosen with the ordered set. This procedure is visually outlined in Figure 2. The designer may now choose one of the following designs, or develop more using more intermediate stages.

REFERENCES

1. INTRODUCTION
The medical industry is a scale of 520 trillion yen, and the investigation announcement in 2013 is shown in Figure 1 as for the transition of the mortality rate seen in the cause of his/her death.

The characteristic and the structure change according to the change in an external environment, and the development of an intelligent material to be able to function is advanced in the mechnochemistry field. The research to assume base particle to be semiconductive barium titanate, to make composite particles of which glucose is ultrafine particles with mechnochemistry, and to eliminate the cancer cell at 42.5°C or more in the electromagnetic wave to the biological tissue is done. Hyperthermia to the biological tissue to do apoptosis at 42.5°C or more.

In this paper, base particle is assumed to be Ba$_{1-y}$Sr$_y$TiO$_3$, composite particles of the invasion depth of the electric wave to the biological tissue is about 34cm in 8MHz which glucose are ultrafine particles are made with mechnochemistry, and the research of the cancer cell by the hyperthermia mechanism.
2. Physical energy used to treat[1]
Table 1 shows the classification of a kind of the physical energy used to treat and the main medical equipment. The history of hyperthermia (cancer hyperthermia) is assumed to be in the proposal whether use it for the temperature more than a normal temperature to kill the selective cancer cell old in 1866. The ultrasound outside heating to which clinical is gradually applied irradiates the ultrasound directly to the biological tissue, vibrates the constituent element of the organization, and uses the principle that generates heat in frictional heat in recent years. Focusing of the ultrasound is high. However, the irradiated region should be narrow, and the reflection with the cavitation and the bone be considered while focusing is high. In the radiation therapy, there are a betatron that used the electron beam and a cyclotron that used the proton line, and it is necessary to consider effects of atomic radiation to the human body enough.

3. Hyperthermia[2]
3.1 Hyperthermic sensitivity of the cell
The hyperthermic sensitivity of the cell is various. It is various in hyperthermic like a strong cell and a weak cell, etc. On the other hand, when the hyperthermic sensitivity of the carcinoma cell that corresponds to healthy cells is compared, both do not have a so many significant differences about proliferation in active. However, the hyperthermic sensitivity decreases to healthy cells that reach a constant number of cells and stopped proliferating. Therefore, healthy cells that stopped proliferating have resistance for hyperthermic compared with the carcinoma cell that has the indefinite proliferative potential.

The hyperthermic sensitivity of the cell is remarkably influenced by the environment. The reluctance solution sugar system becomes active in the cell when nutritional contents such as oxygens and glucose decrease, and a cell environmental pH decreases.

Table 1. Kinds of physical energy and classification of therapeutic instrument.

<table>
<thead>
<tr>
<th>Physical energy</th>
<th>Electromagnetic wave · Heat</th>
<th>Ultrasonic wave</th>
<th>Radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cure</td>
<td>Hyperthermia</td>
<td>HIFU (High Intensity Focused Ultrasound)</td>
<td>Heavy ion radiotherapy</td>
</tr>
<tr>
<td>Treated area</td>
<td>Depths <100MHz, Surface layer site >100MHz</td>
<td>Depths The Ultrasonic wave is reflected by cavitation and the bone.</td>
<td>Pinpoint treatment</td>
</tr>
<tr>
<td>Subject</td>
<td>The temperature monitor of non-invasive of the part is possible by using with CT together.</td>
<td>Development of HIFU transducer</td>
<td>Problem of cancerous part title that targets problem of amount of radiation exposure</td>
</tr>
</tbody>
</table>
The hyperthermic sensitivity of the cell increases remarkably when it is influenced by the pH, and the pH is low (acid side). The cell is in the hypoxic state, and as for the central portion of a terrible tumor, the pH becomes acidity together, and the hyperthermic sensitivity increases to the tumor with an active glycolysis action of the tumor. Moreover, the effect of the heat cooling that the development of the blood vessel is insufficient, and depends in general like blood compared with healthy cells is weak to the tumor. Therefore, hyperthermia is done by hyperthermia at a temperature that is higher than the normal tissue. The feature when becoming 42°C or more though the cell inactivation action of hyperthermia is not so remarkable up to about 42°C is to increase remarkably. The purpose is not to induce the heat tolerance at 43°C or more while the cell induces the heat tolerance to this by the process of hyperthermia at 42°C or less. Healthy cells are expected so and, moreover, when the tumor is adjusted to 43°C or more, a selective antitumor effect of single hyperthermia is expected of 42°C or less.

3.2 Intellectual medicine

Figure 3 is an investigation report of perovskite structure oxide BaTiO₃ biocompatibility. Also, this Figure 3 is properties of semiconducting titanate with the PCT thermistors. [3] The Ba₁₋ₓSrₓTiO₃ heat source in this is an intelligent material that has the function as the heat source that has the Curie point in 42.5°C.

3.3 Glucose

The cancer cell uses the character to accumulate Glucose more than healthy cells by ten times or more in the cancer cell. Figure 4 irradiates the Hyperthermia medical pod (High frequency maximum output power 1,500W) to the human body of radiofreqency, and cancer cell does eliminate at 42.5°C. Figure 4 assumes the mother particle to be Ba₁₋ₓSrₓTiO₃, makes composite particles of which Glucose is ultrafine particles with mechnochemistry, and can eliminate the cancer cell at 42.5°C or more in dielectric calefactory of the biological tissue.
3.4 Biocompatibility assessment of piezo-electric material based on cell[4]

The relative cell proliferation rate at which the number of cells of Control is assumed to be 100% is shown to compare the cytotoxic activities quantitatively and Figure 5(a) and the doubling time are shown in Figure 5(b). Each evaluation value also used and calculated the number of cells of the seventh days. CaTiO₃ was the highest, and first of all, it was about 61%, and MgSiO₃ was same about 37 degrees of % when paying attention to the cell productivity as Ref. B. Moreover, BaTiO₃ was comparatively low and about 19%. On the other hand, CaSiO₃ and PZT became toxic, the same as Ref. A 0%. Next, it being able to be confirmed to CaTiO₃ that MgSiO₃ was same about 23.1 degrees of the hour of about 21 hours it as Ref. B shortest when paying attention at the doubling time. Moreover, some BaTiO₃ increases and it has been understood that it is about 26.6 hours. Therefore, the doubling time of BaTiO₃ that is an existing, nonlead piezo-electric material can be applied to a medical device as a living body agreement piezo-electric material if within 26.6 hours.

Fig 5. Comparison of experimental results obtained by the cytotoxicity test for perovskite-type oxides. (Ref. A is 0.1%ZDEC Polyurethane Film)

There are X rays CT widely used for clinical as a necessity of the non-invasive temperature measurement when Hyperthermia is treated. In figure 6, It is the one by the density change according to the thermal expansion of the organization that the CT value changes depending on the temperature. The temperature can be presumed from the changed portion of the CT value in the warming oppositely by requesting the change rate of the CT value to the temperature change of each organization beforehand.

In impedance CT, there are APT method (Applied Potential method) and NRM method (Newton-Raphson method). Especially, there is a report of research concerning the APT method having the remarkable one, and obtaining 0.5cm in the spatial resolution and having obtained about 0.2°C in all sides and temperature resolution.
5. Conclusions

The Ba$_{1-y}$Sr$_y$TiO$_3$ heat source can eliminate the cancer cell in an intelligent material that has the function as the heat source that has the curie point in 42.5°C in dielectric calefactory of the biological tissue. Healthy cells are expected so and, moreover, when the tumor is adjusted to 43°C or more, a selective antitumor effect of single hyperthermia is expected of 42°C or less. A high treatment real product can be expected that an accurate temperature can be measured with non-invasive by CT in hyperthermia operation.

References
[5]. T. Marume et al, ”Possibility of Temperature Monitoring by X-ray CT”, 440, Medical Imaging Technology vol. 7 No. 4 1989
[6]. K. Sakamoto, ”Body Temperature Imaging CT”, 696, Medical Imaging Technology vol. 13 No. 15 September 1995
INTRODUCTION
The mass manufacture of metallic micro components by micro forming is of major interest for industry and therefore represents a current research topic [1]. The influence of size effects on the achievable drawing ratio has been discussed in the literature [2]. Especially, the quality of the forming tool, i.e. the geometric accuracy and surface finish, were found to be crucial for providing a reliable forming process, even with smallest dimensions [3]. Micro milling was found suitable for the manufacture of micro forming tools made from hardened tool steel [4]. Besides the manufacture of the desired geometries, the micro milling process can be utilized to generate distinct micro structures on the machined surfaces when aligning the tool normal to the machined surface. The generation of those “quasi-deterministic” micro structures is assigned to plastic deformations of the workpiece material due to predominant low undeformed chip thickness and is mainly depending on the width of cut, the feed, and the hardness of the machined material [5]. Brinksmeier et al. demonstrated the importance of the tribological properties of micro structured surfaces generated by micro milling in strip drawing tests under dry conditions. A reduction of the coefficient of friction down to 0.21 was observed for surfaces exhibiting an average roughness Sa of 200 nm to 400 nm, compared to a polished reference (Sa ca. 30 nm) with a coefficient of friction of 0.26 [6]. The successful transfer of such micro structured surfaces to the manufacture of tribologically adapted micro forming tools is rated to be highly favorable, especially for dry forming tasks. The identification of most suitable textured surfaces characterized by 3D height parameters according to DIN EN ISO 25178 still remains a research topic. Strip drawing tests are suitable for the investigation of tribological properties of micro structured surfaces. However, testing is time-consuming, due to the alignment procedure necessary for each test. Furthermore, these tests are not suitable for long term testing. The use of a tribometer can reduce the testing time and also allows the performance of wear experiments.

This paper addresses two consecutive steps towards the investigation and application of micro structures generated by raster micro milling:

- The extension of frictional testing by the use of a micro tribometer.
- The application of those micro structures found to be most suitable in strip drawing tests for the fabrication of micro forming tools for the deep drawing of rectangular micro cups.

TRIBOLOGICAL INVESTIGATION OF MICRO STRUCTURED SURFACES
For the tribological investigation of micro structured surfaces, sintered 1.2379 (X153CrVMo12) cold working steel with a hardness of 60 HRC ± 0.6 HRC was used as sample material. This material is suitable for micro forming tools and is characterized by a fine grained micro structure. The manufacture of the micro structured surfaces was carried out on a DMG Sauer US 20 linear micro milling machine tool. Cooling fluid was applied during machining. Each micro structured area was a square 10 mm x 10 mm. Tungsten carbide ball-end mills of 0.5 mm diameter were applied. The tool was aligned normal to the machined surface to enforce the generation of quasi-deterministic structures. The feed velocity \(v_f\), the rotational speed \(n\), and the cutting depth \(a_p\) were kept constant at \(v_f = 1.500 \text{ mm/min}, \ n = 40,000 \text{ min}^{-1}\), and \(a_p = 10 \mu\text{m}\), respectively. The width of cut \(a_e\) was varied (\(a_e = 10 \mu\text{m}, 20 \mu\text{m}, 30 \mu\text{m}\) and \(40 \mu\text{m}\)) as well as the cutting strategy (up- and down-milling) resulting in eight different micro structured sample surfaces. The plowing effect played a dominant role for achieving the desired roughness values. An overview of the cutting parameters is given in Table 1.
TABLE 1. Sample numbers and cutting parameters.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Width of cut ae (in µm)</th>
<th>Milling strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>up-milling</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>up-milling</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>up-milling</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>up-milling</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>down-milling</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>down-milling</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>down-milling</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>down-milling</td>
</tr>
</tbody>
</table>

RESULTS

Surface Topography

The machined surfaces were measured at three different positions by an optical profilometer (Sensofar PLu 2300) with a lateral and vertical resolution of 100 nm and 2 nm, respectively. The raw data were processed by an image processor (Scanning Probe Image Processor, SPIP™) to derive 3D height parameters according to DIN EN ISO 25178. Two selected 2½D plots of generated micro structured surfaces are displayed in Figure 1.

![FIGURE 1. Two selected 2½D plots of micro structured surfaces generated by micro milling, width of cut ae = 10 µm (a) and ae = 40 µm (b), both generated by down-milling.](image)

The surface roughness parameters derived from the measurements are the height parameter arithmetical mean height Sa and ten point height S10z as well as and the function related parameters: reduced summit height Spk, core roughness depth Sk, and reduced valley depth Svk obtained from the Abbot curve. An overview of the roughness measurement results for all sample surfaces is given in Table 2. Each value is the average of three single measurements. The maximum deviation of the results was less then ± 10 %.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Roughness parameter (all in nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sa</td>
</tr>
<tr>
<td>1</td>
<td>286</td>
</tr>
<tr>
<td>2</td>
<td>406</td>
</tr>
<tr>
<td>3</td>
<td>825</td>
</tr>
<tr>
<td>4</td>
<td>804</td>
</tr>
<tr>
<td>5</td>
<td>112</td>
</tr>
<tr>
<td>6</td>
<td>342</td>
</tr>
<tr>
<td>7</td>
<td>798</td>
</tr>
<tr>
<td>8</td>
<td>583</td>
</tr>
</tbody>
</table>

Frictional Testing

The determination of the friction coefficients µ of the micro structured surfaces was carried out using a micro tribometer (Tetra BASALT MUST) with alternating linear motion vlin. A 6 mm diameter 100Cr6 hardened steel ball (hardness 60 HRC) with polished surface finish was used for frictional testing. An overview of the test setup is given in Figure 2.

![FIGURE 2. Setup for frictional testing on a micro tribometer.](image)

The normal force F_N applied for testing was set at 100 mN. The testing direction with respect to the micro structured surface was always perpendicular to the feed direction of the micro milling process. The stroke length of the linear motion was 8 mm and the test velocity vlin was 5 mm/s. One test procedure included 30 cycles of forward and backward motion. During the movement of the sample the applied normal force F_N and the resulting frictional force F_R were recorded. 100 data points were collected for each forward and backward motion. The average values of the coefficient of friction µ as
well as the maximum and minimum deviation were calculated for each forward and backward motion from the measured normal and frictional forces. All measurements were repeated once. The measured coefficient of friction \(\mu \) for all experiments increased within the first eight to twelve cycles. For example, the results of the frictional testing of the samples 5 and 8 as a function of the number of cycles are shown in Figure 3. Since the results for the forward and backward motions are almost identical, only the results of the forward motion are displayed.

After the tenth cycle the measured coefficient of friction is approaching a constant value. For the micro structured samples 1, 3, 4, 6, and 7 a pronounced stick-slip effect was detected resulting in a larger deviation of the measured coefficient of friction for each cycle. The results of the frictional testing for each sample surface are given in Table 3. The values are the averages of two testing sequences, derived from the coefficient of friction for cycle number greater than 20.

Correlation of frictional behavior and 3D height parameters

The correlation of the measured coefficient of friction \(\mu \) as a function of the height parameter arithmetical mean height \(S_a \) and \(S_{10z} \) is shown in Figure 4.

The maximum coefficient of friction was measured for a relatively smooth surface with \(S_a = 112 \text{ nm} \) \(\text{an } S_{10z} = 888 \text{ nm} \). The minimum coefficient of friction was measured for a surface with \(S_a \) equal 406 nm. Even higher values of the surface roughness \(S_a \) lead to an increase of the coefficient of friction. Large error bars are due to stick-slip.

The correlation of reduced summit height \(S_{pk} \), the core roughness depth \(S_k \), and the reduced valley depth \(S_{vk} \) with the measured coefficient of friction \(\mu \) is shown in Figure 5.
FIGURE 5. Measured coefficient of friction μ and maximum deviation as a function of the reduced summit height Spk (a), core roughness depth Sk (b), and reduced valley depth Svk (c).

In contrast to the surface roughness parameters, there does not seem to exist a correlation of the function related parameters Spk, Sk, and Svk with the coefficient of friction.

MANUFACTURE OF MICRO FORMING TOOLS WITH WELL-DEFINED TRIBOLOGICAL PROPERTIES

Hardened cold working steel 1.2379 (60 HRC ± 0.6 HRC) was chosen for the manufacture of micro deep drawing dies with well-defined tribological properties. Two dies were manufactured, with identical geometry of the drawing cavity as shown in Figure 6 (a). The cavity was generated by EDM. One of the dies was polished (Sa 20 nm) to serve as a reference in the deep drawing experiments. The second die was micro structured with a 1.5 mm diameter ball-end mill, feed velocity $v_f = 600$ mm/min, rotational speed $n = 25,500$ min$^{-1}$, depth of cut $a_p = 60$ μm, and width of cut $a_e = 30$ μm. The cutting strategy was down-milling.

FIGURE 6. Design of drawing cavity (a), and topography of micro structured area (b).

Figure 6 (b) shows the resulting quasi-deterministic surface structure. The machining parameters were selected in order to create a super-structure oriented under approximately 45° relative to the feed direction (red lines in Figure 6 (b)). The plano surface of the die around the drawing cavity was subdivided into four quadrants. Each quadrant was structured so that the super-structure was oriented approximately perpendicular to the flow direction of the metal sheet near the corners of the die, since along this direction the highest shear stress is expected in the drawn sheet material resulting in high loads on the tool during the deep drawing process [7]. A low coefficient of friction $\mu = 0.21$ was obtained with a surface roughness $Sa = 295$ nm [6]. At last, a drawing edge radius of 0.12 mm was manufactured by a micro milling process with a 0.3 mm diameter ball end mill.

A 15 μm thick sheet of Al99.5 was chosen for the drawing tests. The geometry of the blanks shown in Figure 7 was derived by an FEM simulation [8]. The length l, the width w, and the radius r required for different drawing ratios β_0 are given in Table 4.

FIGURE 7. Design of blanks for micro deep drawing of rectangular cups.
TABLE 4. Blank geometry for different drawing ratios (DR).

<table>
<thead>
<tr>
<th>DR (\beta_0)</th>
<th>Geometric parameters (all in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>radius (r)</td>
</tr>
<tr>
<td>1.3</td>
<td>0.616</td>
</tr>
<tr>
<td>1.4</td>
<td>0.663</td>
</tr>
<tr>
<td>1.5</td>
<td>0.711</td>
</tr>
<tr>
<td>1.6</td>
<td>0.758</td>
</tr>
<tr>
<td>1.7</td>
<td>0.805</td>
</tr>
</tbody>
</table>

The experiments were carried out on a two-axis micro forming press. The blank holder (polished surface) is driven by the lower axis. An integrated force transducer allows the precise setting of the blank holder force. The blank holder pressure \(p_{bh} \) applied to the blank before the actual drawing sequence is calculated from the clamped area of the blanks and the blank holder force and was varied between 0.5 and 1.0 N/mm\(^2\). Generally, higher blank holder pressures are favorable to avoid wrinkles on drawn parts but also increase the probability of cup base fracture. The drawing speed was kept constant for all experiments a 10 mm/s. *Renoform HBO 947/11* oil was used as lubricant. The blanks were positioned manually on the drawing die. After the drawing process the micro cups were investigated with an optical microscope. Parts exhibiting drawing defects such as base or wall fractures, or wrinkles, were refused.

RESULTS OF THE DRAWING TESTS

Figures 8 (a) and (b) show the distribution of accepted and refused micro cups for the polished and the structured die, respectively. Refused parts could not be avoided by any of the combinations of blank holder pressure \(p_{bh} \) and drawing ratio \(\beta_0 \). Best results for the structured die were found for a blank holder pressure \(p_{bh} = 0.5 \) MPa and a drawing ratio \(\beta_0 = 1.5 \). However, no accepted parts were obtained at a blank holder pressure of 1.0 MPa. Additional experiments with a \(p_{bh} \) of 0.25 MPa and a drawing ratio \(\beta_0 \) of 1.6 yielded only one accepted part out of ten.

DISCUSSION

The tribological properties of structured surfaces generated by micro milling were investigated by means of a micro tribometer. The measured coefficients of friction spread over a wide range from \(\mu = 0.22 \) to 1.32. This can be attributed to the adhesion of the 100Cr6 hardened steel ball of the tribometer and the hardened tool steel samples leading to a stick-slip during the measurement.

FIGURE 8. Distribution of accepted (white) and refused (black) micro cups as a function of drawing ratios \(\beta_0 \) and blank holder reassure \(p_{bh} \) for the polished die (a) and the micro structured die (b).
Nevertheless, a correlation between the coefficient of friction μ and the surface height parameters S_a and S_{10z} can be observed. The lowest value of μ was obtained for a surface with an arithmetical mean height $S_a = 406$ nm. A correlation between the coefficient of friction μ and the function related parameters S_{pk}, S_k, and S_{vk} could not be observed. Further investigation dealing with the correlation of the 3D roughness parameters and the tribological performance of micro structured surfaces should comprise a change of the ball material used for the testing procedure on the tribometer. For example, aluminum or copper balls would correspond to the sheet material used for actual micro deep drawing tests.

Deep drawing tests of rectangular micro cups were carried out with a micro structured deep drawing die and a polish reference die. So far, a clear difference in the performance of the micro structured and the polished die cannot be observed. The micro structured die did not allow to increase the achievable drawing ratio. A wide distribution of acceptable and refused parts could be observed for both dies. This is drawn back to inaccurate punch and die alignment. Furthermore, the manual positioning of the blanks over the drawing cavity is expected to have a major influence on the deep drawing results. Before conducting further deep drawing tests to evaluate the tribological performance of micro structured surfaces, it is necessary to provide a more accurate setup that allows for deep drawing of acceptable rectangular micro cups.

ACKNOWLEDGEMENT

The authors would like to thank the German Research Foundation (Deutsche Forschungsgemeinschaft “DFG”) for funding this work within sub-project C2 “Surface Optimization” of the Collaborative Research Centre 747 “Micro Cold Forming - Processes, Characterisation, Optimisation” at the University of Bremen.

REFERENCES

DEPENDENCE OF THE CUTTING FORCES ON CUTTING SPEED IN HIGH SPEED DIAMOND TURNING

Ekkard Brinksmeier1, Inken Ohlsen1, and Werner Preuss1
1LFM Laboratory for Precision Machining
University of Bremen
Bremen, Germany

With the advent of high speed air-bearing spindles \cite{1} diamond turning and milling at extremely high cutting speeds has become available which cuts down machining times of aspherical surfaces by an order of magnitude \cite{2}. However, little is known about cutting forces and diamond tool wear in high speed diamond machining.

In this paper we have investigated the dependence of the cutting forces on cutting speed \(v_c\) in diamond turning covering the transition from cutting at ordinary speeds to high speed cutting (HSC), i.e. in the range between 0.15 km/min and 4.5 km/min. The cutting forces were recorded as a continuous function of the cutting speed in a face turning operation at high spindle speed (9,600 rpm), cf. Fig. 1. The material removal rate was kept constant by decreasing the feed velocity inversely proportional to the distance from the turning center.

The experiments were carried out with three different workpiece materials, i.e. electroless nickel, brass CuZn39Pb3 and aluminum AlMg3, and two different kinds of tools, i.e. single crystal diamond tools with nose radius \(r_n = 0.76\) mm, and carbide tools. The depth of cut was varied between 30 \(\mu\)m and 150 \(\mu\)m.

For electroless nickel and brass an exponential decrease of the cutting force with increasing cutting speed was observed exhibiting a distinct starting point (marked A in the figures) which shifts towards lower cutting speeds with increasing depth of cut (cf. Fig. 2).

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Face turning experiments with increasing cutting speed on a Nanotech 350 FG.}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig2.png}
\caption{Face turning of brass with a carbide tool. Constant material removal rate MRR = 200 \(\text{mm}^3/\text{min}\). Cutting, thrust and feed forces vs. cutting speed for depth of cut \(a_p = 50\) \(\mu\)m (top) and 150 \(\mu\)m (bottom). HSC transition point (marked A) shifting to lower cutting speed with increasing depth of cut.}
\end{figure}
This confirms the observation in conventional HSC machining which is characterized by an exponential decrease of the cutting forces with increasing cutting speed attributed to adiabatic shearing of the workpiece material in the cutting zone at high cutting speeds [3]. It was found that a similar transition from non-adiabatic to adiabatic shearing also exists in diamond turning, albeit the transition is only recognizable for depths of cut larger than approx. 20 µm (cf. Fig. 3).

The cutting forces vs. cutting speed recorded in turning of brass are similar to those obtained with electroless nickel. Surprisingly, in the case of aluminum, the thrust force is constantly increasing with cutting speed (cf. Fig. 4).

It was found that the cutting, thrust and feed forces depend in a complex way on the cutting speed, the cross-section of the uncut chip, and on material properties, even if the material removal rate is kept constant. Future experiments will be designed to elucidate the origin of the threshold value of the cutting speed prompting an exponential decrease of the cutting force observed with electroless nickel and brass, and the absence of an exponential decrease in the case of aluminum.

ACKNOWLEDGMENT
This work was funded by the German Science Foundation as part of the research project FOR 1845.

REFERENCES
The rate of surface generation in high speed diamond milling \((v_c > 1 \text{ km/min})\) can be even higher than in non-circular diamond turning [1]. Hence high speed raster milling bears the potential of outranking fast tool servo and slow slide servo turning in the generation of free-form surfaces. The crucial question, however, is whether the wear rate of the diamond tools is acceptable in high speed raster milling.

We have measured the flank wear land FWL and the tool tip radius \(r_\varepsilon\) of pointed diamond knives used for milling of V-grooves as a function of cutting distance at ordinary cutting speed \((v_c = 0.4 \text{ km/min})\) and at very high cutting speed \((4.0 \text{ km/min})\). The experimental set-up is shown in Fig. 1. After equal cutting distances the machining of the grooves was interrupted for evaluating the geometry of the tool tip with an atomic force microscope [2], cf. Fig. 2. The experiments were performed with three different materials, i.e. brass CuZn39Pb3, electroless nickel and aluminum AlMg3.

![FIGURE 2. AFM images of a new (left) and a worn diamond tool (right) used for flycutting of V-grooves.](image)

![FIGURE 3a. Measured flank wear land FWL vs. cutting distance \(L_c\) for electroless nickel and brass.](image)

Figs. 3a and 3b show the measured flank wear land FWL and tool tip radius \(r_\varepsilon\), resp., as a function of the cutting distance \(L_c\) for electroless nickel and brass.
Both FWL and r_e increase approx. linearly with increasing cutting distance. Interestingly, flank wear is significantly smaller for the high cutting speed $v_c = 4.0$ km/min, although the material removal rate was 10 times higher. (The total volume removed was equal). Also, the wear rates (slopes in Fig. 3a) are smaller for the high cutting speed. The observed wear reduction is reflected in the increase of the tool tip radius, at least for electroless nickel (cf. Fig. 3b), which is an important result regarding the fabrication of micro prisms [3]. Another observation asking for an explanation is the wear rate obtained for aluminum, which is an order of magnitude higher than for brass and electroless nickel (cf. Fig. 4).

ACKNOWLEDGMENT
This work was funded by the German Science Foundation as part of the research project FOR 1845.

REFERENCES

Z.C. Cao¹ and C.F. Cheung¹,*
¹ Partner State Key Laboratory of Ultra-precision Machining Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

ABSTRACT
This paper presents a study of the materials removal mechanisms in Fluid Jet Polishing (FJP) based on Computational Fluid Dynamics (CFD) modelling method. A CFD model has been established to analyze the hydrodynamic conditions in FJP. Some preliminary simulation and polishing experiments have been conducted to better understand the effect of some important parameters on the material removal rate in the FJP process. The simulation results are found to agree reasonably well with the experimental results.

Keywords: Fluid Jet Polishing, Computational Fluid Dynamics, Ultra-precision Machining, Materials Removal Mechanism

1. INTRODUCTION
Fluid Jet Polishing (FJP) makes use of an inclined adjustable nozzle to guide a premixed slurry to the workpiece at an appropriate speed [1-3]. In the recent years, FJP has not only been used for removing the surface blemishes so as to achieve superfinish surfaces, but also been used for controlling the form accuracy of machined surfaces. Nowadays, the achievement of a super mirror finish and form accuracy in FJP still depends largely on the experience and skill of the machine operator through an expensive trial-and-error polishing tests when new materials, new surface designs or new machine tools are used. There is a need to better understand the materials removal mechanisms and hence establish a model to predict the surface generation in FJP.

In the FJP process, the material removal is affected by several process and materials parameters such as the slurry concentration, the particle size, the particle type, the slurry pressure, the machining time, the impingement angle, the standoff distance, etc. They are all related to the material removal characteristics and hence determine the final surface generation. In fact, the material removal mechanisms depend not only on the material properties of the workpiece and the nature of the slurry particles, but also on the conditions under which the particles impact the workpiece.

As a result, the erosion conditions, which play an essential role in the material removal process, should be further studied to better understand the material removal mechanisms in FJP. To solve this problem, a Computational Fluid Dynamics (CFD) model is built which attempts to analyze the hydrodynamic conditions in the polishing process, and a series of experimental investigations have been conducted to study the effect of some important parameters on the material removal rate in FJP process.

2. MODELLING OF FJP
Computational Fluid Dynamics (CFD) has been widely used to predict fluid flow fields and erosion phenomena in the production and transportation of slurries. However, the material removal mechanism of solid particle erosion in fluid transport system should be different from that occurred in FJP system. This is due to significant difference in particle size between sands and abrasives. In theory, the particle size could affect the deviation between the trajectories of the particle and streamlines of the flow field.

According to the multiphase fluid theory, the CFD model was established using Fluent commercial simulation software. The flow field in the vertical FJP process can be assumed as a two-dimensional, incompressible, steady axisymmetric turbulent flow with constant properties and temperature conditions. Hence, for the configuration of 90° nominal impingement angle, 2D CFD model was used to simulate the jet characteristics of flow field in FJP for the optimum use of computational resources. The erosion conditions, which play an essential role in the simulation of surface generation in FJP, have been analyzed using CFD simulations from two aspects which include quantitative analysis and qualitative analysis. In the quantitative
analysis, the distribution of various factors affecting material removal in FJP is delivered and discussed to identify the major factors, and to further study the material removal mechanisms. In the qualitative analysis, different velocities are considered using the CFD simulation model, which helps to identify important parameters that affect material removal rate in the FJP process and establish a good connection between the macroscopic process parameters and the microscopic fluid dynamic characteristics.

3. EXPERIMENTAL INVESTIGATION

FIGURE 1 shows the polishing machine used to conduct the polishing experiments which is the Zeeko IRP 200 ultra-precision freeform polishing machine equipped with three linear axes and three rotational axes, respectively. The slurry nozzle is assembled on the main spindle (but does not rotates), while the workpiece is fixed on the C axis. The current polishing experiments were performed on optical glass BK7. The polished surface made of BK7, a glass material, was measured by a contact 3D profiler system named Form Talysurf from Taylor Hobson Ltd, UK, as shown in FIGURE 2. The specimens were polished using Al₂O₃ and Ce₂O₃ abrasive particles.

3. EXPERIMENTAL INVESTIGATION

FIGURE 1 shows the polishing machine used to conduct the polishing experiments which is the Zeeko IRP 200 ultra-precision freeform polishing machine equipped with three linear axes and three rotational axes, respectively. The slurry nozzle is assembled on the main spindle (but does not rotates), while the workpiece is fixed on the C axis. The current polishing experiments were performed on optical glass BK7. The polished surface made of BK7, a glass material, was measured by a contact 3D profiler system named Form Talysurf from Taylor Hobson Ltd, UK, as shown in FIGURE 2. The specimens were polished using Al₂O₃ and Ce₂O₃ abrasive particles.

4. RESULTS AND DISCUSSION

As shown in FIGURE 3, the red area represents the Al₂O₃ slurry and the blue area represents the surrounding air in FJP. Due to the effects of surface tension along the slurry-air interface, it is interesting to note that, the density of the interface is of a gradual transition. This infers that some bubbles may be entrained in the jetting slurry and there might be expansion of the fluid jet after leaving the nozzle or a conic shape for the fluid jet.

FIGURE 3. (Contour online) Density field(kg/m³) distribution of the CFD simulation.

FIGURE 4 shows the pressure field of the CFD simulation in the FJP process. It is stated that high pressure focuses on the shrinkage aperture of the nozzle and the impact area between the slurry and the workpiece.

FIGURE 4. (Contour online) Pressure field (Pa) distribution of the CFD simulation.

FIGURE 5 shows the distribution of the velocity in the FJP process, which indicates that the velocity is increased in the shrinkage area of the nozzle and it arrives at a maximum when the slurry jets out of the nozzle. A relatively small velocity occurs at the centre of the impact area and hence the minimum material removal is obtained. Since the maximum velocity of abrasive particles impacting on the workpiece is smaller than 30 m per second, the kinetic energy is lower than the elastic limit of the polished material with a consideration of the particle size less than 50 μm. As a result, the material removal occurred in FJP tends to be in a ductile regime. This is very meaningful for
manufacturing the brittle and hard-to-machined materials in order to avoid the microcracks and achieve the super mirror finished surfaces.

FIGURE 5. (Contour online) Velocity field (m/s) distribution of the CFD simulation.

FIGURE 6. (Contour online) Slurry concentration field (m/s) distribution of the CFD simulation.

The repeated impact of the abrasive particles is commonly regarded as the main reason for material removal occurred in FJP. Since the pressure of the FJP system is relative low, the material removal caused by the impact of the water can be ignored. However, the kinetic energy of the abrasive particles is effected by the hydrodynamic conditions in the FJP process. As a result, the understanding of the erosion conditions in the impact area is required for the further study of the material removal mechanisms.

FIGURE 7 shows four important parameters, which reflect the erosion conditions in the impact area. They may determine the material removal characteristics in FJP. As it can be seen in **FIGURE 7(a)**, the pressure is the highest at the center of the impact area and hence the pressure is at its maximum value at position of $x=0$ mm. The pressure area is about 2 mm in radius and there is on pressure forced on the polished surface outside this pressure area. **FIGURE 7(b)** shows the dynamic pressure distribution of the impact area. Dynamic pressure is the pressure of a fluid that results from its motion and can be defined by $q = \rho v^2 / 2$ (q is dynamic pressure in pascals, ρ is fluid density in kg/m3 and v is fluid velocity in m/s). Dynamic pressure, which is the kinetic energy per unit volume of a fluid particle, is at the smallest at the center point of the impact area and arrives the maximum value at the position of $x=1.7$ mm. **FIGURE 7(c)** shows the shear stress distribution of the impact area. Shear stress is forced by the moving slurry alonge the polished surface and is given by $\tau_w = \mu \left(\frac{\partial u}{\partial y} \right)_{y=0}$. τ_w is the wall shear stress, μ is the dynamic viscosity, u is the flow velocity parallel to the wall and y is the distance to the wall. It is stated that the change tendency of the shear stress is similar to that of the dynamic pressure. **FIGURE 7(d)** shows the turbulent intensity distribution of the impact area. The turbulence intensity, also often refered to as turbulence level, is defined as the ratio of the root-mean-square of the velocity fluctuations to the mean flow velocity. The turbulence intensity is greater than 10% at the area of a circle with the radius of 0.5 mm and is relative low outside the area of a circle with the radius of 2 mm.

According to the above analysis of erosion conditions for the impact area, it can be divided into four parts as shown in **TABLE 1**. As shown in **FIGURE 8**, the stagnant area, pressure jet area and shear stress jet area belong to the impact area. Although the pressure is very high in the stagnant area, the amount of material removal is very small due to the low kinetic energy of the jetting slurry. In the pressure jet area, the material removal rate increases with the increasing kinetic energy of the jetting slurry.
TABLE 1. Category of the erosion conditions of the impact area.

<table>
<thead>
<tr>
<th>Category</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stagnant area</td>
<td>high pressure, low kinetic energy, high turbulent intensity</td>
</tr>
<tr>
<td>Pressure jet area</td>
<td>medium pressure, medium kinetic energy, medium turbulent intensity</td>
</tr>
<tr>
<td>Shear stress jet area</td>
<td>low pressure, high kinetic energy, medium turbulent intensity</td>
</tr>
<tr>
<td>Low turbulence area</td>
<td>no pressure, medium kinetic energy, low turbulent intensity</td>
</tr>
</tbody>
</table>

Due to high pressure in the pressure jet area, the change trend of the material removal rate is mainly affected by the varied kinetic energy of the jetting slurry. In the shear stress jet area, although the kinetic energy of the jetting slurry is very high, the decreasing pressure tends to be the main factor affecting the variation of the material removal amount. In low turbulence area, since the pressure and turbulent intensity are very low, the material removal can be neglected. This can not only be explained well by the W-shape profile of the material removal characteristics in FJP but can be validated by the following experiment.

FIGURE 7. (a) static pressure, (b) dynamic pressure, (c) shear stress and (d) turbulent intensity distribution of the impact area.

An experiment was carried out for generating material removal characteristics for brittle glass, BK7, which generally cannot be machined by diamond cutting process. The experimental parameters used in the experiment are summarised in TABLE 2.

TABLE 2. The experimental parameters used in FJP

<table>
<thead>
<tr>
<th>Workpiece Material</th>
<th>BK7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset distance</td>
<td>8 mm</td>
</tr>
<tr>
<td>Slurry property</td>
<td>Cerox 1.5μm</td>
</tr>
<tr>
<td>Nozzle size</td>
<td>0.75 mm</td>
</tr>
<tr>
<td>Precess Angle</td>
<td>0°</td>
</tr>
<tr>
<td>Dwell time</td>
<td>180 s</td>
</tr>
</tbody>
</table>

FIGURE 9 shows the measured material removal characteristics of the experimental result. FIGURE 9(a) shows the 3D topography, while that for cross-section profile is shown in FIGURE 9(b). The central point of the polishing tends to be the stagnant point, where the pressure is the highest and the velocity is the smallest and can be approximately equivalent to
zero. It is interesting to note that the central point of polishing, i.e. centre of fluid jet, has the minimum material removal rate.

As shown in FIGURE 9(a), the red area of a circle with a radius of 0.5 mm is the stagnant area and hence the material removal amount is very small. The annular region from 0.5 mm to 1 mm is the pressure jet area. In this area, the material removal rate increases with the increasing kinetic energy of the jetting slurry and the maximum material removal is observed at the position of about 1 mm from the centre. The annular region from 1 mm to 2 mm is the shear stress jet area. In this area, the material removal amount has a declining trend due to the decline of the pressure. There is almost no material removal outside the area of a circle with the radius of 2 mm (low turbulence area).

The effect of jet velocity was studied by the CFD simulations. As shown in FIGURE 10, the results of the CFD simulations infer that the pressure and shear stress at various positions is different, and this is why the W-shaped spot profile occurs. Moreover, the slope of the pressure and shear stress curves with respect to the jet velocity at various positions is different, which infers that different W-shaped spot profiles would be generated with different jet velocities.
curve at different position; (f) Shear stress curve at different position.

5. CONCLUSIONS
Fluid Jet Polishing (FJP) is an enabling ultra-precision machining process which is widely used in superfinishing freeform surfaces made of difficult-to-machine materials. However, our understanding of the materials removal mechanisms and nano-mechanics are still far from complete.

This paper attempts to study the material removal mechanisms for FJP using Computational Fluid Dynamic (CFD) modelling. A CFD model has been built to analyze the hydrodynamic conditions in the polishing process. The erosion conditions in the polished surface can be divided into four parts including: the stagnant area, the pressure jet area, the shear stress jet area and the low turbulence area. This can explain the W-shape profile of the material removal well and be validated by the corresponding experiment. The erosion conditions using various jet velocities were studied using CFD simulations. The simulation results infer that different W-shaped spot profiles would be generated under different jet velocities. The study demonstrates that the CFD simulation can help to identify important parameters that affect material removal rate in the FJP process. It shed some light to establish a good connection between the macroscopic process parameters and the microscopic fluid dynamic characteristics.

ACKNOWLEDGEMENT
The work described in this paper was fully supported by a grant from the Research Grants Council of the Government of the Hong Kong Special Administrative Region, China (Project No.: PolyU 5132/11E). The authors would also like to express their sincere thanks to the Research Committee of The Hong Kong Polytechnic University for the financial support for the project (Project Code: RTC3).

REFERENCES
THE OPTIMAL METHOD OF CUTTING PATH PLANNING
OF COMPLEX OPTICAL SURFACE BY USING FAST TOOL SERVO
AND ANALYSIS OF HERMITE INTERPOLATION

Jianjun D.¹, Zhanwen S.², Jin Z.³, Changlin L.⁴
¹, ², ³, ⁴ Shenzhen Graduate School
Harbin Institute of Technology
Shenzhen, Guangdong province, China

INSTRUCTIONS
Machining precision of optimal free-form surface depends not only on the accuracy and performance of machine tool but on the quality of cutting path planning [¹-³]. Traditionally, cutting path are planned by calculating the discrete cutter contact tool path based on the principle of preserving scallop height and then work out the corresponding cutter location points according to the tool offset [⁴-⁵]. As to single-shaft FTS system, this compensation method will cause micro vibration on the guide along x and z axis with the surface normal changing, and cannot get a constant feeding speed along x axis in the turning process. Some researchers develop this method by conducting error compensating to x and z direction guide simultaneously. Although diminishing the vibration along x-axis, the method enhances the vibration along z axial and can cause a conflict between preserving constant feeding rate in the x direction and preserving consistent scallop height of the finished surface [⁶].

In the view of above problems, the paper presents a deep research into the relationship between the radial space of cutter location points and the surface scallop height, proposing a new path planning method which aims at cutter location points directly and preserves scallop height by limiting radial space of cutter location points. Discrete cutter location points by uniform radial interval, and get cutter contact points through inverse solution, and finally ascertain the coordinates of cutter location points. Discrete cutter location points are interpolated by PVT mode provided by UMAC controller, and a simple algorithm about entrance velocity parameters is proposed [⁷]. The mathematical theory of PVT interpolation is segmented cubic Hermite polynomials. The cutting path of traditional optical free-form surface is planned and simulated in this paper by establishing Hermite mathematical model. The compared with linear interpolation, the error between the planned cutting path and the ideal cutting path is calculated and the dynamic performances of z guide is analyzed.

OPTIMAL METHOD OF UNIFORM RADIAL INTERVAL PATH PLANNING METHOD
Traditionally, the discrete principle of the radial interval of cutter position contains uniform radial interval and constant scallop height. They both have their own drawback.

CUTTER LOCATION SPACING RANGE CALCULATION
Known by FTS turning mechanism, Tool path on the workpiece is a space spiral line changing with surface type. The surface topography of the workpiece in the radial direction manifests as the shear of two adjacent cutting profiles. Surface roughness mainly depends on the height of cutter scallop area. To ensure the scallop height of processing surface by radial intervals of the cutter location points, it is necessary to work out the relationship between the scallop height and the corresponding radial interval of cutter location point. Formulas in this paper is applied only to the diamond turning tool which has zero degree front angle, cone back angle, and arc blade.

The expression of free-form surface under polar coordinate is \(z = f(r, \theta) \), and the coordinates of the i-th lap and the j-th cutter location point \(Q_y \) and its corresponding cutter contact point \(P_y \) are represented respectively as \((r_{ij}, \theta_y, z_y)\) and \((r_y, \theta_y, z_y)\), and if the front angle is zero, \(\theta_y \) is equal to \(\theta_{ij} \). In the circumferential direction, cutter location points are discrete into \(K \) parts uniformly, so the interval angle between any two adjacent points is \(\Delta \theta = 2\pi / K \), and the first cutter location point on the outmost lap of the workpiece is defined as zero degree. The expression of radial transversal passing through the cutter contact point \(P_y \) is \(z_j = f(r, \theta_j) \), where \(\theta_j = (j-1)\Delta \theta \).

Consequently, radial transversal of the processing surface has three types of curve segment: straight line segment \((\ddot{z} = 0)\), convex curve segment \((\ddot{z} < 0)\) and concave curve segment \((\ddot{z} > 0)\). For convex surface, as an example, as described in the figure 1, \(H \) is the scallop height, \(r_y \) is the tool nose radius, \(\phi_y \) is the angle between the radial direction and the line connecting of two radial adjacent cutter location points. \(L_y \) is the distance between the two adjacent cutter location points. \(L'_{ij} \) is the radial distance between the two adjacent cutter location points.

\[
\text{FIGURE 1. Radial transversal}
\]

\(R_y \) is the curvature radius of the cutter location point \(P_y \) on the radial transversal of the processing surface. As is the radial distance between the two adjacent cutter location points is little, curvature radiuses of the two adjacent cutter location points are considered in the same size. As \(H \ll R_y \), neglecting \(H \) which has higher order.

We can get the relationship between \(H \) and \(L'_{ij} \) from the geometric relations in the figure.

a, straight line segment,

\[
(\ddot{z} = 0): L'_{ij} = 2\cos(\arctan(\dot{z}_j)) \sqrt{2r_{ij} H}
\]

(1)

b, Convex curve segment \((\ddot{z} < 0)\):
\[
L'_y = \frac{8r_y H R_y (r_y + R_y)}{R_y} \cos[\arcsin \left(\frac{2r_y H}{(r_y + R_y)R_y} - \arctan(\dot{z}_y) \right)]
\]

(2)

c. Concave curve segment (\(\dot{z} > 0\)):

\[
L'_y = \frac{8r_y H R_y (R_y - r_y)}{R_y} \cos[\arcsin \left(\frac{2r_y H}{(r_y + R_y)R_y} + \arctan(\dot{z}_y) \right)]
\]

(3)

The formula means that the result is the maximum value of the radial interval of cutter location point when it has scallop height H. Assuming that the radius of the workpiece is \(R_y\), \(L'_y(r, \theta)\) has a minimum value in the area of the work piece surface.

\[
l_{\text{min}} = \min[L'_y(r, \theta)] \quad (0 \leq r \leq R_y, 0 \leq \theta \leq 2\pi)
\]

(4)

So as long as the radial interval of the cutter location point within the workpiece is not bigger than \(l_{\text{min}}\), the scallop height must be not more than the set value H. Discrete the workpiece radius into \(n\) equal parts by \(l_{\text{min}}\).

\[
n = \left[\frac{R_y}{l_{\text{min}}} \right]
\]

Finally, the coordinates of all the discrete cutter location points \(Q_y\) on the processing space spiral line are:

\[
\theta'_y = 2\pi(i - 1) + \Delta \theta(j - 1) \quad (1 \leq i \leq n, 1 \leq j \leq K)
\]

\[
r'_y = R_y - \left(\theta'_y / 2\pi \right) \times l_{\text{min}}
\]

(5)

So, the whole processing path are divided into \(K\times N\) segments by the discrete cutter location points.

Coordinates Calculation Of Cutter Location Points

It is necessary to work out the coordinates of \(P_y\) through inverse solution, in order to calculate the coordinate \(z'_y\) of the cutter location point \(Q_y\).

The tools compensation formulas for the arc tool which has zero front angle are:

\[
\begin{align*}
\rho'_y &= r_y - r_y \sin(\arctan(\dot{z}_y)) \\
\theta'_y &= \theta_y \\
z'_y &= z_y + r \cos(\arctan(\dot{z}_y))
\end{align*}
\]

(6)

From formula (4) and (5), \(z'_y\) can be worked out.

Finally, we got coordinates of all of the cutter location points \((r'_y, \theta'_y, z'_y)\) and cutter contact points \((r_y, \theta_y, z_y)\).

THE CALCULATION METHOD OF THE PARAMETERS OF PVT AND HERMITE INTERPOLATION

The mathematical theory of PVT interpolation is the segmented cubic Hermite polynomial. During each interpolation interval, the acceleration of z-axis changes linearly, whereas the velocity changes in parabolic model. Hermite interpolation takes derivative into account, so there will not be velocity jump on any subsection knots. The meaning of the velocity parameter of PVT is the time spent during the cutter moving from one cutter-location point to another, which is determined by the speed of mains haft and the number of discrete points in circumferential direction. The location parameter, which is represented as \((r'_y, \theta'_y, z'_y)\), has been calculated above.

The velocity parameter of PVT

The meaning of the velocity parameter of PVT is the velocity component in z-axis direction, meaning the velocity of FTS, which is represented as \(V_y\) for
each cutter-location point \((r_0, \theta_0, z_0)\).

\[
V_0^* = \frac{dr}{dt}
\]

(7)

As the main shaft speed is constant, the time parameter of PVT is constant as well which is represented as

\[
\Delta t = \Delta \theta / \omega
\]

(8)

\(\omega\) is represented as the main shaft speed. As the velocity of \(x\)-axis is constant, it can be calculated by the formula 8.

\[
V_x = \frac{dr}{dt} = \omega l_{\text{max}} / 2\pi
\]

(9)

Integrating the formulas above, we can get

\[
V_0^*(r, \theta) = V_x + \frac{dz}{dr} \frac{\partial z}{\partial \theta}
\]

(10)

After downloading all the parameters calculated above into UMAC, the optical free-form surface can be turned by FTS in PVT interpolation model.

Hermite Interpolation Trajectory

As described above, the cutting path has been divided into \(K \ast n\) segments. The interpolation trajectory of each segment is a cubic Hermite polynomial function, the nodes of the function is the adjacent cutter location points in circumferential direction which are represented as \((r_k, z_k)\) and \((r_{k+1}, z_{k+1})\). And the velocity of the points are represented as \(v_k\) and \(v_{k+1}\), the time of the points are represented as \(t_k\) and \(t_{k+1}\). So the Hermite function can be represented as

\[
H_k(t) = z_k \alpha_k(t) + z_{k+1} \alpha_k(t) + v_k \beta_k(t) + v_{k+1} \beta_k(t)
\]

(11)

After entering the boundary conditions, formula 11,

\[
H_k(t_k) = z_k \quad H_k(t_{k+1}) = v_k
\]

\[
H_k(t_k) = z_{k+1} \quad H_k(t_{k+1}) = v_{k+1}
\]

(12)

\(H_k(t)\) can be calculated.

SIMULATION AND ERROR ANALYSIS

Sinusoidal grid surface is selected as the simulation object to analyze the theoretical error of the optimal path planning method and the Hermite interpolation trajectory proposed in the article from the point of the overall cutting path planning, the error from the ideal cutting path and the dynamic performances of \(z\) guide.

The expression of free-form surface under polar coordinate is \(10 \sin(2\pi x/600)+10 \sin(2\pi y/1000)\). The radius of workpiece is 3000um, corner radius is 500um, the ensured scallop height is 1um; the circumference is divided into 60 sections, the speed of main shaft is 500r/min. After calculation the allowed radial interval of the cutter location point is 42.49um, which is valued 30um in order to make the velocity of \(x\)-axis constant at 250um/s. The theoretical maximum scallop height is 0.49um, less than the ensured scallop height.

FIGURE 2(a). The ideal surface of sinusoidal grid surface

FIGURE 2(b). The path of cutter location points

The error between the planned cutting path and the ideal cutting path is 2.6um, whereas the linear interpolation is 11.05um, much bigger than Hermite. From the velocity distribution we can conclude that dynamic performances of Hermite are much better than linear. So we can conclude that the optimal path planning method and the Hermite interpolation trajectory proposed in the article is
valid and can be used as a reference of cutting path Planning of Complex Optical Surface.

FIGURE 3(a). The path of z-axis in the outmost lap of the workpiece

FIGURE 3(b). The velocity of z-axis in the outmost lap of the workpiece

FIGURE 3(c). The velocity of z-axis in the outmost lap of the workpiece

FIGURE 4(a). The radial transversal at 15°

FIGURE 4(b). The radial transversal at 15°

FIGURE 4(c). The radial transversal at 75°

CONCLUSION
After studying the relationship between the radial space of cutter location points and the surface scallop height, an optimal method of uniform radial interval path planning method is proposed in the artical,in which the scallop height is limited by limiting the radial space of cutter location points. And a simple algorithm about calculating the velocity parameters of PVT is proposed. The discrete cutter location points are interpolated and simulated by Hermite mathematical model. After simulation in sinusoidal grid surface, we can conclude that the largest scallop height of the final surface is smaller than the given one, and the dynamic performances of Hermite is much better than linear.

REFERENCES

[6] BRECHER C, LANGE S. et al. NURBS Based Ultra-Precision Free-Form Machining [J].

MEASUREMENT OF SAW WIRE TEMPERATURE DURING CUTTING OF ROCK IN VACUUM

Katsushi Furutani¹, Ryota Inukai¹, Takayoshi Takano¹, Tatsuaki Okada², Kazuto Saiki³, and Hiroyuki Ohue⁴
¹Toyota Technological Institute
Nagoya 468-8511 Japan
²Institute of Space and Astronautical Science (ISAS/ JAXA)
Sagamihara 252-5210 Japan
³Graduate School of Science, Osaka University
Toyonaka, Osaka 560-0043 Japan
⁴R&D Department, Tokusen Kogyo
Ono, Hyogo 675-1361 Japan

INTRODUCTION
Three huge vertical holes have been found on the Moon [1] and their scientific explorations are planned as UZUME Project by JAXA. The authors have proposed a wire-sawing machine to observe the interior of a rock sample and compensate for the tool wear [2, 3]. When a rock block was cut with a saw wire, nickel which fixes diamond grits on a core wire by electroplating was adhered on the rock. Then, the grits slipped on the nickel layer and the rock was little removed. Factors are possibly the hardness difference between the rock and nickel and the softening of nickel due to the generated heat during machining. The generated heat during hard materials has been studied by simulations and experiments under wet conditions [4, 5].

In this paper, the saw wire temperature during machining in vacuum was measured by the change of the electrical resistance.

EXPERIMENTAL SETUP
Temperature during machining is often measured with thermocouple. However, its alignment with a thin saw wire is very difficult. Accordingly, the temperature rise was estimated by measuring the change of the electric resistance of the saw wire. In this case, the average temperature of the saw wire is measured. Figure 1 illustrates an experimental setup and Table 1 shows its specifications. The device measures 405 mm × 140 mm × 200 mm. A 130-mm saw wire was stretched across a frame reciprocated by a crank mechanism with a stepping motor. A basalt rock block which has the same structure and hardness as ones on lunar mares was mounted as a workpiece beneath an octagonal load cell which measures the principal and normal forces simultaneously. The peak velocity of the saw wire was 0.52 m/s which was smaller than 1.0 m/s of the actual

FIGURE 1. Experimental setup with clamp mechanism.
wire-sawing machine [2, 3]. The cutting load was applied by mounting a dead weight on a lever and was changeable. Table 2 shows the thermal properties of materials used in the device.

Figure 2 shows a measurement circuit of the resistance. The saw wire was fixed with spacers and washers made of mono-cast nylon to insulate it electrically and thermally from the frame. The voltage drop at the saw wire was measured with a lock-in amplifier by the four-wire sensing to avoid the influence of the contact resistance with 0.3-mm copper wires. The current was measured with a clamp-on type current probe with a band width of 10 MHz. Constant current pulses with a peak of 20 mA, a frequency of 1 kHz and a duty of 50% were supplied to the saw wire. The heat conductivities of the saw wire and basalt are 60 and 2 W/(m·K) [6]. The calibrated temperature coefficient of resistance was 2.5 mΩ/K.

The electric resistance was measured for the calibration by changing a tension. The resistance varying due to the tension below 10 N was much smaller than that due to the temperature rise. The generated heat rate was \(1.4 \times 10^{-4} \text{ W}\) at a current pulse of 20 mA and duty of 50%. This can be also negligible.

EXPERIMENTS

Table 3 shows machining conditions. The saw wire was reciprocated for 180 s at an average feeding speed of 0.24 m/s and a cutting load of 1.0 N. The workpiece measured 10×15×8 mm. The saw wire displacement \(x\) and speed \(v\) are denoted as:

\[
\begin{align*}
 x &= r \cos \omega t + \sqrt{L^2 - (h + r \sin \omega t)^2} \\
 v &= -rw \sin \omega t + \frac{(h + r \sin \omega t) \omega \cos \omega t}{\sqrt{L^2 - (h + r \sin \omega t)^2}}
\end{align*}
\]

TABLE 1. Specifications of wire-sawing machine.

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Dimensions</th>
<th>Structural materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>405 mm ×140 mm ×200 mm</td>
<td></td>
</tr>
<tr>
<td>Structural materials</td>
<td>A5052, SUS304, Polyether ketone (PEEK), Polyamide 6 (MC nylon), Grass epoxy</td>
<td></td>
</tr>
<tr>
<td>Wire length</td>
<td>130 mm</td>
<td></td>
</tr>
<tr>
<td>Maximum wire speed</td>
<td>0.52 m/s</td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>70 mm</td>
<td></td>
</tr>
<tr>
<td>Cutting load</td>
<td>Changeable</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2. Thermal properties of materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>Heat conductivity W/(m·K)</th>
<th>Dimensions mm</th>
<th>Heat transfer area mm²</th>
<th>Volume mm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saw wire</td>
<td>60</td>
<td>0.28×140</td>
<td>0.078</td>
<td>11</td>
</tr>
<tr>
<td>Copper wire</td>
<td>400</td>
<td>0.30×200</td>
<td>0.090</td>
<td>18</td>
</tr>
<tr>
<td>Basalt</td>
<td>2</td>
<td>10×8×15</td>
<td>2.8</td>
<td>1200</td>
</tr>
<tr>
<td>MC nylon</td>
<td>0.23</td>
<td>10×10</td>
<td>2</td>
<td>590</td>
</tr>
<tr>
<td>Grass epoxy</td>
<td>0.47</td>
<td>140×30×3</td>
<td>240</td>
<td>5400</td>
</tr>
</tbody>
</table>
where \(r, L, h \) and \(\omega \) are a crank length (30 mm), shaft length (130 mm), motor height (82.5 mm) and angular velocity of the motor, respectively.

Figure 3 shows an example of the cutting forces in vacuum. The sampling time was 0.2 ms. Figure 3 (a) shows speed of the saw wire calculated by Equation (1). Figure 3 (b) shows the forces denoted as a moving average of 100 consecutive samples to eliminate higher frequency components. Because basalt is hard, the normal force was larger than the principal force. Figure 3 (c) shows the normalized principal force by the normal one. Because the removal amount was small, it is equivalent to the friction coefficient. The normalized principal force was not flat because of the deformations of the load cell at turnaround points. Figure 3 (d) shows the instantaneous cutting power calculated from the product of the reciprocating velocity. The cutting power was also different between forward and backward motions.

Figure 4 shows examples of saw wire temperature estimated by the electric resistance. The temperature in air rose only 3°C in 5 s from room temperature and was constant later. In contrast, one in vacuum gradually rose by 23°C during 270 reciprocations. After the saw wire was stopped, the temperature gradually fell. This rise did not cause softening of nickel. Because the estimated temperature is the average of the whole saw wire, the temperature near abrasives might be higher than the estimated one.

The average power was calculated as:

\[
P = \frac{1}{T_m} \int_0^{T_m} F_p v dt
\]

(2)

where \(F_p, v \) and \(T_m \) are the principal force, velocity and machining time, respectively. The average power shown in Figure 3 (d) was 0.038 W by Equation (2). By assuming that the whole heat is accumulated in the saw wire, the

\[TABLE 3. Machining conditions.\]

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average wire speed</td>
<td>0.24 m/s</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>31 °C</td>
</tr>
<tr>
<td>Cutting load</td>
<td>1.0 N</td>
</tr>
<tr>
<td>Machining time</td>
<td>180 s</td>
</tr>
<tr>
<td>Vacuum pressure</td>
<td>(10^{-3}) Pa</td>
</tr>
<tr>
<td>Workpiece</td>
<td>Basalt, 10 mm x 8 mm x 15 mm</td>
</tr>
</tbody>
</table>

(a) Wire speed.

(b) Forces in vacuum.

(c) Normalized \(F_p \) by \(F_n \).

(d) Cutting power.

FIGURE 3. Wire speed and force during machining in vacuum.
temperature rise based on the heat capacity and generated heat was:

\[
\Delta T = \frac{PT_{\text{in}}}{\rho c V} = \int_0^{l} \left(\frac{F_p v}{\rho c (d/2)^2 \pi l} \right) \, dt
\]

where \(\rho (7.85 \times 10^3 \text{ kg/m}^3)\), \(c (450 \text{ J/(kg\cdot K)})\), \(V\), \(d (0.28 \times 10^{-3} \text{ m})\) and \(l (130 \times 10^{-3} \text{ m})\) are the density, volume, diameter and length of the saw wire, respectively. The calculated temperature rise by Equation (3) was 242°C, which is much higher than one shown in Figure 4. No heat convection is occurred in vacuum. In addition, because the surface area of the saw wire is very small, the radiation is hardly occurred. Consequently, only the heat conduction affected the heat transfer so that the heat conduction is not negligible.

Figure 5 illustrates a model of the heat transfer path. The basalt rock contacts the middle of the saw wire. Both ends of the saw wire connect the copper wires. The saw wire was fixed on the frame made of glass epoxy through the washers made of nylon. The heat due to machining was generated on the contact area between the saw wire and basalt rock. Then the heat is conducted through two paths: the copper wires and basalt rock. Although the head conductivity of the basalt rock is very small, the contact area between the saw wire and basalt rock is larger than the section area of the copper wire.

CONCLUSIONS

In this paper, the saw wire temperature during machining was measured in air and vacuum. Conclusions can be drawn as follows.

- The temperature rise during machining was estimated by measuring the electric resistance of the saw wire.

For the future work, the heat generation and conduction will be simulated.

ACKNOWLEDGEMENTS

A part of this study was financially supported by the Support Program for Forming Strategic Research Infrastructure for Private Universities, “Research Center for Smart and Tough Machines,” a matching fund subsidy by Ministry of Education, Culture, Sports, Science and Technology, Japan.

REFERENCES

BACKGROUND
The need for effective abrasive material removal (sanding and grinding) has a history dating back to ancient Egypt where sandstone was used to smooth the blocks used to construct the pyramids. The details of the machining and grinding processes have been studied extensively over the past 70 years. In the grinding area, abrasive materials and methods to support them in wheels and belts have proliferated with thousands of specialized products designed for a wide range of specific tasks. One of the issues with coated abrasives for belt grinding is the wide range of grinding conditions and the non-uniform geometry of the grits. Since the grit/workpiece contact is very small, grinding mechanics are easily affected by variations in geometry and properties from grit to grit. This paper describes a study of belt grinding using macroscopic, triangular alumina grits as shown in Figure 1. The goal is to find experimental techniques that can study a single grit and show the forces associated with the material removed, peak force triggering a fracture event and the resulting tool shape, total material removed over the life of a grit and the peak tool temperature.

FIGURE 1. 3M Cubitron II grits (left) and micrograph of actual belt (right) with 1mm scale

EXPERIMENTAL APPARATUS
The cutting experiments were done on a high-precision Diamond Turning Machine (DTM) shown in Figure 2. This machine has an air-bearing spindle and two orthogonal, oil-bearing slides to move the rotating part and the tool. A three-axis load cell supports the tool and measures the machining forces with a bandwidth of 12kHz. A 36x reflective optical microscope with a high speed video camera has been installed on the machine for these experiments. The camera can be used to observe the dynamics of the chip as well as the shear angle of the chip (based on the relative speed of the chip and workpiece) which is influenced by friction.

FIGURE 2. Experimental setup for high-speed chip imaging and force measurement

Grit Holder
Experiments have been conducted using 3M alumina grits to machine different workpiece materials on the DTM in Figure 2. Figure 3 shows a tool holder with the edge of the triangular grit facing the reader. The holder also allows the grit to be rotated in 45° increments so that the range of orientations in Figure 1 can be evaluated. This image also shows the thermocouple wire emerging from the holder. The sensor is 0.75 mm from the tip of the grit and the peak tool temperature can be extrapolated from this value.

FIGURE 3. Tool Holder with mounted grit -30° Rake (left), 0° Rake Orientation (right)

High Speed Video
A video camera (6000 frames per second) was used to image the chip geometry and record
fractures of the grit. One issue is the width of the grit is 300 µm and the depth of field of the camera is 30 µm; so only part of the chip can be in focus. Because the grit geometry is variable, it is a challenge to get the chip and tool in focus to follow the chip motion as shown in Figure 4. However, the camera moves with the tool and therefore can follow the chip across with entire width of the workpiece. The video also allows the chip buildup on top of the tool or tool fracture to be observed and correlated to the forces and groove geometry.

FIGURE 4. High speed image of a grit and chip formation (left) cutting a 304SS workpiece (right).

SINGLE GRIT PERFORMANCE
Forces, chips and fracture of single grits have been studied for a wide range of grinding conditions (surface speed and depth of cut), workpiece materials and grit orientation. Because the grit geometry can change rapidly, a technique was developed to follow the grit from initial contact to fracture. These cutting experiments involved machining a spiral groove on the OD of the workpiece with an increasing depth of cut. The features of the grooves generated were measured using a spherical CMM to record the details of the grooves shown in Figure 5. The features were also measured with a Talysurf profilometer in Figure 6 if the angles of the grooves were steeper than could be measured with the CMM. Figure 7 shows the forces measured at the 3 depths in Figure 6.

FIGURE 5. Spiral groove for a single cutting experiment with scaled depth (right) in µm.

FIGURE 6. Talysurf images of groove geometry on 304SS for different depths of cut.

FIGURE 7. Forces measured for 304SS work piece at 20, 40, and 60 µm depths and 1 m/s cutting speed.
The forces in Figure 7 were measured with a 3-axis load cell that supports the tool. The initial contact (load spike) between tool and workpiece is used to start the data collection and synchronize the forces, video and the position of the grit along the spiral groove for later analysis. Fracture, changes in the grit geometry and material pickup on the grit (changes in groove shape) can all be studied throughout the life of the grit. Figure 8 shows material build up on the chip.

FIGURE 8. Build-up of chips on the tool can increase the cutting forces and lead to fracture.

TOOL TEMPERATURE

The temperature of the grit can have an important effect on its performance. The alumina material has a low thermal conductivity and as a result more of the heat generated during cutting will go into the chip and workpiece but the peak temperature of the grit in the cutting zone will be high. The tool temperature was measured using a thermocouple at the base of the grit holder shown in Figure 9.

FIGURE 9. Location of thermocouple on the grit.

Unfortunately this sensor is at the other end of the tool from the peak temperature. The simple analytical model was used to estimate the temperature as shown in Figure 10.

\[
Q = kV(r)\Delta T
\]
\[
Q = \frac{2\pi L}{6\ln\left(\frac{r_i}{r_o}\right)} \Delta T
\]

FIGURE 10. Model of the temperature input to the abrasive grit.

The model in Figure 11 shows the temperature gradient for 1 watt into the grit and a temperature of 28°C at the thermocouple. The assumed heat input is 10% of the total energy of 10 Nm/s from Figure 7. The two temperature plots are for an average conductivity (bottom) and for the temperature dependent conductivity of alumina.

FINITE ELEMENT MODELING

To further study the grinding process, the macroscopic grit has been modeled using the Third Wave AdvantEdge FE software. This software solves both the material flow problem of generating a chip and the thermal problem the due to the shear of the material and the friction from the sliding...
surfaces. The model predicts the cutting forces as well as the thermal environment in the tool, the chip and the workpiece. Figure 12 shows the results of a run for a 60 µm depth of cut at 1 m/s cutting speed. The predicted cutting force is 8 N and the thrust force is 6 N. The results compare well with the cutting and thrust forces both equal to 9 N (Figure 6) and the estimated peak temperature around 400ºC (Figure 11).

CONCLUSIONS
A novel way to study the grinding performance of single abrasive grits has been developed. It was used to evaluate the effectiveness of these grits to remove material from a variety of workpiece materials (Brass, 304 SS, 52100 alloy steel and low carbon 1215 steel) at different orientations, cutting speeds and depths of cut. Chip geometry, cutting forces, temperature and fracture behavior were identified.

![Figure 12](image_url)

FIGURE 12. FE model of a grit cutting 304 SS at 1 m/s and 60 µm depth of cut. The peak tool temperature is 412 ºC and forces are 6 - 8 N.
MEASUREMENT AND PREDICTION OF DIAMOND TOOL WEAR DURING STEEL MACHINING

Gregory S. Hesler, Thomas A. Dow, Brandon Suit
Precision Engineering Center
North Carolina State University, Raleigh, NC

INTRODUCTION
Diamond turning (DT) can create a finished specular surface for optical components and precision optical molds. One application is the large drum molds used to transfer micrometer-scale features to plastic sheets in a process known as micro-replication. The drums must first be diamond turned before being made into high-quality optical molds for anti-reflective surfaces, laptop screens, infrared motion sensors and other optical components. As the applications for precision molds have expanded, wear-resistant materials such as steel have become more desirable than hard copper or aluminum. However, significant tool wear occurs during the DT of ferrous materials. The magnitude of wear is on the order of 100x greater for steel machining when compared to non-ferrous materials, such as aluminum. The high wear rate is believed to be the result of thermo-chemical effects, although the exact mechanisms are still unknown. This research provides a quantitative study of the parameters contributing the thermo-chemical tool wear: temperature, pressure, chip-formation and cutting edge geometry. From these quantities, a predictive wear model can be created and used to identify the details behind the accelerated thermo-chemical wear during the DT of steel.

EXPERIMENTAL APPROACH
The goal of the experiments is to capture dynamic measurements of cutting forces, chip-formation, and tool temperature while tracking changes in tool geometry. The data collected in the experiments was used to develop a tool wear model.

High-Speed Chip Image
The high-speed video images were recorded at 6000 frames per second at an exposure time of 3 μs to capture conditions at the cutting edge. Figure 1 shows the results for a brass workpiece at 20 μm depth of cut and Figure 2 is for a steel workpiece at 2 μm depth of cut. By knowing the spindle speed and measuring the chip speed from the video, the shear angle of the chip can be determined and compared to the machining models.

FIGURE 1. Brass C36000 at 0.1 m/s and 20 μm DoC. Left image is an SEM of the chip x-section showing the 25º shear angle.

FIGURE 2. DT of AISI 1215 steel at cutting speed of 0.5 m/s and 2 μm depth of cut.

Cutting Forces
A three-axis tool force dynamometer supports the tool and measures the cutting and thrust forces during machining. For a 2 μm depth of cut with 1215 steel, steady-state cutting and thrust forces are approximately 7.0 N and 3.6 N as shown in Figure 3 for 10 m of cutting at 2 m/s. The forces were uniform for easy-to-machine 1215 steel.

FIGURE 3. Cutting forces machining 1215 steel at 2 m/s and 2 μm DoC.
Temperature Measurements
A number of different strategies have been used over the years to measure the peak diamond tool temperature including infrared measurements by Ueda [1]. For the experiments discussed here, a thin-film RTD was used to monitor the diamond temperature during machining. The RTD was about ¼ of the size of the tool and was glued to the rake face at the back of the tool in Figure 4.

FIGURE 4. RTD attached to the back of the 4x3x1 mm diamond tool.

Diamond has extremely high conductivity (2000 W/m-K) and the entire tool heats rapidly as shown in Figure 2 for cutting speeds from 0.5 to 6 m/s. Using these far-field measurements, a heat transfer model was used to extrapolate the peak tool temperature at the cutting edge.

FIGURE 5. RTD measurements for 2 μm DoC with 1215 steel at multiple cutting speeds.

Tool Geometry and Wear Measurement
The EBID-SEM technique [2] developed at the PEC is capable of quantifying the details of the sub-micron level of tool wear. Figure 6 shows the tool edge geometry after 120 m of cutting at three cutting speeds: 1, 4, and 6 m/s.

The worn edges of the tools of Figure 6 changes from an initial edge radius of 50 nm to a wear flat of 0.4, 0.8 and 1.2 µm at an angle that is similar to the shear angle of the chip (~25°). This wear shape is different than measured while machining aluminum alloys where abrasive wear dominates. In that case the edge radii grows but the flank face of the tool flat remains essentially horizontal.

FIGURE 6. SEM images at 25 kX of tool wear after (a) 120 m at 1 m/s (b) m at 4 m/s and (c) 120 m at 6 m/s with 1215 steel, 2 μm DoC.

A view of the changes in the cross-section of the tool is shown in Figure 7. In this case the speed was low – 0.5 m/s – and the edge profile is showed from the new lapped shape to the edge after 20 m of cutting.

FIGURE 7. Diamond tool edge profiles after machining 1215 steel at 2 μm depth and 0.5 m/s.

DEVELOPMENT OF TOOL WEAR MODEL
Tool wear measurements have been performed on 6061-T6 aluminum and 1215 steel and the tools machining steel have 100X higher wear rates for the same sliding distance [2,3] Each of these materials has 2nd phase hard particles that are similar in size and distribution. As a result, the abrasive component of wear will be ignored for the 1215...
steel machining experiments.

The dominant wear mechanism for diamonds cutting steel appears to be chemical in nature where the carbon atoms in the tool are transferred across the interfaces and form carbides with the workpiece. This process is exacerbated by temperature and a generic model can be written as:

\[
\frac{dW}{dt} = A \exp \left(\frac{-E_a}{RT} \right) \iff \frac{dW}{ds} = \frac{A}{v} \exp \left(\frac{-E_a}{RT} \right)
\]

where the wear is expressed as a wear rate vs time, \(t \), (left) or distance, \(s \), (right). The area is the 2D region lost between the tool edge measurements in Figure 7. The unknowns are the activation energy \((E_a) \) to move atoms from diamond to steel, the Universal Gas Constant \((R) \) and the temperature \((T) \). The wear takes place at the tool edge so the temperature at that location must be determined. The approach described here is to use the RTD temperature measurements at the back of the tool in a model to predict the average tool edge temperature and then calculate the required activation energy to achieve the wear measured. This will be compared to the published \(E_a \) value to judge the relevance of the results. The steps to develop this activation energy from the experimental results are described below and an outline is shown in Figure 12.

HT Model
A FE model of the diamond tool, the RTD, the tool shank and holder was developed. The heat is assumed to be applied to the tool through an area that is similar to the worn tool geometry shown in Figure 7. The back side of the holder is 20°C and the rest has convective losses to 20°C environment.

Power Input vs. Speed
Since the depth of cut was kept constant for the experiments describe, the power relationship was fit as a function of the cutting speed as shown in Figure 12.

Tool Edge Temperature
Finally, the relationship between the measured temperature at the back of the tool was related to the peak temperature as a function of the cutting speed. The result is an expression for increase in temperature beyond the RTD measurement.

\[
\Delta T_{edge} = 32.6V^{0.015}
\]

Activation Energy
With only the activation energy and the constant \(A \) as unknowns in Eq (1), they can be calculated from best fit line to the experimental results. Figure 9 shows the wear rate as a function of the edge temperature. The best fit line defines the two parameters of interest, \(A \) the wear constant is 167.7 \(\mu m^2/s \) and \(E_a \) is 33.4 kJ/mol. The \(R^2 \) value for the curve fit is 0.92 for this data. The value of the Activation Energy is somewhat low in comparison with other estimates [4] but provides a useful method for estimating wear in diamond machining.
and material flow across the surface changes. Finite element analysis (FEA) can help model the effects of changing tool geometries by using discrete elements and nodes in the application of wear rates.

FIGURE 10. AdvantEdge temperature prediction showing peak tool temperature of 51°C for a 2 μm depth of cut with 1118 steel.

AdvantEdge is a FEA program for machining processes that calculates the material flow in forming a chip and the resulting forces and temperatures (Figure 10). These simulations also have the capability to model tool wear by applying wear models in the nodes in contact between the tool and the workpiece/chip during the simulation. One limitation of these models is the computation time. The μm depth of cut and the high thermal conductivity of single crystal diamond requires very small time steps. The AdvantEdge software is also restricted to isothermal and adiabatic boundary conditions (BCs). The high thermal conductivity of diamond combined with isothermal BCs underestimates the peak tool temperature. The actual conditions are somewhere between isothermal and adiabatic. Attempts to model the tool wear show isothermal conditions throughout the contact zone and uniform wear. Based on the measured wear shapes, this does not seem reasonable.

Tool wear shape

While the overall volume loss by the diamond tool while machining steel looks reasonable based on the wear model of Eq (1) and the E_f magnitude. However, the shape of the worn tool is quite different than when machining aluminum alloys where abrasive wear dominates. Eq (1) uses a single average temperature to predict the wear over some time period. If the wear is a function of temperature, then the local wear along the tool will vary with the surface temperature along the contact zone. Figure 7 shows the tool wear produces a flattened face at an angle of 25° to the machined surface, which interestingly is near the shear angle in the chip.

The tool wear per meter is plotted in Figure 11 for the 3 wear zones shown in Figure 7. The vertical scale is the depth of the wear and the horizontal is the width of the worn area on the tool. The area under each curve is the volume from Eq (1) but the shape is not constant. For the first few meters, the wear is dominated at the sharp edge of the tool but the wear rate drops becomes more uniform over the width of the wear land as the distance increases. The AdvantEdge program predicts a uniform temperature at the interface because of the high conductivity of the diamond.

FIGURE 11. Wear of the tool edge

Using Eq (1), the temperature rise needed to produce the wear along the surface is determined by the depth of the wear. Figure 12 shows the change in temperature along the same width as in Figure 11. The highest temperatures are along the highest wear depths.

FIGURE 12. Temperature rise along tool edge

The wear of the rake face is also a puzzling because the model Figure 10 shows the temperature extends up the rake face 2-3x the depth of cut. But there is minimum wear of only
about 50 nm on the rake face. It is not visible on the SEM images and only shows up using a white light interferometer. If the temperature is driving the wear, it seems like there should be significant wear on the rake face also.

What seems to be missing is the heat generated at the sliding interface between the tool and the workpiece. Sliding at that interface should create a significant frictional heating, temperature and therefore wear.

CONCLUSIONS
Experiments were performed to measure the surface temperature and wear while machining steel with a diamond tool. The initial results from AdvantEdge wear simulations show similar patterns in the wear geometry. Material coefficients and friction coefficients need to be optimized to match the wear rate and worn geometry.

ACKNOWLEDGEMENT
This research was funded by a NSF Grant 1200318 with Z Pei as the project monitor.

REFERENCES

FIGURE 12. Flow chart for finding the peak temperature from model/experiment
Ultra-precision sinusoidal patterns machining using a planing machine

Tae-Jin Je1,2, Hwan-Jin Choi1,3, Eun-Suk Park2, Eun-chae Jeon1,2, and Doo-Sun Choi1,2

1Department of Nano Manufacturing Technology
Korea Institute of Machinery and Materials
Daejeon 305-343 Republic of Korea

2Nano-Mechatronics, University of Science and Technology (UST)
Daejeon 305-350, Republic of Korea

3School of Mechanical Engineering
Pusan National University
Busan 609-735, Republic of Korea

INTRODUCTION
Recently, there were many studies related to reducing number of optical sheets (prism sheets and diffusion sheets) for slim, light weight, and low cost display devices [1]. An aspheric shape LGP (Light Guide Plate) that keeps the original brightness, uniformity and viewing angle is one of the optical products that can meet the demands of the display industries [2]. Molds for LGP were mainly fabricated by three-axis planer, which can easily machine various types of shapes on large-area workpieces [3-4]. Unlike machining a flat surface, a shape error occurs due to interference between the tool side and curved surface of a workpiece when machining a curved surface [5]. This interference causes a shape error on the curved surface. Therefore, the interference must be analyzed and compensated [6]. In this paper, the shape errors due to the interference were analyzed when machining sinusoidal patterns which are one of the curved surfaces in a three-axis planing machine. The compensated tool path was also suggested and the precise sinusoidal curved surface was machined.

INTERFERENCE BETWEEN THE TOOL SIDE AND CURVED SURFACE
A planing machining is used to make the designed shape using a vertical tool on the machine tool, as shown in Figure 1. Thus, the shape of the tools should be changed according to the designed shape or the patterns. The planing machining has been commonly applied to the machining mirror surface on a flat surface or to the machining of a constant patterned surface. A large radius tool is used to machine a mirror surface, and a tool with the shape of the pattern is used to machine the patterned surface. A cutting shape error that could not occur in the flat surface machining has occurred when machining a curved surface. The cause of this phenomenon is the interference between the tool side and the curved surface while the cutting tool follows the designed surface, as shown in Figure 1. If the tool rotates perpendicularly to the curved surface, this problem can be solved. However, the tool rotation axis should be additionally installed. Furthermore, the tool position error according to the tool rotation angle should be calculated and compensated; thus, the machining is difficult and complicated [7]. In the present study, the cutting shape error was compensated without tool rotation.

FIGURE 1. Shape error due to interference of the tool side when machining a curved surface

SINUSOIDAL CURVED SURFACE DESIGN AND COMPENSATION
A sinusoidal curved surface was selected to analyze the interference between the tool side and curved surface. The sinusoidal curve was suitable for analysis because sinusoidal curved surfaces have sequentially convex and concave
shapes. Figure 2 shows designed sinusoidal curved shape for the present study. The sinusoidal curve has a period of 12 mm and amplitude of 0.6 mm. The shape error was analyzed as compared with designed shape according to the interference, as shown in Figure 3. The shape error, according to the tool shape radius reached its maximum \((T_1) \) at an inflection point of a sinusoidal shape, and it was sinusoidally decreased to 0 at the maximum and minimum points of the sinusoidal curve. In a machining sinusoidal curve with a period of \(T \), the periods of the machined sinusoidal curve changed to \(T_2 \) (on convex part) and \(T_3 \) (on concave part) according to the maximum error \((T_1) \). Thus, to minimize the error due to the interference, the periods of a designed sinusoidal shape should be compensated. The designed period in the convex part should be modified to \(T_2 - 1 \) added double of maximum error value \((2T_1) \) when machining the sinusoidal patterns shape with a period of \(T \). Also, the designed period in concave part should be modified to \(T_3 - 1 \).

SINUSOIDAL CURVED SURFACE MACHINING SYSTEM AND CUTTING CONDITIONS

The machining of a sinusoidal curved surface was performed on an ultra-precision machine tool system, as shown in Figure 4. This system was composed of X, Y, and Z axes, and had a position resolution of 10nm. A tool dynamometer that could measure cutting force as low as 0.002N was installed on the Z axis; thus, the dynamometer could be used to measure tool touch. The workpiece was fixed by a vacuum jig. The tool radius was the most important factor when machining sinusoidal curved surface because it directly affected shape error. As the radius of the tool increased, the interference should be increased. Although a tool radius of 10mm was used to machine a flat mirror surface, in the present experiment, a diamond tool with a radius of 5 mm was employed in this experiment. Considering the total depth of cut (0.6 mm), roughing was done with a pitch of 0.05 mm and depth of cut of 0.02 mm. And finishing was done with a pitch of 0.03 mm and depth of cut of 0.003 mm for good surface. The specific cutting conditions are given in Table 1.

![FIGURE 2. The designed sinusoidal curved surface with an amplitude of 0.6mm and period of 12mm](image)

![FIGURE 3. Shape error due to interference between the tool side and curved surface when machining a sinusoidal curved surface](image)

![FIGURE 4. Sinusoidal curved surface machining system](image)

<table>
<thead>
<tr>
<th>TABLE 1. Sinusoidal curved surface cutting conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
</tr>
<tr>
<td>Cutting tool</td>
</tr>
<tr>
<td>Workpiece</td>
</tr>
<tr>
<td>Pitch</td>
</tr>
<tr>
<td>Depth of cut</td>
</tr>
<tr>
<td>Feedrate</td>
</tr>
<tr>
<td>Cutting oil</td>
</tr>
</tbody>
</table>
The machined sinusoidal curved surface was measured by a precise shape-measuring system, as shown in Figure 5. The measured result of the machined sinusoidal curved surface without compensation was compared with the designed shape, as shown in Figure 6. The maximum cutting error was 0.394 mm along the X direction at the 0 point of the Y axis (an inflection point), and the minimum cutting error was nearly 0 mm at the maximum and minimum of the sinusoidal curve. This cutting error was caused by the interference that was analyzed in previous analysis. The cutting force was measured when machining a sinusoidal curved surface and is showed in Figure 7. A cutting force graph also showed that the maximum point of 2.2 N was at the inflection point and the minimum point was at the maximum and minimum of the sinusoidal curve. The maximum point of the cutting force was due to over-cutting from the interference. Thus, this cutting error should be compensated by changing the sinusoidal period.

Compensation of the cutting error was accomplished by changing the sinusoidal period. The convex part was compensated to 6.789 mm added double of maximum error of 0.394 mm. Also, the concave part was compensated to 5.211 mm. The machined sinusoidal curved shape was shown in Figure 8. The letters seemed twisted, therefore a curved surface was machined. The machined sinusoidal curved surface was measured by the previous measuring system, and the result is shown in Figure 9. The measured profile was almost the same as the designed profile. The maximum error was under 0.001 mm at the inflection point. The machined surface roughness was about 20 nm. In conclusion, compensation of the sinusoidal period was an effective method to machine the sinusoidal curved surface.
FIGURE 8. Machined mold having sinusoidal patterns with a compensated tool path

FIGURE 9. Machined sinusoidal curved surface with compensation

CONCLUSION
In the present paper, shape error due to the interference between the tool side and curved surface was analyzed when machining a sinusoidal curved surface in three-axis planing machine. The period of the sinusoidal convex part was decreased, and the period of the sinusoidal concave part was increased due to the interference. The maximum shape error was at the inflection point of the sinusoidal shape; thus, the tool path was compensated by the maximum shape error. As a result, the sinusoidal curved surface with a period of 12 mm and amplitude of 0.6 mm was precisely machined, and the shape error was under 1 µm.

REFERENCES
An innovative investigation on chip thickness model with application to cutting forces modelling in micro milling

Feifei Jiao, Kai Cheng
Advanced Manufacturing and Enterprise Engineering (AMEE) Department
Brunel University
London, UK

INTRODUCTION
Modelling of cutting forces in micro milling is a critical aspect of the research interest. Due to the scaling down of the milling cutter from an mm-level to μm-level and the associated machining parameters, many issues appear showing different phenomenon which cannot be appropriately explained by the conventional macro cutting mechanics. Extensive research has been undertaken to understand the fundamental cutting mechanism in micro-milling. Bao etc. first introduced an analytical model to calculate the instantaneous chip thickness based on which cutting forces were predicted [1]. Later many researchers included Minimum Chip Thickness (MCT) effect in modelling and divided chip formation into two separate regimes: ploughing dominant regime and shearing dominant regime [2-4]. Minimum Chip Thickness not only relies on the workpiece material, but is strongly dependent on the cutting edge radius [5]. Besides, machine dynamic and spindle runout also add variation to real chip thickness. Thus accurate determination of the chip thickness is essential and very much needed particularly in modelling cutting forces. This paper attempts to investigate an innovative chip thickness model in micro milling considering above issues.

MINIMUM CHIP THICKNESS
In micro cutting, when chip thickness decreases beyond certain threshold (MCT), no chip will be generated, workpiece material undergoes ploughing/rubbing and plastic deformation. Conditions are more complicated with cutting edge entering and exiting workpiece periodically. Efforts have been made by different methods to determine minimum chip thickness, where cutting transits from material ploughing to shearing. Kim applied an experimental technique to estimate the MCT based on recorded cutting forces [6], the chip formation model proposed in [4] is adopted. When chip forms, material goes through 3 cutting mechanisms, pure elastic deformation, mixed elastic-plastic deformation and complete removal. When instantaneous chip thickness is lower than certain value t_{ce}, material deforms elastically and will fully recover; as chip thickness increases, tool edge ploughs over material, and a constant percentage of p_e of the material recovers; when chip thickness reaches t_{cmin}(MCT), material is removed as a chip and p_e drops to zero.

A simplified criteria proposed by Johnson [7] for quasi-static indentation was used to obtain the t_{ce}. The ratio of t_{ce} to the cutting edge radius r_e for metals was computed as

$$\frac{t_{ce}}{r_e} = \frac{1}{2} \left(\frac{2\sigma}{E} \right)^2$$ \hspace{1cm} (1)

where E is Young’s modulus and σ is the yield strength of the material.

Minimum Chip Thickness is defined by following equation [8]

$$\frac{t_{cmin}}{r_e} = 0.5 - \frac{\tau_a}{\sigma}$$ \hspace{1cm} (2)

where $\tau_a = \frac{0.427}{3} L_m \rho \ln \left(\frac{T_m}{T^2} \right)$

where L_m is the latent heat of melting (J/kg), ρ is the density of the material (kg/m3), and T_m is the melting point of the metal.

All the material coefficients can be found in literatures, while cutting edge radius r_e can be obtained with a SEM machine (see figure 1).

NEW CHIP THICKNESS MODEL INCLUDING TOOL RUN-OUT
As the chip thickness approaches micron-level, tool run-out adds additional fluctuation of chip load, which can significantly change contact behavior between material and tool. Excessive run-out could lead to disengagement of cutting
flute from substrate. Moreover, tool run-out also changes actual cutting tool geometry. Thus, tool runout must be considered while accurately predicting cutting forces. Previous researchers created many models to calculate chip thickness under such conditions by decomposing tool runout and adding its components to the tool tip [1-4], however this fails to tackle the change of cutting geometry and to take the tooling system and workpiece as a whole. In this paper, a new algorithm is proposed based on the real engagement of tool and substrate.

Tool position error may arise from many aspects including tool dynamics, manufacturing error, alignment error (tilt error and parallel offset). This paper will focus on tool parallel offset, which impacts chip load most significantly. The analysis is based on a two-fluted micro end mill. The diagram of the tool spinning with runout of \(r \) at angle \(\alpha \) is shown below in figure 2 (top view).

\[
R_k = \sqrt{R^2 + r^2 - 2Rr \cos \left(\frac{2\pi}{N} (k - 1) + \alpha \right)}
\]

where \(k \) is the tooth number, \(R \) is the nominal diameter, \(N \) is the number of flutes. It should be noticed that the real radius of cutting edge which engages material removal is \(R_1 \) and \(R_2 \). The trajectory of \(k \) th tooth may be written as

\[
x(t, k) = ft / 60 + R_k \sin (\alpha t - (k - 1)\alpha) \\
y(t, k) = R_k \cos (\alpha t - (k - 1)\alpha)
\]

Zero angle is defined when 1st cutting edge aligns with y axis.

The two flutes alternatively remove chips from workpiece. Suppose current tool tip which engages material at time \(t \) has the position angle \(\theta \), previous tool tip at time \(t_s \) locates at the point which forms current chip. \(t_s \) is determined with Newton-Raphson iterative methods. Then chip thickness can be formulated:

\[
h(\theta, k) = \frac{R_k + f(t - t_s) / 60 \sin(\theta)}{-\sqrt{R^2 - f^2(t - t_s)^2 \cos^2(\theta) / 36000}}
\]

CUTTING FORCE MODELLING

The tool is divided into a finite number of elements along its axis whose height is reasonably small in order to assume orthogonal cutting process in each element. Given the chip thickness at each time increment, the differential cutting forces are computed. Due to the tool edge radius and existence of minimum chip thickness, there are two separate cutting mechanisms to be considered in cutting forces modelling: (case I) cutting with chip formation and (case II) ploughing without chip formation. The model adopted in this study is based on slip line field proposed by Martin Jun [8]. It assumes a variable dead metal cap in front of the cutting edge and establishes the slip-line field for both cutting mechanisms (Figure 3).
The forces in cutting and thrust directions are resulted from two aspects shearing and ploughing forces in each of the segments in cutting zone, as formulated by following equations.

\[dF_c = dF_{z_c} + dF_{z_t} = \]
\[k\nu[(\cos \phi + a_{xy} \sin \phi)l_x + (\cos(2\eta_y) \cos \psi + a_x \sin \psi)l_y] \]
\[+ k\nu[(\cos(2\eta_y) \cos \psi + a_x \sin \psi)l_y] \]
\[dF_t = dF_{z_t} + dF_{z_{pt}} = \]
\[k\nu[(a_y \cos \phi - \sin \phi)l_x + (\cos(2\eta_y) \cos \alpha_y - \alpha_z \sin \alpha_y)l_y] \]
\[+ k\nu[a_x \cos \psi - \cos(2\eta_y) \sin \psi]l_y \]

when chip forms;

\[dF_c = k\nu[(\cos(2\eta_y) \cos(\psi) - \nu \sin \psi)l_x - \nu l_y - \]
\[(\cos(2\eta_y) \sin \alpha_y - \nu \sin \alpha_y)l_y] \]
\[dF_t = k\nu[(\cos(2\eta_y) \sin \psi) + \nu \cos \psi)l_x + \cos(2\eta_y)l_y - \]
\[(\cos(2\eta_y) \cos \alpha_y + \nu \sin \alpha_y)l_y] \]

when chip is not formed.

According to previous experience and studies, forces in micro milling usually fall below 1N, and have different behaviours when compared with those in conventional cutting. Consequently, there is the difficulty and low accuracy in representing the micro cutting mechanics, such as the chip formation, size effect and tool wear mechanism, etc, by using conventional cutting force models. In such scale, absolute value of cutting force is less important to consider. Forces in unit area are investigated instead and correlated with material and tool properties in attempt to interpret machining in micro scale and tool wear and fracture-related mechanism, as indicated by equation 1.

\[v = \frac{F}{\Delta A} \]

EXPERIMENT AND SIMULATION

Experiments and simulation are both conducted on material Aluminum 6082-T6 with listed machining parameters in table 1, and material properties are listed in table 2.

Table 1. Machining parameters used in cutting trial and simulation

<table>
<thead>
<tr>
<th>Tool diameter</th>
<th>Spindle speed</th>
<th>Cutting speed</th>
<th>feedrate</th>
<th>Depth of cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>1mm</td>
<td>30000rpm</td>
<td>94.25m/min</td>
<td>120m/min</td>
<td>20\mu m</td>
</tr>
</tbody>
</table>

Table 2. Aluminum 6082-T6 properties

A 2 fluted tungsten carbide tool with diameter of 1mm is utilized with cutting edge radius around 1.5um. Cutting forces are collected by Kistler dynamometer 9256C2 which has a resolution of 0.002N in all directions. In order to capture the transient change in force variation, a sampling rate as high as 25 KHz is configured. The tool runout measured with a capacitive sensor before the experiment. It is adjusted carefully and controlled around 2\mu m.

RESULTS AND DISCUSSION

Both experiment and simulation results are shown in figure 4. For forces in feed direction, the predicted forces are able to reflect the same pattern of the force revolutions. However, the measured forces fluctuate much more than predicted. There's good agreement between the peak values of measured and predicted forces which are around 0.5N and 0.6N respectively, whereas valley values exhibit poor agreement. Forces normal to feed direction shows better accuracy of the predicted values, with peak value around -1.3N and 0.4N, compared with measures peaks around -1.1N and 0.6N. It can also be seen for certain part of the period, forces rest at zero, this is due to the tool runout which results in void-cutting of one cutting edge. However, this is not observed in measured forces which indicate that both edges are involved in material removal. This is possibly due to the deflection of the tool under varying chip load. Besides tool dynamic performance also makes the cutting force fluctuate and add extra noise to the force signal.
The cutting edges engage with material removal by entering and exiting the workpiece periodically, thus undergo tensile and compressive stress. Figure 5 shows the specific cutting force vs chip thickness, as the tool enters or exits, the specific cutting force is extremely high to the order of 2.6e3 GPa, and then decreases quickly to the order of 60 GPa at chip thickness of 0.1 um, then to 15 GPa when chip thickness increases to 2 um. The tool experiences such cyclic tensile and compressive stress frequently in unit time which will lead to material fatigue and result in tool chip or fracture. The applied tungsten carbide tool is extremely hard, it has a Young's modulus of approximately 550 GPa[9], a bulk modulus of 439 GPa, and a shear modulus of 270 GPa. It has an ultimate tensile strength of 344.8 MPa. Compared with the stress it is subjected to during machining, the constituents of the tool could fail easily and come off the tool, which appears as abrasive wear when time accumulates.

CONCLUSION

This study investigates the influence of tool runout on chip thickness and the real rotating radius of the tool, a new algorithm is proposed to compute the real chip thickness in machining. Cutting forces are computed based on the model proposed by Martin Jun on aluminium 6082-T6, while the absolute value of cutting force in micro machining is no longer appropriate to consider, specific cutting force is used instead to interpret micro machining process, the result shows that even for extremely hard tool material, the stresses it undertake are far bigger than its own strength. This discovery can preliminarily explain the tool wear behaviour, and further study will be carried out based on the newly developed model.

REFERENCES
INTRODUCTION
Magnesium alloy is known to have one of the highest specific strengths for conventional metals. Its nominal density is only 1.8 g/cm3 and its high energy adsorption results in good damping of noise and vibrations. Magnesium alloy is best suited for applications where lightness is the primary consideration and strength is a secondary requirement. Some industrial parts made with magnesium alloy are usually manufactured by plastic working techniques such as press forming, bending, and casting. However, when the production of parts require a higher precision accuracy, cutting should be adopted as a finishing process.
Much is already known about the cutting of magnesium alloy. For example, magnesium is known to be one of the easiest metals to machine: less power is required for removing a given volume of magnesium by machining than for any other commonly machined metal [1]. Also, during the cutting of magnesium alloy, the chips produced with single point tools are known to fall into three general types, (1) short and well broken, (2) short and partially broken, (3) long and curled. In addition, it is known that tool life can be extended at high cutting speeds by adequate cooling with the sharp tool edge [1]. However, little is currently known about the chip formation mechanism of magnesium alloy. Hence, in this paper, orthogonal cutting experiments were conducted to allow a detailed examination of the chip formation mechanism. Following this, the lubricant applying effect (LAE) [2] in magnesium alloy cutting was investigated.

EXPERIMENTALS
Work material
One of the most conventional magnesium alloy AZ31 was selected because of its wide variety of uses. The dimensions were $800 \times 30 \times 3$ t. Cemented carbide K10 with a rake angle of 0° and a clearance angle of 7° was used as the tool material. The tool edge was carefully ground by a #800 diamond wheel, and its tool edge roundness was measured to be less than 2µm.

Experimental set up
The cutting experiment was conducted on an NC orthogonal precision cutting machine with stiffness of 78.4 N/µm and higher precision positioning. The NC orthogonal precision cutting machine was a type of double-housing planer that provided a single point process.
Two types of cutting experiments, usual and oil-submerged cutting, were conducted as shown in Figure 1. In the oil-submerged cutting, both the work and the edge of the tool were submerged into the cutting oil, which was in an oil bath (Figure 1b). As a result, there was not bias in the supply of cutting oil.

![Figure 1. Two types of cutting methods](image-url)
Cutting method
Extreme pressure type oil was selected as the cutting fluid in all experiments. The cutting forces were measured by a piezoelectric dynamometer. It is known that in cutting of some kinds of ductile metals, the extent of cutting force increases with a decrease in thickness of the work hardened layer of the pre-cut surface at the same depth of cut[2]. Subsequently, it was necessary to adjust the rate of work hardening in the cutting zone (pre-cut surface) before the cutting experiment. In our experiments, the depth of last pre-cut \(t_L \) ranged from 10 to 100 µm. As the thickness of deformed layer could be significantly controlled by \(t_L \), the value of \(t_L \) was one of the most important parameters in the experiment. The depth of cut \(t_1 \) also ranged from 10 to 100 µm. The cutting speed ranged from 5.3 m/min to 50 m/min.

Table 1 summarizes the cutting conditions.

<table>
<thead>
<tr>
<th>Work material</th>
<th>AZ31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool material</td>
<td>Cemented Carbide K10</td>
</tr>
<tr>
<td>Rake angle °</td>
<td>0</td>
</tr>
<tr>
<td>Relief angle °</td>
<td>7</td>
</tr>
<tr>
<td>Cutting form</td>
<td>Orthogonal</td>
</tr>
<tr>
<td>Cutting speeds m/min</td>
<td>5.3, 25.7, 50.0</td>
</tr>
<tr>
<td>Depth of cut (t_1)</td>
<td>10, 30, 50, 70, 100</td>
</tr>
<tr>
<td>Depth of cut at last pre-cutting (t_L)</td>
<td>10, 30, 50, 70, 100</td>
</tr>
<tr>
<td>Cutting fluids</td>
<td>Extreme pressure oil</td>
</tr>
</tbody>
</table>

EXPERIMENTAL RESULTS

Chip formation type
Table 2 shows relationship between chip formation type and cutting conditions. In the Table 2, shear type chip is one of discontinuous type chip, on the other hand, serrated chip is semi-continuous type chip where each segment is barely linked. Figure 2 shows SEM micrographs of two types of chip. The former has a different chip formation mechanism from the latter, then which produces different cutting forces and surface roughness from the latter.

Chip morphology
Figure 2 shows SEM micrographs of two types of chip. The micrographs clearly reveal two different chip formation mechanisms that lead to different cutting forces and surface roughness. Serrated chip have almost uniformly spaced segments that are not separated from each other. On the other hand, shear type have independent segments that are short and well broken.

<table>
<thead>
<tr>
<th>TABLE 2. Chip formation type - cutting conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
</tr>
<tr>
<td>(t_L)</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>a) (V=5.3 \text{ m/min})</td>
</tr>
</tbody>
</table>

| \(t_1 \) | 10 | 30 | 50 | 70 | 100 |
| \(t_L \) |
10	○	○	○	×	
30	○	○	○	×	
50	○	○	○	×	
70	○	○	○	×	
100	○	○	○	×	
b) \(V=25.7 \text{ m/min} \)					

| \(t_1 \) | 10 | 30 | 50 | 70 | 100 |
| \(t_L \) |
10	○	○	○	×	
30	○	○	○	×	
50	○	○	○	×	
70	○	○	○	×	
100	○	○	○	×	
c) \(V=50.0 \text{ m/min} \)					

\(\bigcirc \): Serrated type (Semi-continuous)
\(\times \): Shear type

FIGURE 2. SEM micrograph of two types of chip morphology
Machined surface properties

Figure 3 shows optical micrographs of machined surfaces. In the case of \(t_L = 10 \mu m \), \(t_1 = 10 \mu m \) at \(V=5.3 \text{ m/min} \), a smooth surface with tool marks could be seen, and \(R_a \) was 0.034\(\mu m \). On the other hand, in the case of \(t_L = 100 \mu m \), a typical surface morphology of shear type chip with periodical irregularities, could be clearly observed and \(R_a \) was 1.052\(\mu m \).

Surface roughness

Figure 4 shows the roughness \(R_a \) of machined surfaces. At cutting speeds over 5.3\(\text{ m/min} \), \(t_L \) had
smaller effects on machined surface roughness than \(t_1 \). In the case of \(t_L = 100 \mu m \) and \(t_1 = 10 \mu m \), the pre-cut surface was significantly deteriorated, and even a small depth of cut of \(t_1 = 10 \mu m \) could not compensate for the surface irregularities. Comparing Figure 4 a) with b), higher cutting speeds produced a much better surface finish than lower cutting speeds. In the former case, with the exception of \(t_1 = 100 \mu m \), serrated chip formation presented a smoother surface finish.

Cutting forces

Figure 5 shows the resultant cutting forces at \(V = 5.3 \) m/min. The resultant cutting forces increased with an increase in \(t_1 \). It is generalized that a larger \(t_L \) resulted in smaller forces at the same depth of cut, which trend was found in such ductile metals as aluminum, copper and mild steel cutting[3]. At higher cutting speeds such as \(V = 25.7 \) and 50.0 m/min, \(t_1 \) showed similar trends to those at \(V = 5.3 \) m/min. The cutting forces decreased with an increase in the cutting speed. Similar trends were observed in aluminum and copper under the cutting conditions in Table 1[3].

Figure 6 shows schematic diagram of two types of chip formation mechanism.

Lubricant applying effect

LAE cutting experiments[3] were conducted as shown in Figure 1 a). The lubricant was an extreme pressure oil that was best suited for magnesium cutting and recommended by an oil company. The experimental results indicated no reduction in the cutting forces on the applied parts for all cutting conditions given in Table 2. This suggests that there is no LAE in magnesium alloy AZ31 cutting. Previous research showed that titanium alloy Ti-6Al-4V cutting also provided no LAE[2]. Ti-6Al-4V has hcp lattice structure. As both magnesium AZ31 and titanium alloy Ti-6Al-4V have a hcp lattice structure, the results suggest that LAE is not found in hcp lattice structure metals.

REFERENCES

ABSTRACT
This paper summarizes recent work to optimize grinding with sub-millimeter diameter wheels. Traditional machining parameters such as spindle speed, work speed, and depth of cut are explored as methods of controlling: 1) tool wear, 2) material removal rate, and 3) workpiece form accuracy. Additional results hint at the influence of system stiffness as it pertains to the small (sub-Newton) forces generated during grinding.

INTRODUCTION
The purpose of this work is to investigate a means of accurately improving the productivity of grinding operations with very small (i.e., fragile) grinding tools. Such small tools are of interest to a number of industries requiring meso-scale freeform surfaces with features of very short wavelength.

Forces generated during precision grinding are small and present challenges for accurate and reliable process monitoring and process optimization. In this work, these challenges are met by using a high-sensitivity, commercially-available dynamometer (Kister Mini-Dyn) in series with a low mass workpiece and workpiece fixture that maximizes the usable measurement bandwidth.

One of the reasons this task is so difficult is that the surface of a grinding wheel contains many cutting points in the form of abrasive grits held together in a resin, metallic, or ceramic matrix. These grits are made of hard and tough ceramics or diamond that can penetrate and cut the workpiece. Therefore, the grinding wheel is a multi-point cutting tool. Unlike the easily-characterized single point cutting tools, abrasive grits are geometrically irregular in both location and shape. This makes it difficult to know the true conditions of the grinding wheel surface with any degree of certainty. The abrasive grits in two types of grinding wheels used in the manufacture of hard tools for precision stamping are shown in Figure 1.

FIGURE 1. SEM micrographs of the defects and irregular distribution of diamond grits on the surface of a 1.5 mm diameter, trued and dressed, vitreous-bonded, diamond-grit wheel.

The wheel is commercially available and is composed of diamond grits within a vitreous bonded matrix. The wheel is produced by compacting and sintering the grits with the matrix onto a carbide shank for holding the wheel. This process produces an imprecise
wheel (it is not close to a true cylindrical shape) with a very inhomogeneous surface, and the cutting edges of the grits are not well exposed. Consequently, the wheel must be trued to achieve a more precise cylindrical shape and dressed to expose the grits.

APPROACH

A series of patches are ground using different cutting parameters for each patch. The resulting forces will be measured using the Kistler 3-axis dynamometer. A schematic diagram of the workpiece is shown below in Figure 2. The cuts will be made radially in order to promote simplicity and remove effects of coordinated motion from the cut. In trade, the effective stepover will be decreased as the cut proceeds towards the center. Since the patches being cut are approximately 1mm square, which is small relative to the 40mm diameter of the workpiece, the decrease in step over will be small over the length of the cut.

FIGURE 2. Schematic of test grind layout.

A number of factors limit the achievable material removal rate:
1. Abrasive: concentration, bond, and grit size
2. Coolant
3. Machine structure: stiffness and damping
4. Spindle: stiffness, damping, and speed
5. Depth of cut
6. Feed rate
7. Stepover

These factors are among those considered in this testing.

FIGURE 3. Professional Instruments ISO 2.25 high speed spindle with Ø0.4 mm grinding wheel.

PROCEDURE

- True wheel using SiC wheel
- Install dyno on C-axis spindle
- Mount workpiece and chuck on dyno
- True workpiece face with cup wheel
- Run full test matrix, i.e. n patches
- Evaluate wheel wear under microscope
- Measure surface with Zygo NewView
- Analyze data from grinding operations and revise test plan in accordance with results

Test data from initial testing will be analyzed for material removal rate, grinding force, tool wear, tool deflection (as reflected in workpiece accuracy) and surface finish. The parameters will be reassessed with these results in hand. The amount of material to be removed is driven by external constraints (overall size and smallest radii).

CONCLUSION

This poster paper will show how machining parameters may be chosen to maximize material removal rate when grinding with very small diameter, fragile tools. The results provide insight into the best combinations of feed, speed, and depth of cut to remove stock without unduly compromising workpiece quality.
THE TUNGSTEN CARBIDE MACHINING
BY THE PCD COATED CARBIDE ENDMILLS
- EFFECT OF THE TOOL-PATH STEPS -

Takenori ONO¹
¹Department of Mechanical Engineering
Kyushu Sangyo University
2-3-1 Matsukadai, Higashi-ku, Fukuoka-shi, FUKUOKA, JAPAN

INSTRUCTIONS
Recent years, a demand of the micro fabrication is increasing in many industries. A tungsten carbide has potentials for micro fabrications because of its mechanical properties such as stiffness, thermal expansion. The carbide material has been machined by high energy beam processes, electrical discharge machining or abrasive processes so far. However, these conventional processes require a finishing process to finish the machined surface and remove the damaged layer of the material. To simplify or avoid this arduous process, a cutting on carbide materials is investigated[1,2]. The author has tried a micro milling by PCD (Poly Crystal Diamond) coated carbide endmills on tungsten carbide[3-5]. This kind tool has many economic advantages. In usual, the price of this tool is 4 -10 times smaller than the PCD or SCD (Single Crystal Diamond) solid tools. In addition, it can machine the smooth surfaces, its arithmetic mean roughness (Ra) is less than 50 nm on the tungsten carbide[3].

However, this manner has some problems. A machining rate is one of the important issues to solve. Recently, many tool companies recommend to set a high feed rate with multipath steps (with dividing an axial depth of cut) in the process by this kind tool to achieve the high machining rate. However, it can assume that a surface roughness and a cutting force are also increased with an increasing of a cutting depth at a tool rotation at higher feed rates. And, other properties of the cutting force such as a direction and an applied area of a cutting edge may be changed by tool-paths because an engaged area of the cutting edge is changed in the each tool-paths. And a toughness of the cutting edge may be decreased, thus the higher cutting force is applied to the specific area on the cutting edge by the multipath steps. On the other hand, if the cutting process is performed by a reduced feed

Table 1 Mainly cutting conditions

<table>
<thead>
<tr>
<th></th>
<th>Lubrication</th>
<th>Dry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotational speed rpm (Cutting speed m/min)</td>
<td>20000</td>
<td>(251.33)</td>
</tr>
<tr>
<td>Tool feed rate mm/min (Multi): 50 (Single): 1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tool inclination angle deg</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Total cutting length m</td>
<td>2010.62</td>
<td></td>
</tr>
<tr>
<td>Depth of groove/path µm (Multi): 0.5 (Single): 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of the path (Multi): 40 (Single): 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. PCD coated carbide ball endmill (R2.0)

Figure 2. Cross section of the cutting edge observed by Focused Ion Beam machine tool.
rate with a single feed step (at a full of depth of cut) . A tool life may be increased than that of the multi steps because the cutting force ratio is reduced by a reducing of the cutting depth. Also the surface roughness may be decreased by the small cutter feed.

To investigate these assuming, the author tried a cutting experiment by single feed step and multi feed steps on the tungsten carbide (JIS-K10) with commercially available PCD coated carbide ball endmills. This report announces the result of the experiment and discusses about effects on the surface roughness and tool life by the tool-path steps with numerical simulations.

CUTTING EXPERIMENT AND RESULTS
Table 1 shows cutting conditions in the cutting experiment. In this experiment, slotting operations are performed by PCD coated carbide ball endmill at the single feed step and multi feed steps. In both manners, the slotting operations are carried out at same cutter velocity and cutting length (~machining time: neglects the setup time) of the cutter feed. Therefore, the slotting operations are performed by the described tool feed rate and depth of groove per the tool-path in this table. Figure 1 shows the PCD coated carbide ball endmills in the cutting experiment. The milling tool has a diameter of 2.0 mm, a cutter length of 8 mm,
and a helix angle of 30 deg. A grain size of the PCD coat is less than 0.5 μm, a coat thickness is less than ~10 μm, and a roundness of cutting edge is ~10 μm by SIM(FIB) observations as shown in Figure 2. Figure 3 shows the experimental setup. The slitting operation is performed with the 3 axis machine tool which consists of XY linear motor stages (Nihon Thompson NT80V65) and Z stepping motor stage (Sigma Kouki PK513PB-C9). The resolution of the XY stage is 0.1 μm and that of Z stage is 0.01 μm as the specification. These are controlled by the motion controller board connected to the PC simultaneously. The stages are milling tool is mounted on a brushless motor spindle to control the rotational speed electrically. Ceramic ball bearings in the spindle are lubricated with oil. The spindle runout is specified within a micrometer. The cutting tests start after 30 minutes’ idle running to reduce the effect of thermal change in the cutting process.

The workpiece is mounted on a tool dynamometer to determine the cutting force and contact between tool and workpiece.

Figure 4 shows the machined surfaces. As shown in this figure, a width of a cutter mark is changed by the cutting manner. Figure 5 shows 3D profile and roughness curve of the machined surface are determined by Atomic Micro Scope (AFM). As shown in this figure, surface roughness parameters (arithmetic mean roughness: Ra, maximum roughness height: Rz and average distance: S) change corresponding to the tool feed at a cutter rotation. In the case of multi tool-path, all parameters are higher than that of the case of a single path.

Figure 6 compares cutting edges after the machining. In the multi steps, large coat fracture is left on a one side of the cutting edge. The length of the fracture along to an axis of a cutter rotation is determined “127 μm” in Figure 7.

Figure 8 shows the determined cutting force in both cutting modes. In the case of the multi steps, cutting force changes unstably at the final step. This reason can be considered that the cutter engaging is affected by the tool damage that described in Fig. 7. On the other hand, the cutting force changes stably during the process in the case of the single step.

DISCUSSION

This section discusses about the effect of the tool-path steps on the cutting force and coat fracture.

According to Fig. 4 and Fig. 5, it is concluded that decreasing the tool-path step makes to reduce the surface roughness.

Figure 9 shows the changing of the actual cutting points on the cutting edge[6]. In this figure, its vertical axis is for the cutting edge height that is the distance from the tool nose along to the center axis of the tool, and the horizontal for the cutting time. The calculation is performed with same cutting conditions in the cutting experiment. In the case of the multi step, the cutting area grows with increasing the depth of the groove. However, it is very small because cutter engages on the machined surface with the small depth. On the other hand, the cutting area changes widely in the single mode because the cutter engages at the full of the depth of cut. Figure 10 compares the calculated maximum cutting depth at each step. In the figure, its vertical axis is for the cutting depth, and the horizontal for a cutting edge height. In the case of the multi step, the cutting depth is widely increasing along the cutting edge.
milling process from the point of view of surface quality and tool life.

CONCLUSION
This report announces the result of the experiment and discusses about effects on the surface roughness and tool life by the tool-path steps with numerical simulations.

The cutting experiment was performed by PCD coated carbide ball endmill at the single feed step and multi feed steps. As the result, the roughness of the machined surface is reduced by reducing the tool-path steps. Also the tool life is increased by reducing the step.

Based on these results, it is concluded that the tool-path steps should be reduced in the carbide milling process from the point of view of surface quality and tool life.

ACKNOWLEDGMENT
The author thanks to Dr. Yoshiji Tomokiyo, and Mr. Takeshi Daio in Kyushu University, Mrs. Keiko Koga in Kyushu Sangyo University for their valuable comments and assistance. In addition the author special thanks to Mr. Taisuke Inoue and Mr. Kohei Hata they are graduated students of my laboratory for their efforts.

REFERENCE
ABSTRACT
To enhance the machining efficiency and to reduce the error of the off-line tool wear compensation method in micro-EDM milling, the concept of in-line adaptive tool wear compensation based on real-time pulse counting and classification is proposed. A few key aspects concerning the feasibility to implement this method in a commercial machine are studied.

INTRODUCTION
Micro-EDM milling is an electrical discharge machining (EDM) process, which is based on the common electro-thermal material removal mechanism. To reach a low sparking energy typically relaxation (RC) type generators are used [1].

In a layer-by-layer micro-EDM milling process [2], a rotating electrode, with a diameter down to a few tens of µm, is driven by the numerical control along a given tool path (FIGURE 1). As the tool wear is significantly affecting the machining accuracy, an efficient and accurate wear compensation method is needed. Instead of the conventional off-line tool wear sensing and compensation method, this paper studies the feasibility of an in-line adaptive tool wear compensation method. The method is based on a strategy of pulse counting and classification to predict the tool wear and is adjusting the wear compensation factor accordingly.

THE PRINCIPLE OF LINEAR TOOL WEAR COMPENSATION
In micro EDM milling, the most often used tool wear compensation method is linear compensation, where the electrode incrementally moves down to compensate the wear along its length while the machining follows a predefined path [4]. This method is only valid for a wire-like prismatic or round tool electrode and only the tool length is compensated. When machining layer-by-layer, the compensation speed along the feeding direction thus can be calculated as a “feeding slope” \(\tan \delta \) according to the principle illustrated in FIGURE 2:

\[
\begin{align*}
V_e &= \vartheta \cdot V_w \\
\pi R^2 dL_w &= \vartheta (2R + 2S_f) L_m dL_{xy} \\
\tan \delta &= \frac{dL_\omega}{dL_{xy}} = \frac{\vartheta (2R + 2S_f)}{\pi R^2} L_m
\end{align*}
\]

with,
- \(V_e, V_w \) material removal of the tool electrode and workpiece (mm³)
- \(\vartheta \) volumetric relative wear (%)
- \(L_w \) worn electrode length after one machining layer (mm)
- \(L_m \) machining layer thickness (mm)
- \(R \) electrode radius (mm)
- \(S_f, S_L \) frontal/lateral sparking gap size (mm)
L_{xy}, L_z travelling distance in X-Y plane/Z-axis (mm)

The relationship between L_w and L_m can be expressed as:

$$L_m = \Delta Z + L_{xy} \cdot \tan \delta - L_w \quad (4)$$

with,

ΔZ programmed depth of cut (mm)

Based on Equation (3) and (4), it is possible to update the $\tan \delta$ by measuring L_w or/and L_m intermittently.

DISCHARGE PULSE ACQUISITION

Experiments were performed using a micro-EDM milling machine, Sarix SX-100-HPM (FIGURE 3, SARIX SA, Switzerland). A tungsten carbide rod, with nominal diameter of 500 µm, was used as tool electrode while a block of martensitic stainless steel “AISI 420 modified” was used as workpiece.

FIGURE 3 SARIX SX-100-HPM and peripherals

FIGURE 4. Experimental setup with discharge acquisition system

Real-time pulse counting and classification

Reverse current flow

Resistor-capacitor (RC) generators are employed in micro-EDM applications since they provide very low energy pulses. During machining, however, RC pulses often display a reverse current flow after discharge, most likely due to parasitic inductance in the discharge circuit [6]. The duration and amplitude of the negative pulse part (reverse current flow) can become comparable to the positive pulse part when machining at higher open voltages [7]. To facilitate the study in this paper, a low open voltage of 80 V and a fixed discharge capacitance is chosen, such that the contribution of the negative pulse part to both total discharge energy and tool wear is negligible. A current of 3 A is chosen as the current threshold level to count and classify the dominant pulse parts, similar to the analysis done in [6].

KEY ISSUES OF IN-LINE ADAPTIVE WEAR COMPENSATION

Variation of tool path & electrode working area

Before implementing the adaptive wear compensation, first the behavior of the number of counted pulses with respect to the variation of tool path (which can be continuously changing during a milling process) is investigated.

To simulate the actual milling condition, two aspects are considered: tool path and tool diameter variation. Both are shown in the central horizontal area of FIGURE 5 (left), where a line, triangle, circle and square are slot milled showing path variations; and in the top and bottom area, where only 60% and 80% of the
working diameter is used to remove material (which also simulates the wall finish operation). To facilitate the comparison of the machining results, the tool feed length per layer in X-Y plane is 5 mm and is the same for all the features, as well as the wear compensation factor \((\tan \delta = 0.085\%)\). All the features have a nominal depth of 50 \(\mu\)m, with a machining layer depth of 1 \(\mu\)m.

![FIGURE 5. Different features machined after simulation with the same tool feed length in X-Y plane (left) and touch points on the features with a micro electrode as a touch probe (right)](image)

To evaluate the machining performance variation, each feature was machined twice, all the results of interest are listed in TABLE 1. The depth of the machined feature was measured at several points defined in FIGURE 5 (right), using a micro electrode which has a base and tip diameter of Ø0.5 mm and Ø0.2 mm respectively. This measuring electrode is fabricated using the on-machine Wire Electrical Discharge Grinding (WEDG) unit as shown in FIGURE 6. It can be seen that the number of pulses counted for some feature has a big difference for each trial, the number of effective pulses per second and the tool wear per discharge (TWD) calculated are however very consistent.

![FIGURE 6. On-machine WEDG unit (left) and micro electrode fabricated (right) [8]](image)

When comparing the four different features where the full diameter of the electrode is removing material, the machining time and the machined depth are both smaller for the line slot, but the worn tool length is however larger. This results in a smaller material removal per discharge MRD but in a bigger TWD.

One possible explanation can be the big amount of short circuits occurring when the tool is making a 180° turn after approaching either edge of the line slot. It also indicates that successive short circuits may cause excessive tool wear while removing less workpiece material. On the other hand, the TWDs of the other three features all fall between 4.60 and 4.75 \(\mu\)m³, which confirms that a smooth tool path transition has non-significant effect on the TWD.

TABLE 1. Machining performance of different features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Trial</th>
<th>Nr. of pulses</th>
<th>Machining time (s)</th>
<th>Mean (f_e) (s)</th>
<th>(L_{w,m}) ((\mu)m)</th>
<th>(L_{m,m}) ((\mu)m)</th>
<th>TWD ((\mu)m³)</th>
<th>MRD ((\mu)m³)</th>
<th>TWR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle</td>
<td>1</td>
<td>8170961</td>
<td>462</td>
<td>17686</td>
<td>201.57</td>
<td>48.91</td>
<td>4.75</td>
<td>14.53</td>
<td>32.68</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8328948</td>
<td>472</td>
<td>17646</td>
<td>204.17</td>
<td>48.05</td>
<td>4.72</td>
<td>14.01</td>
<td>33.70</td>
</tr>
<tr>
<td>Circle</td>
<td>1</td>
<td>8461575</td>
<td>465</td>
<td>18197</td>
<td>205.64</td>
<td>47.45</td>
<td>4.68</td>
<td>13.58</td>
<td>34.47</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8759388</td>
<td>478</td>
<td>18325</td>
<td>209.46</td>
<td>50.74</td>
<td>4.60</td>
<td>14.05</td>
<td>32.74</td>
</tr>
<tr>
<td>Square</td>
<td>1</td>
<td>8249351</td>
<td>463</td>
<td>17817</td>
<td>202.14</td>
<td>46.98</td>
<td>4.72</td>
<td>13.83</td>
<td>34.12</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8402417</td>
<td>474</td>
<td>17727</td>
<td>204.37</td>
<td>48.82</td>
<td>4.68</td>
<td>14.10</td>
<td>33.20</td>
</tr>
<tr>
<td>Line-100%</td>
<td>1</td>
<td>8482346</td>
<td>455</td>
<td>18643</td>
<td>216.98</td>
<td>43.18</td>
<td>4.92</td>
<td>12.35</td>
<td>39.84</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8378443</td>
<td>456</td>
<td>18374</td>
<td>211.42</td>
<td>44.10</td>
<td>4.86</td>
<td>12.79</td>
<td>38.01</td>
</tr>
<tr>
<td>Line-80%</td>
<td>1</td>
<td>7368833</td>
<td>434</td>
<td>16979</td>
<td>200.00</td>
<td>56.05</td>
<td>5.22</td>
<td>15.38</td>
<td>33.93</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7526218</td>
<td>441</td>
<td>17066</td>
<td>205.95</td>
<td>57.17</td>
<td>5.27</td>
<td>16.32</td>
<td>32.27</td>
</tr>
<tr>
<td>Line-60%</td>
<td>1</td>
<td>5884787</td>
<td>392</td>
<td>15012</td>
<td>184.45</td>
<td>76.03</td>
<td>6.03</td>
<td>19.58</td>
<td>30.79</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5793125</td>
<td>387</td>
<td>14969</td>
<td>182.07</td>
<td>72.95</td>
<td>6.05</td>
<td>20.27</td>
<td>29.84</td>
</tr>
</tbody>
</table>

\(f_e\): number of effective discharges per second, \(L_{w,m}\): measured electrode length wear, \(L_{m,m}\): measured machining depth (mean), TWD: tool wear per discharge, MRD: material removal per discharge, TWR: the ratio of electrode wear rate to workpiece material removal rate.
When looking at the number of counted pulses and the number of pulses per second plotted in 60 seconds (approximately the machining time of 6 layers) in FIGURE 7, a periodic shape is observed for the line slot, for the other three features it are more or less straight lines and overlapping each other. This is due to the servo control, because for the line slot, the feed rate is continuously decreasing from one edge to the other; while for the other three features (when no short circuit occurs) the feed rate only has a drop and rise when starting the next machining layer.

These different behaviors can be more clearly seen in FIGURE 7 (middle and right), the number of pulses per second (updated around every 0.1 second) for the line slot shows a repeated pattern of a first increase, then saturate and finally a fast drop, for the other three features, it is more like a sawtooth wave oscillation and the oscillation tends to be smaller at longer machining time.

Finally, with a different electrode working area, namely 60%, 80% and 100% of the tool (from the left to the right in the X-axis in FIGURE 8) is performing the line slot, it can be seen that the number of pulses per second tends to increase while both TWD and MRD tend to decrease, but the TWD is decreasing slower than the MRD. This indicates that when only part of the electrode is removing material, it actually has a higher efficiency to remove more workpiece material per discharge while has a lower tool wear ratio. Practically, in order to ensure a flat electrode bottom, at least 50% of the tool is used to perform the wall finish.

The results in TABLE 1 show that the actual machining depth when 60% and 80% of the tool diameter is working is above 70 µm and 55 µm respectively, both exceeding the target depth of 50 µm.

To solve this problem, either the number of machined layers needs to be reduced if the current wear compensation factor remains, or the wear compensation factor needs to be reduced if the number of layers remains.

Adaptive tool wear compensation

In actual machining process, a correct tool wear compensation factor \(\tan \delta \) is always unknown for the first trials when there is a new combination of tool electrode and workpiece materials. To simulate this scenario, three different \(\tan \delta \) values are selected, one is the "correct" value which is 0.085% for the circular slot as shown in FIGURE 5, the second one is corresponding to an overcompensation (0.1275%) and the third one is representing an undercompensation (0.03%). Both over- and undercompensation are randomly chosen. The off-line electrical touch is still used to access the worn tool length at each control point. Furthermore 6 control points are chosen for each trial which means that the tool length is measured after machining every 30 layers with a programmed incremental depth of 1 µm, thus a total machining depth of 180 µm is targeted.
The update of a new $\tan \delta$ value after each length control is calculated using the linear wear compensation method described above. The evolution for different starting $\tan \delta$ values is shown in FIGURE 9 (top), it is clearly seen that once a correct $\tan \delta$ is set at the beginning, only minor adjustment is made for all the remaining control points; the tuning is similar for both over- and undercompensation, where a kind of underdamped curve is found, finally all approaching the correct $\tan \delta$ value.

With regard to the tool wear per discharge TWD calculated between each length control in FIGURE 9 (bottom), the evolution is similar to that of $\tan \delta$ for over- and undercompensation scheme. However, the TWD for the correct starting $\tan \delta$ tends to decrease and saturate while the $\tan \delta$ value remains rather stable during the whole machining process. A similar trend is also found in [9]. The same goes for the material removal per discharge [10].

![Image](https://example.com/fig9.png)

FIGURE 9. Adaptive wear compensation implemented (top) and the TWD evolution (bottom)

The reasons for such a trend are not completely understood, one possible cause might be the changing percentage of frontal and lateral sparking number with larger machining depth, which might result in different material removal efficiency.

When comparing the time to reach a stable TWD value of about 4.4 μm3, the overcompensation method has the best performance. This indicates that overcompensation is actually recommended in order to reach a stable TWD as soon as possible. This will also reduce the frequency for off-line tool length measurement.

Finally, the accuracy of the adaptive wear compensation method on the machined depth was also evaluated, which is listed in TABLE 2. The incremental machining depth was calculated at each control point where the incremental worn tool length was measured. The final machining depth was measured using the micro electrode as described above. The measured depth for all the three cases is smaller than the cumulative machining depth calculated, as well as the target depth. To overcome this, more control points are needed, which is actually the advantage of the in-line adaptive tool wear compensation strategy, since in the current machine the information can be updated for every single machining layer (minimal rate of update).

TABLE 2. Comparison between calculated and measured machining depth

<table>
<thead>
<tr>
<th>Control point</th>
<th>$\tan \delta$ (%)</th>
<th>Incremental $L_{m,c}$ (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1275</td>
<td>0.085</td>
</tr>
<tr>
<td>1</td>
<td>40.45</td>
<td>29.57</td>
</tr>
<tr>
<td>2</td>
<td>24.32</td>
<td>30.09</td>
</tr>
<tr>
<td>3</td>
<td>24.28</td>
<td>31.30</td>
</tr>
<tr>
<td>4</td>
<td>29.48</td>
<td>29.24</td>
</tr>
<tr>
<td>5</td>
<td>32.74</td>
<td>29.76</td>
</tr>
<tr>
<td>6</td>
<td>29.22</td>
<td>30.37</td>
</tr>
<tr>
<td>Total $L_{m,c}$ (µm)</td>
<td>180.49</td>
<td>180.30</td>
</tr>
<tr>
<td>$L_{m,m}$ (µm)</td>
<td>176.81</td>
<td>178.93</td>
</tr>
</tbody>
</table>

$L_{m,c}$: calculated machining depth, $L_{m,m}$: measured machining depth (mean)

CONCLUSION

This paper studied three different aspects in order to realize an in-line adaptive tool wear compensation in micro-EDM milling, based on a pulse counting and classification method. Experimental results indicate that under stable machining conditions, a smooth tool path variation does not affect the tool wear per discharge (TWD) which is used to predict the
tool wear. During a wall finish operation where only part of the electrode is effectively removing material, a higher workpiece material removal per discharge is found with a lower tool wear ratio. In order to faster saturate the calculated TWD during the process to reduce the frequency of off-line tool wear measurement, a larger initial wear compensation factor is recommended. All these studies help to prepare for the further development of the on-machine in-line adaptive tool wear compensation.

ACKNOWLEDGMENTS

This research work was performed in the project MiDeMMA: Minimizing Defects in Micro-Manufacturing Applications (EU FP7-2011-NMP-ICT-FoF-285614).

REFERENCES

Fabrication of Microstructures on Polycrystalline Diamond Using Chemical Reaction-Assisted μ-EDM

Kazunori Watanabe, Jiwang Yan
Department of Mechanical Engineering, Keio University
Yokohama 223-8522, Japan
yan@mech.keio.ac.jp

INTRODUCTION

Polycrystalline diamond (PCD) is an excellent material for fabricating micro cutting tools and key components for micro mechanical systems. However, PCD is difficult to machine by mechanical methods such as grinding and polishing. In recent years, micro electrical discharge machining (μ-EDM) of PCD has become a new focus of research. Previous researches used copper, tungsten, and Cu-W alloy electrodes for EDM of PCD. However, the material removal rate of diamond is low and surface roughness is high because diamond is an insulator which is difficult for EDM processing.

In this work, thermo-chemical reaction of diamond was introduced into EDM by using cupronickel (Cu-Ni) electrodes. It is known that diamond tools show severe wear when cutting Ni due to chemical reaction occurring at high temperature. Under the high temperature conditions in EDM, the removal rate of diamond might be improved by thermo-chemical reactions between Ni and diamond (C). In this work, the tool electrode was shaped into a thin wheel instead of wire and die-sinking EDM, to improve the material removal rate and surface quality (Fig.1).

EDM SYSTEM CONSTRUCTION

A μ-EDM system was constructed. The system includes a wheel electrode unit as shown in Fig.2, a dielectric fluid pumping unit, and a DC power source. PCD rods were used as workpiece which contains diamond grains having a mean size of 0.5 µm and concentration of ~90%, with Co as binder.

The cupronickel used in the experiment is composed of 30% Ni and 70% Cu (melting point 1210 °C, thermal conductivity 29 W/(m·k)). The cupronickel electrode which (16 mm in diameter and 0.5 mm thick) was attached to an aluminum millwheel, so that the rotation of the electrode can be driven by the circulating flow of the dielectric fluid without using additional actuators. In this way, the influence of motor vibration is avoided, and it is easy to make the EDM system stable.

FIGURE 1. EDM mechanisms of PCD using a rotary cupronickel electrode.

FIGURE 2. Rotary electrode unit.

FIGURE 3. The 3-axis EDM system.
FIGURE 4. Material removal rates for different electrode materials.

FIGURE 5. Change of material removal rate with electrode rotation rate.

compact (Fig.3).

The electrical discharge was generated by a RC circuit where the voltage was 50 V (PCD positive; cupronickel negative), and the capacities of condensers were 50, 500, 1000 pF. The electrode rotation rate was changed from 70 to 400 rpm by adjusting the output of the circulating pump of dielectric fluid. For comparison, vibration assisted die-sinking EDM tests using piezoelectric actuators (amplitude 5 μm, frequency 2 kHz) were performed.

RESULTS AND DISCUSSION

First, Cu, W and cupronickel electrodes were used in die-sinking EDM tests of PCD at different discharge energy levels, and the material removal rates (MRR) were compared. As shown in Fig.4, compared with that of Cu and W, the MRR has been improved by a factor of five when using the cupronickel electrode. For cupronickel, the MRR of the rotary electrode is about twice that of die-sinking EDM.

Fig.5 shows change of MRR with rotation rate of electrode. MRR increases with the electrode rotation rate, indicating that debris was removed efficiently from the discharge gap. At a rotation rate higher than 350 rpm, however, the MRR hardly changes, showing a saturation state where no debris stagnation occurs in the gap.

Fig.6 shows form errors of machined PCD surfaces by die-sinking EDM and rotary EDM. When using die-sinking EDM, form error was significant at the center part, because it’s difficult to remove debris at this region. However in rotary EDM, debris was removed efficiently and discharges occurred uniformly. Consequently, the rotary EDM reduced form error to 1.0 μm level.

Next, surface topography of machined PCD is examined. Fig.7 shows scanning electron microscope (SEM) images of surfaces machined by a rotary cupronickel wheel electrode and a vibrated tungsten block electrode. The former (0.15 μm Ra) is distinctly smoother than the latter (0.21 μm Ra).

Fig.8 shows change in PCD surface roughness with electrical discharge energy. By using a very low energy, an extremely low surface roughness (~ 0.1 μm Ra) was obtained.
To clarify microstructural changes in materials during EDM, both the surface of PCD and cupronickel electrodes were investigated by laser micro-Raman spectroscopy. Fig.9 shows Raman spectra of a PCD rod before and after EDM. Before EDM, there is a peak at 1332 cm$^{-1}$ that corresponds to the first order Raman peak of crystalline diamond. However, after EDM there are two peaks at 1580 cm$^{-1}$ and 1350 cm$^{-1}$. The peak at 1580 cm$^{-1}$ (G band) indicates crystalline graphite, and peak at around 1350 cm$^{-1}$ (D band) corresponds to microcrystalline graphite. This result indicates that diamond-graphite phase transformation takes place during the EDM of PCD.

In order to examine the interfacial phenomenon between PCD and cupronickel, a cross section of the cupronickel electrode was analyzed by energy dispersive X-ray (EDX) spectroscopy after the EDM process. Fig.10 shows the EDX results. The concentration of C detected in the subsurface region is as high as that on the electrode surface, and C has been diffused to a depth of ~ 5 μm from the surface. Based on the results of Raman spectroscopy and EDX analysis, Fig.11 shows schematically the surface formation mechanisms of PCD in EDM using cupronickel electrodes. As electrical discharges occur in a narrow gap for a short duration, the temperature in the gap is extremely high. The high temperature then causes two kinds of material dissipation effects of diamond: graphitization and diffusion-based chemical reaction. The diamond grains protruding a lot from the binder surface make contact with cupronickel and diffuse to a great extent into Ni, whereas the diamond grains of less protrusion undergo partial surface graphitization. Diffusion-based thermo-chemical reaction is very significant which greatly contributes to the improvement of MRR of diamond grains. That is to say, by utilizing the two kinds of interfacial phenomena effectively, an extremely smooth surface may be obtained on PCD at a very high MRR.
INTRODUCTION

Assembly of large spindles with tight clearances is non-trivial. However, a biconic design is easier to assemble than some spindle types if it does not have a separate shaft. A large central aperture also presents a challenge that is efficiently resolved using a dual cone design. This spindle had several challenging design requirements including a large aperture (Ø340 mm), high axial load capacity (19 kN), and high tilt stiffness (55 N•m/μrad) at 7 bar air pressure.

TABLE 1. Spindle specifications.

<table>
<thead>
<tr>
<th>Metric</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td></td>
</tr>
<tr>
<td>Axial</td>
<td>19 kN</td>
</tr>
<tr>
<td>Radial</td>
<td>9 kN</td>
</tr>
<tr>
<td>Stiffness</td>
<td></td>
</tr>
<tr>
<td>Axial</td>
<td>980 N/µm</td>
</tr>
<tr>
<td>Radial</td>
<td>490 N/µm</td>
</tr>
<tr>
<td>Tilt</td>
<td></td>
</tr>
<tr>
<td>Axial</td>
<td>55 N•m/μrad</td>
</tr>
<tr>
<td>Radial</td>
<td>485 lb•in/µrad</td>
</tr>
</tbody>
</table>

MANUFACTURING

A No. 3 Moore base served many different purposes on this project. Not only did we use it for grinding the stator and rotor, but we also used it to measure the angles of the cups and cones and cut the compensation grooves.

CONCLUSIONS

A μ-EDM system was developed for fabricating microstructures on PCD. Results showed that material removal rate was improved by a factor of five compared to using conventional electrode materials, and surface roughness was reduced greatly. Raman spectroscopy and energy dispersive X-ray spectroscopy analysis showed two interfacial phenomena: graphitization of diamond and diffusion-based thermo-chemical reactions between Ni and diamond. EDM using rotary cupronickel electrodes enables rapid fabrication of microstructures on PCD with high form accuracy and low surface roughness.

REFERENCES

INTRODUCTION
Assembly of large spindles with tight clearances is non-trivial. However, a biconic design is easier to assemble than some spindle types if it does not have a separate shaft. A large central aperture also presents a challenge that is efficiently resolved using a dual cone design.

This spindle had several challenging design requirements including a large aperture (Ø340 mm), high axial load capacity (19 kN), and high tilt stiffness (55 N•m/µrad) at 7 bar air pressure.

TABLE 1. Spindle specifications.

<table>
<thead>
<tr>
<th></th>
<th>METRIC</th>
<th>ENGLISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axial</td>
<td>19 kN</td>
<td>4,300 lb</td>
</tr>
<tr>
<td>Radial</td>
<td>9 kN</td>
<td>2,000 lb</td>
</tr>
<tr>
<td>Stiffness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axial</td>
<td>980 N/µm</td>
<td>5.6 lb/µin</td>
</tr>
<tr>
<td>Radial</td>
<td>490 N/µm</td>
<td>2.8 lb/µin</td>
</tr>
<tr>
<td>Tilt</td>
<td>55 N•m/µrad</td>
<td>485 lb•in/µrad</td>
</tr>
</tbody>
</table>

MANUFACTURING
A No. 3 Moore base served many different purposes on this project. Not only did we use it for grinding the stator and rotor, but we also used it to measure the angles of the cups and cones and cut the compensation grooves.
Being able to design and then build up bespoke tooling and reconfigure machines was key to the success of this one of a kind project.

The load capacity of the 10B Blockhead air bearing spindle was augmented with a belt lift attached to a large air cylinder. The air cylinder assisted the Blockhead to carry the combined radial and tilt load.

![Solidworks rendition rotor grinding set up.](image1)

FIGURE 3. Solidworks rendition rotor grinding set up.

FIGURE 4. Grinding a rotor half in a custom set up using a Moore No. 3 base.

FIGURE 5. Assembly grinding the rotor of the spindle.

FIGURE 6. Radial error motion 340 mm above the rotor (includes test ball out-of-roundness).

FIGURE 7. To measure the axial load capacity, we placed steel plates weighing 8.5 kN on the spindle and increased the air pressure until the bearing rotated freely.
FIGURE 8. Dynamics testing using Kistler accelerometer and HP Spectrum analyzer.

FIGURE 9. The results of the dynamics tests show that the first natural frequency is 675 Hz.
CONCLUSION
Building large air bearing spindles like this one represent a difficult challenge for traditional manufacturing processes. The component accuracies must be held to a fraction of a micron and the weights of the components make parts handling very difficult. Many of the techniques used in the machining and assembly had to be invented and modified concurrently with the machining and assembling of the various components.

REFERENCES
HIGH-TEMPERATURE PRECISION DESIGN: GLASS SLUMPING ON AIR BEARING MANDRELS

Brandon D. Chalifoux¹, Michael D. DeTienne¹, Jay Fucetola¹, Ralf K. Heilmann², and Mark L. Schattenburg²
¹Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, MA USA
²Space Nanotechnology Laboratory
MIT Kavli Institute for Astrophysics and Space Research
Cambridge, MA USA

INTRODUCTION
Precision-shaped thin glass substrates are required for numerous applications, including x-ray telescopes. One method of shaping thin glass is slumping [1]. Slumping on air bearings [2], combined with figure correction using ion implantation [3], may provide excellent surface figure without mid-spatial-frequency errors. In this glass slumping process, a horizontal glass substrate is supported by air films on both top and bottom. As the temperature of the slumping tool is raised, the glass softens and is forced to replicate the figure of the air bearing surfaces.

Accurate slumping requires non-contact control of glass position as the temperature rises from room temperature to 600 °C. In addition to dimensional variation, stress in ceramic and metal components is a significant concern and must be kept low. In this paper, we describe recent design innovations for a glass slumping tool, to precisely control glass position and ensure mechanical stability through extreme thermal cycling.

MECHANICAL DESIGN
The glass slumping tool consists of a pair of air bearings and pressurized plenums, mounted on a tip-tilt stage, with sensors to measure the glass position. Recrystallized silicon carbide has proven to be a mechanically-stable bearing material through repeated thermal cycling. This presents several difficulties, since fabricating the entire device using silicon carbide is prohibitively expensive, and silicon carbide has a substantially different coefficient of thermal expansion than most metals.

A cast silicon carbide plenum is cost-effective, allows a strong bond with the bearing, and minimizes thermal-induced figure errors. This plenum must be stably supported by a bearing, and a monolithic flexure system is devised to constrain 6 degrees of freedom while allowing significant thermal growth. This flexure system is shown in Figure 2. The blade flexures are stressed at room temperature, and in a low-stress state at high temperature, as the stainless steel grows more than the silicon carbide. Tabs are bonded into the silicon carbide using a high-temperature adhesive. This allows the assembly to be used in any orientation, which will be useful for future slumping tool designs.
Two innovations allow improved glass position control over previous designs. First, the position stability of the glass is improved through modification of the porous air bearing. Second, a low-noise fiber sensor is used to measure glass position. Together, these innovations enable precise control of the glass at high temperature.

The pores on the back of the air bearing are blocked near the edges of the bearing, using a thinned adhesive. It is found that the glass position is stable near the center of the bearing. The reduced air flow near the edges of the bearing provides a restoring force as the glass moves from the center. While this makes active control of the glass position easier, the presence of perturbations necessitates continued active control.

A high-temperature fiber sensor with low noise is required to achieve precise position control. A sensor is developed that uses one fiber to backlight the edge of the glass substrate, and seven or more fibers to pick up light that is not blocked by the substrate. As the substrate changes position, the intensity of light received by the pick-up fibers changes linearly. This method is found to be insensitive to edge defects of the substrate.

REFERENCES

SUPPRESSION OF DIAMOND TOOL WEAR IN TURNING OF STEELS
BY SURFACE MODIFICATION
– Effect of Nitriding –

Naomichi Furushiro¹, Daisuke Hirooka¹, Tomomi Yamaguchi¹,
Shigetaka Matsuda², Yasuhiro Iwasa², and Shuntaro Terauchi²
¹Kansai University
Suita, Osaka, Japan
²Osaka Yakin Kogyo Co., Ltd.
Higashi-Yodogawa, Osaka, Japan

ABSTRACT
In this study, we investigated tool wear suppression effect of nitrides in diamond turning of nitrided steels. We used three types of steels: stainless steel; hot work tool steel; and nitride steel. After quenched and tempered, those steels were nitrided by gas nitriding. Composition of surfaces were identified by X-ray diffraction method before and after nitriding. Precipitated nitrides in nitrided steels depended on composition of steels. After pre-finishing, we investigated machinability test of nitrided steels. Maximum wear was observed at the tool nose. The amounts of wear in diamond turning of nitrided steels were much smaller than those of quenched and tempered steels. Add to this, nitrided steels precipitating particular nitrides suppressed wear of diamond tool than other nitrided steels. Surface integrity was also improved as the wear was suppressed.

MACHINABILITY OF STEEL
EXPERIMENTAL METHOD
Table 1 shows tool geometries and cutting conditions. Figure 1 shows appearance of diamond cutting tool before cutting test. Figure 2 shows appearance of diamond cutting tool before experiment. We used the same conditions as those of previous proceedings [1-3]. We used three types of steels: stainless steel; hot work tool steel; and nitride steel. After quenched and tempered, those steels were nitrided by gas nitriding. Composition of steels were identified by X-ray diffraction method before and after nitriding. Table 2 shows composition of steels before nitriding, i.e. quenched and tempered, and after nitriding. Tool wear was measured using a scanning electron microscope.

<table>
<thead>
<tr>
<th>Cutting tool</th>
<th>Material</th>
<th>Monocrystalline diamond la</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystallographic orientation</td>
<td>(100) rake plane / (110) front plane</td>
<td></td>
</tr>
<tr>
<td>Included angle</td>
<td>130°</td>
<td></td>
</tr>
<tr>
<td>Rake angle</td>
<td>0°</td>
<td></td>
</tr>
<tr>
<td>Clearance angle</td>
<td>7°</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cutting conditions</th>
<th>Cutting speed</th>
<th>3.3 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed rate</td>
<td>3.1 µm/rev</td>
<td></td>
</tr>
<tr>
<td>Depth of cut</td>
<td>3.5 µm</td>
<td></td>
</tr>
<tr>
<td>Cutting length</td>
<td>16 m</td>
<td></td>
</tr>
<tr>
<td>Coolant</td>
<td>Air</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 1. Appearance of cutting test.

FIGURE 2. Appearance of cutting tool before cutting test.
TABLE 2. Composition of quenched and tempered steels and nitrided steels.

<table>
<thead>
<tr>
<th></th>
<th>Quenched and tempered steel</th>
<th>Nitrided steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitride steel</td>
<td>α-Fe</td>
<td>ε-Fe2₋₃N, γ’ -Fe₄N, α-Fe</td>
</tr>
<tr>
<td>Hot work tool steel</td>
<td>α-Fe</td>
<td>ε-Fe2₋₃N, γ’ -Fe₄N, CrN, α-Fe</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>γ-Fe</td>
<td>γ’ -Fe₄N, CrN, γ-Fe</td>
</tr>
</tbody>
</table>

FIGURE 3. SEM micrographs of flank of diamond tools after turning of (a) quenched and tempered nitride steel, (b) quenched and tempered hot work tool steel, and (c) quenched and tempered stainless steel.
V = 3.3m/s, f = 3.1μm/rev, d = 3.5μm, L = 16m.

FIGURE 4. SEM micrographs of flank of diamond tools after turning of (a) nitrided nitride steel, (b) nitrided hot work tool steel, and (c) nitrided stainless steel.
V = 3.3m/s, f = 3.1μm/rev, d = 3.5μm, L = 16m.
FIGURE 5. Micrographs and roughness curves showing machined surface of (a) quenched and tempered nitride steel, (b) quenched and tempered hot work tool steel, and (c) quenched and tempered stainless steel.

FIGURE 6. Micrographs and roughness curves showing machined surface of (a) nitried nitride steel, (b) nitried hot work tool steel, and (c) nitried stainless steel.
RESULTS AND DISCUSSIONS

Tool Wear
Figure 3 shows SEM micrographs of flank of diamond tool after turning of quenched and tempered steels.
Severe wear was observed at the tool nose.
Figure 4 shows SEM micrographs of flank of diamond tool after turning of nitrided steels.
Maximum wear was observed at the tool nose for both quenched and tempered steels and nitrided steels.
The amount of wear in diamond turning of nitrided steels was much smaller than those of quenched and tempered steels.

Surface Integrity
Figure 5 shows micrographs and roughness curves of machined surface of quenched and tempered steels.
Figure 6 shows micrographs and roughness curves of machined surface of nitrided steels.
Surface integrity was also much improved as the tool wear was suppressed.

Those results indicate that nitrided steels precipitating particular nitrides suppress wear of diamond tool compared to other nitrided steels.

The factors of wear suppression of diamond tool in turning of nitride steels will be discussed.
Add to this, tool life will be investigated in future works.

CONCLUSIONS
- Nitride precipitation by nitriding of steels suppresses nose wear of diamond tools.
- Precipitation of specific nitrides affects suppression of tool wear and surface integrity.

ACKNOWLEDGEMENT
This work was supported by JSPS Grant-in-Aid for Scientific Research 25870932.

REFERENCES
Design and fabrication of a metallic-ellipsoidal mirror for focusing neutron beams

J. GUO 1,*, Y. YAMAGATA 1, S. MORITA 1, S. TAKEDA 1,2, J. KATO 1, M. HINO 3 and M. FURUSAKA 2

1 Ultrahigh Precision Optics Technology Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, Japan
2 Graduate School of Engineering, Hokkaido University, Japan
3 Neutron Optics Group, Research Reactor Institute, Kyoto University, Japan

INSTRUCTIONS
Neutron beam is a useful probe for material characterization owing to its unique advantages such as deep penetration into materials, sensitive to light elements and capable of measuring magnetic properties. However, compared with that of X-ray from synchrotron radiation or free electron laser, the brilliance and intensity of neutron beam is quite low, so there are a number of plans to construct neutron instruments by using focusing mirror to improve beam intensity and miniaturize spot size [1-3]. We propose an ellipsoidal neutron focusing mirror by using a metal substrate made with electroless nickel-phosphorus (NiP) alloy. Electroless NiP has the advantages of amorphous structure, machinability and relatively large critical angle for neutrons. Compared with mirror made of glass substrate, it is easy to be fabricated and the manufacturing time can be greatly saved. Besides, it has a good mechanical handling property credited to its ductile nature. The mirror is designed based on the principle that the incident angle of neutron beam should be no larger than the critical angle of total reflection. Moreover, as the mirror is required in a high form accuracy and low surface roughness to miniaturize focusing spot size and reduce diffuse scattering, a new manufacturing process is proposed to fabricate the mirror by combining ultraprecision shaper cutting and fine polishing.

MIRROR DESIGN
The proposed neutron focusing mirror has an ellipsoidal surface as shown in Fig. 1. L and W depicts the length and width of mirror, respectively. The surface can be expressed as:

\[z = f(x, y) = -c \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}} \]

where \(b = c \), so in fact, it is a part of rotational elliptical shape. \(a \) is the half length of long axis and \(b \) is the half length of short axis.

![Fig. 1 Shape of ellipsoidal neutron focusing mirror](image)

The critical angle of total reflection for neutrons is given by

\[\gamma_c = \lambda \sqrt{\frac{N b_{coh}}{\pi}} \]

where \(\lambda \) is the wavelength of neutrons, \(N \) is the atomic density and \(b_{coh} \) is the mean coherent scattering length [4]. It is found that the critical angle shows a linear relation with wavelength. For NiP (P 11%), the critical angle is 0.09° per angstrom (Å⁻¹).

Fig. 2 describes the total reflection of neutrons. A neutron beam incidents from one focal point of mirror will be focused in another focal point through the total reflection by the mirror. \(P(x, z) \) is the point of reflection. \(\theta_c \) is the incident angle and it is calculated by

\[\theta_c = \alpha - \beta \]

where \(\alpha \) is the angle between incident beam and horizontal line, and \(\beta \) is the angle between tangent vector and horizontal line. They can be expressed as:

\[\tan \alpha = \frac{-z}{\sqrt{a^2 - b^2}} + x \]

\[\tan \beta = \frac{dz}{dx} \]
By Eq. (3)-Eq. (5), the relation between incident angle and reflective point position can be calculated. \(a\), which represents the size of focusing system, is set to 1250 mm. In order to reflect cold neutrons, \(b\) is set to 7 mm. The calculation result is obtained as shown in Fig. 3. It indicates that when \(L\) equals 100 mm, cold neutrons with wavelength from 3.6 Å could be effectively reflected by the mirror. \(W\) is set to 7 mm so the mirror has a steep angle of ±30° in short-axis direction. The design parameters are summarized in Table 1.

Table 1 Design parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>1250</td>
</tr>
<tr>
<td>(B)</td>
<td>7</td>
</tr>
<tr>
<td>(c)</td>
<td>7</td>
</tr>
<tr>
<td>(L)</td>
<td>100</td>
</tr>
<tr>
<td>(W)</td>
<td>7</td>
</tr>
</tbody>
</table>

![Fig. 2 Schematic layout of total reflection of neutron beam](image)

![Fig. 3 Relations between incident angle and reflective point position (Dashed line indicates critical angle at 3.568Å)](image)

ULTARPrecision shaper cutting

By considering the shape of mirror, an arc envelope shaper cutting method is proposed to well perform ultrahigh precision cutting. It is more feasible than diamond turning because diamond turning is limited to axis-symmetric surfaces such as sphere or aspheric although it has much higher machining efficiency. In this method, a cutting tool with a large nose radius is adopted which will significantly increase cutting range of tool and effectively reduce tool wear. Fig. 4 gives the illustration of the arc envelope shaper cutting method. \((x_d, y_d, z_d)\) is the center coordinate of diamond tool. \(r_d\) is the nose radius of diamond tool. The relation between machining path of diamond tool and cutting point on workpiece surface can be expressed as

\[
\begin{align*}
x_d &= x_s \\
y_d &= y_s + \frac{n_y}{\sqrt{n_y^2 + n_z^2}} \times r_d \\
z_d &= z_s + \frac{n_z}{\sqrt{n_y^2 + n_z^2}} \times r_d
\end{align*}
\]

where \(\vec{n}\) is the normal vector which is defined as

\[
\vec{n}(n_x, n_y, n_z) = n(-\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, 1)
\]

Through calculation, the machining path for neutron focusing mirror can be obtained (see Fig. 5). The experiment follows the conditions summarized in Table 2.

Table 2 Experimental conditions of ultraprecision shaper cutting

<table>
<thead>
<tr>
<th>Machining method</th>
<th>Arc envelope shaper cutting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine tool</td>
<td>NAGASEi NIC 200</td>
</tr>
<tr>
<td>Positioning resolution</td>
<td>10 nm</td>
</tr>
<tr>
<td>Cutting tool</td>
<td>Single crystal diamond</td>
</tr>
<tr>
<td>Nose radius</td>
<td>R 2.0 mm</td>
</tr>
<tr>
<td>Profile error</td>
<td>5.3 μm P-V</td>
</tr>
<tr>
<td>Depth of cut</td>
<td>5 μm - 3 μm - 1 μm</td>
</tr>
<tr>
<td>Feed rate</td>
<td>2000 mm/min</td>
</tr>
<tr>
<td>Temperature</td>
<td>23 ±0.1 °C</td>
</tr>
<tr>
<td>Feed pitch</td>
<td>500 μm -100 μm -5 μm</td>
</tr>
<tr>
<td>Total machining time</td>
<td>10 h</td>
</tr>
</tbody>
</table>

In arc envelope shaper cutting, the form accuracy of the mirror in short-axis direction will be affected by the profile error of cutting tool which can be found in Fig. 6. The difference between them is less than 0.5 μm. To eliminate the profile error, we use the 10th degree polynomial to fit the form error data of the mirror and the residual error is about 0.3 μm after fitting as shown in Fig. 7.
By using the fitting parameters, the compensation machining program is generated. Fig. 7 shows that after compensation machining, the form error of the mirror is improved to under 0.4 μm P-V in short-axis direction. The form accuracy of the mirror in long-axis direction which is mainly dominated by accuracy of the machine is 0.8 μm P-V as shown in Fig. 8.

Fig. 5 Machining path calculation (feed pitch: 500 μm)

Fig. 6. Comparison of form error of diamond tool and mirror

Fig. 7. Comparison of fitting residual error and form error in short-axis direction after compensation machining

Fig. 8. Form error of the mirror in long-axis direction

FINE POLISHING

By ultrahigh precision cutting, a high form accuracy can be obtained, but the obtained surface roughness is still not sufficient to reflect neutron beams with low diffuse scattering. Generally, for that purpose, sub-nanometer surface roughness is required. So super-smooth surface must be achieved by subsequent polishing process. However, polishing of concave, free form surface like ellipsoidal surface, especially with a steep angle is quite difficult. Therefore, to obtain sub-nm roughness without losing profile accuracy acquired by ultrahigh precision cutting on ellipsoidal surface becomes a challenge of this research. According to the design parameters, as the mirror has a long-narrow and concave shape which is quite similar to a cylinder with a radius of 7 mm and the difference between them is just in micrometer order, to well contact the surface of mirror and remove cutting scratches uniformly in a high material removal efficiency, a spherical polishing tool with a diameter equaling the length of short axis of mirror is proposed. The polishing tool is covered by a suede pad and has a radius of 7.0 mm which can fit the mirror surface well on behalf of the elastic deformation of suede pad. During polishing process, as shown in Fig. 9, the polishing tool rotates in short-axis direction with an inclination angle of 45° to the mirror surface, and scans along the long-axis direction.

(a) Schematic illustration (b) Cross-sectional view

Fig. 9 Fine polishing by a spherical polishing tool
To obtain a super-smooth surface, the experiment is conducted under a very low polishing load by using nanometer size abrasives. The experiment conditions show in Table 3. Colloidal silica which can generate smooth surface is used as the abrasives. The polishing load is feedback controlled at 10 gf. The experimental setup is shown in Fig. 10. A voice coil motor is used to control the polishing force while the polishing tool is mounted on a rotational motor to do the polishing. The setup is covered by a clean booth to prevent dust getting into abrasives.

Fig. 11 shows the surface roughness changes on mirror surface as a function of polishing time. The surface roughness decreases with polishing time and reached the required value for focusing neutron beams of 0.3 nm rms, after 20 hours polishing. From Fig. 12, It is found that by fine polishing, the cutting marks are completely eliminated and the surface roughness is reduced to less than 10% of that by UPC.

CONCLUSIONS
An ellipsoidal neutron focusing mirror is designed, and successfully fabricated by combining ultraprecision shaper cutting and fine polishing. It is estimated to have a high form accuracy of 0.4 μm P-V in short-axis direction and 0.8 μm P-V in long-axis direction, as well as a low surface roughness of 0.2 nm rms. The mirror will be effectively meet the requirement of focusing neutron beams.

REFERENCES
INTRODUCTION

The die-sinking EDM process casts a desired shape by using a tool electrode that is in the opposite shape to that desired. Because it is easily applied to machine a three-dimensional shape, the die-sinking EDM process is largely used for machining a die and mold. There has recently been an increase in demand for the minimization of parts in the fields of biomedical, optical science, and electronics; this has allowed the micro die-sinking EDM process to be widely used in various applications along with other micromachining methods [1]. Because the EDM process is based on thermal energy, tool wear during the EDM process is an unavoidable problem that deteriorates the form accuracy of the products. In general, the micro-EDM process has a lower material removal rate than the mechanical cutting processes [2]. Increasing the discharge energy to increase the machining speed results in a higher tool wear ratio [3]. Therefore, an increased material removal rate causes more tool wear and machining error. In addition, as machining progresses, an edge of the tool becomes more worn and becomes round [4]. This is because the tool removes a larger amount of workpiece per unit area at edges. In particular, the tool wear in the micro die-sinking EDM process is greater than that in the conventional die-sinking EDM process [1]. This is because in the micro die-sinking EDM process, the discharge energy and resulting size of the crater do not decrease as much as the tool and workpiece become small.

In this study, the geometric simulation based tool wear compensation method in micro die-sinking EDM process is proposed. The proposed geometric simulation precisely represents the geometries of a machined workpiece and the evolution of the tool shape caused by tool wear during the machining. Therefore, the simulation can be used for tool wear compensation. A compensation method for the tool shape design with which a desired shape is machined is proposed, taking tool wear into consideration.

SIMULATION MODEL

The Virtual EDM scheme for micro-EDM milling process was introduced [5]. To simulate a micro-EDM process, the process is mathematically and geometrically modeled in consideration of the tool shape, tool path, and other machining parameters such as the material properties, electrical power, and pulse frequency. In this research, the geometric simulation model for micro die-sinking EDM process is the same as that of the proposed Virtual EDM. However, unlike the EDM milling process, which has complex tool paths, the tool in the die-sinking EDM process only moves in the Z-axis direction,

FIGURE 1. Schematic diagram of three-dimensional geometric model of micro die-sinking EDM process
and the rotation of the tool is not considered. Figure 1 shows the schematic diagram for the three-dimensional geometric model of the micro die-sinking EDM process. Two Z-maps are used to represent the configurations of the bottom surface of the tool and top surface of the workpiece during machining. The proposed simulation comprises three steps:

1) Calculation of tool element positions
2) Search of spark points
3) Removal of material

These steps are repeated until the simulation of the EDM process is complete.

TOOL WEAR COMPENSATION METHOD

Figure 2 shows a scheme for tool wear compensation. As shown in Figure 2 (a), tool wear during machining causes machining error, which prevents the desired shape from being made. As shown in Figure 2(b), the simulation can be used to predict the tool wear and machining error of the machined workpiece. The predicted machining error is reflected in the tool shape for tool wear compensation. The shape of a tool to machine the desired shape is designed and derived by the simulation.

In the die-sinking EDM process, the shape of a workpiece is mirrored by the tool electrode shape with a particular offset. Accordingly, when a target workpiece shape is finally machined, the tool shape and position are determined by the target workpiece shape and the sparking gap between two electrodes, as shown in Figure 3.

The final shape of the tool determined by the target workpiece shape is used as a reference shape for error calculation. This is defined as the target tool shape in this study. Figure 4 shows an example of the process in which error is calculated and the tool shape is compensated using the calculated error. The simulation begins with the initial tool, which is the same as the target tool shape. Until the lowest point in the tool reaches the lowest position of the target tool (i.e. a reference position) the tool should be made to go down. When the tool reaches the reference position, the error between the target tool shape and simulated tool shape should be calculated. The shade-and-shadow part in Figure 4 denotes the error to be compensated. Portions of the calculated error are attached to or detached from the initial tool shape to compensate the tool shape.
Compensation simulation must be performed iteratively to reduce geometric error and compensate the tool shape close to the target tool shape. Figure 5 shows a schematic diagram of the proposed compensation method based on the iterative compensation simulation. The iteration is complete when the average value of the error, calculated at each elemental point of the tool Z-map, becomes less than the given threshold.

The target workpiece shape to be machined can be acquired from commercial CAD software. The generated CAD model can be stored in STL (stereolithography) format. The STL model is converted into the workpiece Z-map in the simulation software. The compensated tool shape is generated as the STL format.

SIMULATION AND EXPERIMENTAL VERIFICATION

To verify the proposed compensation method, an iterative simulation and machining experiment were performed to fabricate a hemisphere feature with a radius of 400 μm. Figure 6 shows the feature shape, the target shape to be machined, designed by using commercial CAD software (PowerShape, Delcam). The machining conditions and simulation parameters for experiments are shown in Tables 1 and 2. Workpiece material is NAK80 that is widely used as a mold material. The applied single crater volume and volumetric tool wear ratio were experimentally determined under the machining conditions [5].

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool material</td>
<td>Copper</td>
</tr>
<tr>
<td>Workpiece material</td>
<td>NAK80</td>
</tr>
<tr>
<td>Dielectric fluid material</td>
<td>Kerosene-based mixture</td>
</tr>
<tr>
<td>Open circuit voltage</td>
<td>DC 100V</td>
</tr>
<tr>
<td>Maximum spark frequency</td>
<td>8 kHz</td>
</tr>
<tr>
<td>Feedrate</td>
<td>1 μm/s</td>
</tr>
<tr>
<td>Spindle speed</td>
<td>350 RPM</td>
</tr>
</tbody>
</table>

The compensation simulation was repeated up to four stages. Figure 7 shows the initial tool shape at the first stage and the compensated tool shape at the last stage in the iterative compensation simulation. The compensated tool is sharper than the initial hemisphere tool shape. Figure 8 shows the actually fabricated tool electrode by using the milling process.
Electrical discharge machining was performed using the fabricated tool electrode. A micro-EDM machine (SX-200, SARIX) was used for experiment. Figure 9 (a) shows the SEM image of the machined cavity. To acquire the cross-section of machined cavity, the cavity was cut by milling process. Figure 9 (b) shows the cross-section of the machined cavity measured by the microscope. The shape of the machined cavity also took the target hemispheric shape of 400 μm in radius.

Figure 9. Machining results

Geometrical accuracy of the designed tool shape is improved by iteration of the compensation simulation. To verify the proposed compensation method, an iterative simulation and machining experiment were performed to fabricate a hemisphere feature. The results demonstrate that the proposed method could effectively compensate the machining error caused by tool wear.

REFERENCES

CONCLUSIONS

In this study, the geometric simulation based off-line tool wear compensation method in micro die-sinking EDM process is proposed. The geometric simulation predicts the tool wear during the machining and designs the tool shape with which a desired feature is machined.
MODELING OF MICRO DRILL DYNAMICS BASED ON 2-D FINITE ELEMENT METHOD

Xiaoliang Jin1, Narahara Gopal Koya2

1,2Department of Mechanical and Aerospace Engineering
Oklahoma State University,
Stillwater, Oklahoma, United States.

ABSTRACT
This paper models the dynamics of the micro drill including the coupled torsional-axial vibration due to pre twisted flute geometry. 2-D finite element method is used to obtain the torsion and warping constants considering the actual geometry of drill cross section. Frequency response function of torsional-axial vibration is obtained for the flute section of micro drill.

INTRODUCTION
Micro drilling is applied to generate miniature holes with accurate geometry and high aspect ratio on a variety of materials. Dynamics of micro drill plays a significant role on the cutting force, tool deflection and hole quality. Due to the pre twisted geometry of flute section, the dynamics of drilling process highly depends upon the coupled torsional-axial vibrations. Furthermore, the shape of flute cross section causes warping deformation when the tool is under torsion, and influences the dynamic behavior of micro drill. Hence there is a need to effectively capture the exact dynamics of the micro drill in order to understand the coupled torsional-axial vibration.

The coupled torsional-axial phenomenon was investigated by D.H Hodges in [1] for pre twisted elastic beams. Considering the equations that Hodges provided, Bayly et al. [2] proposed a model to introduce the torsional-axial coupling for the twist drills. Steen Krenk [3] gave an asymptotic formula for torsional-axial coupling which is similar to that of Hodges. However, these derivations are limited to linear deformations in stiffness matrix. A. Rosen [4] gave equations for non-linear deformation for a pre twisted beam when a torsional moment and tension force are applied simultaneously. S. Filiz and O.B. Ozdoganlar [5] developed a three-dimensional model for the dynamics of micro- and macro-drills using the spectral-Tchebychev technique. Present paper investigates the torsional-axial dynamics of micro drill considering the actual cross section based on a 2-D Finite element method. The advantage of using 2-D finite element method is that the element-based functions are used to evaluate the geometric properties of cross section rather than the whole drill structure, thereby increasing the computational efficiency of the model without losing predictive accuracy.

PROPOSED METHOD
The cross section of the drill bit is considered to be symmetric about the coordinate axis. The exact drill flute shape is given in [6], and the contour is characterized by the equation (1):

\[\psi = \sin^{-1} \left(\frac{W}{2r} \right) + \frac{r - \left(-\frac{W}{2} \right)^2}{R \tan h_o \cot \rho} \]

(1)

where (r, \psi) are the polar coordinates, W is the web thickness, R is the radius of the drill, h\textsubscript{o} is the helix angle and \rho is the half-point angle. Fig 1 shows the fluted cross section for a drill bit modelled with the above equation.

Fig 1: Drill flute cross section (20 mm diameter, 4 mm web thickness, 30\textdegree helix angle and 59\textdegree of half-point angle)

The cross section is then meshed using three node triangular elements. Meshing is done using Meshgen program given in [7]. As the cross section is symmetric, only one quadrant can be meshed and the results are manipulated accordingly. The nodal coordinate data, elements data and boundary data that are obtained from Meshgen are given as inputs to the FE code which evaluates the stress function and other cross sectional properties like torsion constant and polar moment of inertia [8]. The finite element formulation for the torsion constant is given as equation (2):

\[J_\alpha = 2 \int_{A_\alpha} \psi \, dA \]

(2)

where stress function is replaced with its nodal representation as:
\[\psi = \sum_{i=1}^{3} N_i \psi_i \] (3)

The set of equations that describe the nonlinear behavior of the pretwisted bars under simultaneously axial tension and torsional moment are given by:

\[E A e + E S \theta + \frac{1}{2} E I \theta^2 = T \] (4)
\[E S e + (G J_e + E K) \theta + E I \theta^2 + \frac{3}{2} E D \theta^2 + \frac{1}{2} E F \theta^3 = M \] (5)

where \(\theta \) is the change in angle of rotation of cross section per unit length and \(e \) is the change in axial dimension per unit length. \(S, K, F \) are section integrals defined in [4] and are evaluated using 2-D finite element method.

The governing equations for the extension-torsion coupled behavior of drill are given as [8]:

\[C_{11} U_{xx} + C_{12} \Theta_{xx} = -m \omega^2 U \] (6)
\[C_{21} U_{xx} + C_{22} \Theta_{xx} = -l \omega^2 \theta \] (7)

where \(C_{11}, C_{12}, C_{21}, C_{22} \) are the terms of stiffness matrix which can be evaluated for particular values of axial force and torsion moment. Sensitive studies were performed and it was concluded that the nonlinear terms in equations (4) and (5) can be neglected due to the fact that the values of nonlinear terms are several orders lower than the nonlinear terms under a range of axial force and torsional moment. Then the linear relation between force, moment and axial, torsional strain are given:

\[T = C_{11} e + C_{12} \theta \] (8)
\[M = C_{21} e + C_{22} \theta \] (9)

The element equations for FEM are obtained as:

\[([K] - \omega^2 [M])[U] = 0 \] (10)

Where \([K] = \begin{bmatrix}
C_{11} & C_{12} & -C_{11} & -C_{12} \\
C_{21} & C_{22} & -C_{21} & -C_{22} \\
-C_{11} & -C_{12} & C_{11} & C_{12} \\
-C_{21} & -C_{22} & C_{21} & C_{22}
\end{bmatrix} \]

\[[M] = \begin{bmatrix}
\frac{nl}{3} & 0 & \frac{nl}{6} & 0 \\
0 & \frac{nl}{3} & 0 & \frac{nl}{6} \\
\frac{nl}{6} & 0 & \frac{nl}{3} & 0 \\
0 & \frac{nl}{6} & 0 & \frac{nl}{3}
\end{bmatrix} \]

The elemental matrices are then combined to form global matrices and the eigenvalue problem is solved to obtain the natural frequencies. Modal analysis is conducted to predict the frequency response function for torsional-axial vibration of micro-drill.

RESULTS AND CONCLUSIONS:

This proposed method is used to analyze the coupled axial and torsional vibrations of a micro drill of 0.5mm diameter and 12 mm flute length. The fundamental natural frequency is found to be 54 KHz. The coupled FRFs for the micro drill structure are shown in the Fig. 2.

REFERENCES

Optical property simulation using measured form profile of segmented neutron ellipsoidal mirrors

Shin-ya Morita ¹, Yutaka Yamagata ¹, Jiang Guo ¹, Shin Takeda ¹,² and Michihiro Furusaka ²

¹RIKEN center for advanced photonics, RIKEN
Wako, Saitama, JAPAN
²Graduate School of Engineering, Hokkaido University
Sapporo, Hokkaido, JAPAN

INTRODUCTION
Small angle neutron scattering (SANS) is a method of microscopic structure analysis using neutron scattered in small momentum transfer (Q) range \(10^{-3} < Q < 1\) to investigate 1-100nm scale structure of materials. Although it seems a similar technique to small angle X-ray scattering (SAXS), since there are its superiorities over SAXS such as high sensitivity to light elements, long penetration depth into materials composed by heavy elements and strong interaction with magnetic moments, SANS technique is highly demanded for basic researches of high tensile strength steel sheets, proteins and polymer materials. However, due to its low beam brilliance, especially compared with that of X-ray synchrotron radiation or free electron laser, the beam quality is not high enough. Although research reactors (KUR, ILL) and large-scale accelerator facility (J-Parc) are available for SANS experiments as high intensity neutron sources, the beam time of these facilities are extremely limited.

A mini-focusing SANS (mf-SANS) instrument were proposed to realize an easy- to-use SANS beamline [1]. The mf-SANS utilizes ellipsoidal focusing mirrors in order to enhance beam intensity and attain a compact size SANS instrument. It also enables multiple SANS instruments constructed into a single neutron beamline. Borosilicate glass substrates were segmented into several mirror pieces and each pieces were fabricated using precision grinding and polishing technique [2]. Although the instrument was able to operate properly, it took several months for grinding and polishing process to attained precise ellipsoidal shape. Furthermore alignment accuracy between

FIGURE 1. Schematic layout of a Mini-focusing Small Angle Neutron Scattering instrumentation using ellipsoidal neutron reflecting mirrors.
segmented mirror pieces is not sufficient for enough small spot size. In order to manufacture mf-SANS mirrors more efficiently, some studies using metal substrate on behalf of borosilicate glass are undergoing [3-4]. Adoption of metal substrates as neutron segmented mirrors enables to improve setting accuracy using high accurate machined jigs, alignment pins and screws. Since the beam time of neutron beamline highly limited, optical property estimation is important for multi-segment neutron mirror manufacturing.

In this paper, we proposed optical property prediction method through ray-tracing simulation of fabricated segment mirrors using high accurate ray-tracing model generated from a measured point-set of settled multi-segmented ellipsoidal neutron mirrors by non-contact 3-dimensional profilometer.

DESIGN OF SEGMENTED NEUTRON MIRRORS

FIGURE 1 shows a schematic layout of a Mini-focusing SANS instrumentation using ellipsoidal neutron reflecting mirrors. In this setup, both aperture and detector are settled on focal planes of the ellipsoid, mirror length is 900mm, minor radius of the ellipsoid is 20mm and major radius is 1250mm.

FIGURE 2 shows detail dimensions of segmented mirrors and the photograph of segmented multilayered mirror surface fabricated on bolosilicate substrate. The

(a) A design of borosilicate glass ellipsoidal neutron reflecting mirrors segmented into 4 pieces.

(b) A photo of segmented mirrors.

FIGURE 2. Segmented neutron reflecting mirrors. Borosilicate substrates are ground into ellipsoidal shape, polished and a multi-layered metal supermirror is deposited in order to reflecting cold neutron beam at 10 mrad angle of incidence. Mirror segments are fixed by screws on an aluminum base plate.

(a) Surface profile measurement of neutron mirror by a point auto focus non-contact 3-dimensional profilometer

(b) Objective lenses for laser auto-focus and measured workpiece.

FIGURE 3. A point auto focus non-contact 3-dimensional profilometer (Mitaka Kohki Co. Ltd., PF-600)
incidence angle is 10 mrad.

PROFILE MEASUREMENT OF SEGMENTED NEUTRON MIRRORS

Surface profile of the segmented mf-SANS glass mirrors is measured using laser point autofocus profilometer (Mitaka Kohki Co., Ltd., PF-600) (FIGURE 3) [5]. Since the accuracy of the profilometer attains several 10 nm to measure freeform optical surface in relatively high speed, it is applicable to industrial field such as on-machine measurement and form-compensation machining of high accurate aspheric lens molding die using ultrahigh precision machine tool [6]. The specifications is shown in TABLE 1. Its measurable region is 500mm in X direction, 600mm in Y and 10mm in Z respectively. The resolution are 0.1μm(X,Y) and 0.01μm(Z). Measurement reproductivity is 0.03μm (σ) and laser λ is 635nm. Surface point-set has been acquired by stitching (75% overlapping) using 4 times radder measurement (area 23*600mm, speed 30mm/sec, point pitch 0.05mm, line scan pitch 0.3mm)(FIGURE 4).

RAY-TRACING MODEL GENERATION FROM MEASURED POINT-SET OF ACTUAL OBJECT

A model of the segmented mirror with fabrication and alignment error can be expressed by ray-tracing model using Nagata patch which is a parametric quadratic surface patches from surface mesh(FIGURE 5) [7, 8]. An interpolant

TABLE 1. Specifications of the point auto focus non-contact 3-dimensional profilometer PF-600 (Mitaka Kohki Co. Ltd.).

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurable region</td>
<td>X500Y600Z10mm</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.1μm(X, Y)</td>
</tr>
<tr>
<td></td>
<td>0.01μm(Z)</td>
</tr>
<tr>
<td>Reproductivity σ</td>
<td>0.03μm</td>
</tr>
<tr>
<td>Laser wavelength</td>
<td>635nm</td>
</tr>
</tbody>
</table>

FIGURE 4 Surface profile of segmented mirrors are measured 4 times scan with 75% overlapped area because of limitation of measurable area of the profilometer. Measured point data are combined by stitching into a set of point cloud. White arrows indicate separation line between mirror segments.

(a) Surface profile measurement data before stitching. Since #1 area contains unmeasured points due to auto-focus error (light yellow), a #4 measurement is pursued to recover it.

(b) Stitched measurement data.
of Nagata patch is determined only by positional and normal vectors on each vertices of polygonal mesh.

FIGURE 5 An interpolant of Nagata patch is determined only by positional and normal vectors on each vertices of polygonal mesh.

FIGURE 5 An interpolant of Nagata patch is determined only by positional and normal vectors on each vertices of polygonal mesh.

and normal vectors on each vertices of polygonal mesh. The sophisticated formulation guarantee connectivity between neighbor patches. Sharp edges can be expressed as shared normal vectors. Theoretical merits of Nagata patches are
A) mathematically rigorous C^0 connectivity (no gap between all patches) enables robust geometrical processing
B) high degree of freedom is suitable for representation of asymmetric shape (deformed optics during manufacturing) process and sharp edge/cusp (Fresnel lens, free-form optics)
C) quadratics closed-form solution of line-patch intersection causes low computational cost
D) completely local interpolation is suitable for parallel computation.

Mesh generation is necessary to build Nagata patch model for ray-tracing from measured point-set. Although Lagrangian interpolation and spline are generally used for surface recovery from measured point set, noise and normal fluctuation are difficult to avoid. Approximation method using Sparse Low-degree Implicit (SLIM)[9] has the ability of both noise elimination and suppression normal fluctuation and can attain arbitrarily accuracy control (FIGURE 6). In this study we apply an improved SLIM method, which is called Anisotropic Compressive SLIM (AC-SLIM) [10] so that it avoids an occurrence
of surface breakdown during surface reconstruction. The AC-SLIM enables robust surface reconstruction from scanned point-set in arbitrary accuracy.

Using a measured point-set, surface recovered using AC-SLIM technique (FIGURE 7), processing time is 2 minutes while the surface reconstruction accuracy is 0.2 μm and radius of SLIM support spheres is constant. Number of generated support spheres are 9,187. A mesh is generated from SLIM surface with 20,054 vertices with each normal vectors, 39,926 facets.

RAY-TRACING SIMULATION USING NAGATA PATCH MODEL GENERATED FROM MEASURED POINTSET
Using the model generated in the last chapter, a ray-tracing calculation is performed. A Nagata patch interpolation and ray-surface intersection calculation are implemented as a plugin software of user-defined function on commercial optical simulation software ZEMAX (ZEMAX Development Corporation). The algorithm is denoted in the paper [6]. FIGURE 8 shows a 3D surface model of ellipsoidal mirror displayed by Nagata patch ZEMAX plugin. FIGURE 8 depicts a result of non-sequential ray-tracing simulation. The calculation time is 12.839 seconds in 100,000 rays and 39,926 patches using an 8-core Xeon 3.33GHz personal computer. The result indicates the ray distribution on the focal plane have 4 different spots apart from each other. This reveals the quantitative estimation of optical performance of actual neutron focusing mirror, especially the effect of mis-alignment of 4 piece of segmented mirrors, is performed using measured surface profile.

CONCLUSION
A new effective optical quality evaluation process of segmented ellipsoidal mirror was proposed based on ray-tracing model generated from measured mirror surface profile. Optical aberration of fabricated segment mirrors was evaluated by ray-tracing using mirror surface profile measured by non-contact high precision profilometer. The non-sequential optical simulation was performed using surface profile data of actual segmented mirrors.

ACKNOWLEDGEMENT
The authors appreciate the generous support from Mitaka Kohki Co., Ltd concerning a profile measurement experiment using a laser autofocus 3D profilometer, and ZEMAX plugin software offered by Dr. Y. Nishidate.

REFERENCES

ABSTRACT
The use of ceramics and semiconductors have greatly increased for industrial applications as they offer desirable qualities such as being hard yet lightweight [1]. These qualities make ceramics an ideal candidate for use in tribological, semiconductor, MEMS, optoelectronic applications and there is an ever growing need for them in many more applications[1,2]. These very qualities of ceramics make them a machinists' nightmare as they have poor machinability, low fracture toughness and cause high tool wear. Most ceramics go through various machining/polishing stages and often times these processes may be time consuming and costly [1,2]. Regular machining processes are often done in brittle modes to yield high material removal rates (MRR). Researchers have shown that ductile mode machining is possible in ceramics and semiconductors due to the High Pressure Phase Transformation (HPPT) [3,4]. Ductile mode machining is a prerequisite for superior surface finish and low sub surface damage. This mode of machining can only be achieved using shallower depths of cuts within the critical depth of cut. The critical depth of cut is the depth where after one may not achieve ductile mode of machining, after which there is a ductile to brittle transition (DBT), and furthermore brittle mode in higher depths [3,4].

Increasing the temperature of the material under high pressure can further increase the ductility of the work piece augmenting the machining process. This temperature increase can be done with the help of a laser through the patented Micro-Laser Assisted Machining (μ-LAM) technology which utilizes a laser guided through the diamond. The increase in ductility translates to an increase in the critical depth of cuts. This process yields higher MRR. Figure 1 is a visual representation of the Micro-LAM process.

FIGURE 1. Schematic of the μ-LAM process

The previous works have focused extensively on the benefits of laser in increasing the DBT depth [1-6]. Those tests were performed on a polished surface of a single crystal silicon wafer. Initial study on machining unpolished silicon was very promising however it was dry machining and tool wear was considerable [7].The current work focuses more on implementing the μ-LAM technology on a Single Point Diamond Turning (SPDT) setup for machining unpolished silicon wafers with cutting fluid. Machined results with distilled water as a cutting fluid were compared with dry machining. The results show that using water not only improved the surface finish but also decreased tool wear significantly. The Universal Micro-Tribometer (UMT) manufactured by CETR-Bruker Inc. was modified and coupled to the μ-LAM system to perform all of the machining tests (setup shown in Figure 2). An IR CW fiber laser, wavelength of 1070nm and max power of 100W with a beam diameter of 10μm, is used in this investigation. A single point diamond tool with a 1mm nose
radius, 45 degree rake angle and 5 degree clearance angle was used for this cutting operation.

FIGURE 2. Machining setup for the 2’ silicon wafer

Parameters that have been tested in this study are feed rate, laser power and cutting fluid. Note that laser power output after diamond tool was about 40% of adjusted power due to scattering, reflections, absorption and etc. The main goal was to get the best surface finish that is possible in lowest number of passes.

The tests were performed at spindle rotational speed of 100 RPM, without laser and with laser at 20W. The cross feed rates examined were 30, 10, 2 μ/rev. All tests were performed without cutting fluid, and repeated using water as a cutting fluid.

It is important to note that the μ-LAM process is not limited to lower spindle speeds, this technology has been proven on speeds up to 1000 RPM on an industrial diamond turning machine. The UMT was developed to perform micro-mechanical tests of coatings and materials, however the machine was modified to perform SPDT operations at an R&D scale. The overall rigidity of the UMT is insufficient to machine hard ceramics. The machine suffers from tool chatter at higher spindle speeds. To compensate for this lack in rigidity, the spindle was operated at lower speeds and shallow programmed depth of cuts within 2μm.

Results shows that using water as cutting fluid not only improved the surface finish but also decreased the tool wear significantly. Figure 3 shows the resulted surface machined with 2 μ/rev cross feed rate for different machining condition. Best surface roughness, Ra = 83 nm, obtained with laser and distilled water as cutting fluid, while Ra for sample machined without cutting fluid was 450 nm and for machining with no laser with cutting fluid was 376 nm. The effect of a combination of laser and cutting fluid on surface roughness is obvious and promising.

The key to successful and productive ductile mode machining of brittle materials is understanding the material removal mechanics and optimizing the machining parameters. The findings in this study will lead to the development of improved machining technologies by utilizing the ductile mode material removal mechanism and reduced brittle mode material removal in the manufacture of ceramics and semiconductors.

FIGURE 3. a) Unmachined surface b) Machined without cutting fluid c) Machined without laser d) Machined with laser and cutting fluid

REFERENCES

A NEW APPROACH OF THE GEAR CUTTING FOR A HIGH-MIX LOW-VOLUME PRODUCTION

Hisanobu Terai1, Teruyuki Asao2 and Ryoichi Yagami3

1 Department of Control and Information Systems Engineering
Kitakyushu National College of Technology
Kitakyushu, Fukuoka Japan

2 Department of Mechanical Engineering
Kitakyushu National College of Technology
Kitakyushu, Fukuoka Japan

3 Supporting Section for Research and Education
Kitakyushu National College of Technology
Kitakyushu, Fukuoka Japan

INTRODUCTION

In this study a new method of gear cutting is proposed. This method is characterised by working out a variable module and a variable number of teeth gear cutting using a one tool. The commonly used gear cutting is hobbing, shown in FIGURE 1, or gear shaping, and these gear cutting provide the mass production not for small-lot production. If someone needs only one gear, the gear is produced by the milling with formed tool which shape of cutting edge is the involute curve\cite{1}. So the cost of the formed tool is not cheap, and it is not easy to get. When some special gears or several types of gears are needed for a trial product in some company or laboratory, it is very difficult to prepare the cutter quickly in reasonable cost. One solution against this issue is use of the five axis controlled machining center. The path for a gear is generated by some special CAM. Maybe this is the easiest way to make one gear. The cutter is used the commercially produced endmill. However in some workshop or laboratory there has no such high performance cutting machine. For these situation the gear cutting method used by the simple milling machine or three axis controlled machining center is required.

The former report has been just proposed the possibility of this new method\cite{2}. In this report the mechanism for changing the number of teeth is proposed.

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{hobbing.png}
\caption{Hobbing is the one of the most popular method for gear cutting. The cutter is Hob.}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{gear.png}
\caption{Generation of a Standard Spur Gear ($\alpha = 20^\circ$, $z = 10$, $x = 0$) \cite{3}}
\end{figure}
PRINCIPLE OF HIGH-MIX LOW-VOLUME GEAR CUTTING

The most basic and classic gear cutting is a rack shaper. The principle of gear generation is shown in FIGURE 2 [1]. The rack cutter moves reciprocally and feeds to the tangential direction of the gear. In the proposed method, the cutter is changed to the taper endmill shown in FIGURE 3. And the work gear rotation and the straight movement of the tool feed is synchronized by the feed synchronous apparatus. This feed synchronous apparatus is attached to the table of the milling machine and shown in FIGURE 4. X direction is the feed direction of the milling tool and is connected mechanically to the gear rotation axis by the flexible belt shown in FIGURE 5. The movement of Y and Z direction is separated from the gear rotation axis. Other advantage of this method is the simplicity of setting and the accuracy of gear profile to the rotation axis. The movement of the cutter and the workgear is exactly correct depends on the involute curve theory even if the setting is little bit rough. So the profile of the tooth is considered as the involute curve. In the case of the five-axis controlled machine the setting of the cutter and the workgear is the most severe operation. In contrast this proposed method is guaranteed the accuracy of the gear profile.

The situation of the machining test of this new gear cutting is shown in FIGURE 6 and FIGURE 7. The tool is a taper end mill, its taper angle is 20 degree same as the pressure angle. The work material is the engineering plastic. The specification of the gear is as follows, the module...
is 2.5, the pressure angle is 20 degree and the number of teeth is 31. And the cutting conditions are as follows, the spindle speed is 1000rpm and the feed speed is 0.2mm/rev. FIGURE 8 shows two gears, the left one is produced by the hobbing machine for the reference and the right one is the machined gear by new method. In this machining test the depth of cut set for the module 2.5. Other module gear is able to be cut only changing the depth of cut. FIGURE 9 shows the test cut of variable module gear cutting, m=1, 1.5, 2 and 2.5. This is just demonstration. As mentioned above. This gear cutting method provides different module gear and different number of tooth gear using one cutting tool.

INDEXING MECHANISM
The principle of indexing is shown in FIGURE 10. AA’ is the slide length of the gear blank, and CC’ is the slide length of the reference gear. The number of teeth of the reference gear is 20 in this apparatus. The point B is the pivot for the indexing bar AC. For example, when the number of teeth of work gear is 31, the pivot is fixed the point that AB:BC = 31:20. It causes AA’:CC’ = AB:BC=31:20. So when the number of teeth is given some value, the pivot B can be adjusted this value. FIGURE 11 shows this indexing apparatus.

INDEXING TEST
The result of the indexing test is shown in FIGURE 12. In this test the number of teeth of the work gear is 31 same as above explanation. It is clarified that the marking tooth is just indexed as the given number of teeth.
CONCLUSIONS
The new method of the gear cutting is presented. And it is confirmed the indexing mechanism with the machining test. This means that this new method expand the possibility of the high-mix low-volume production of the gear.

REFERENCES
ABSTRACT
For micro-assembly often very costly machines are utilized, when placement accuracy below 10 µm is required. In this work, a method is presented, by which the component is aligned in an electrical field und subsequently fixed in situ.

The process cycle comprises the steps of adhesive dispensing, component alignment and hardening of the glue. On top of the mounting substrate and on the bottom of the device electrode pairs are arranged, which are equivalent to two co-planar capacitors, which are switched in series. If the substrate electrodes are subjected to a voltage, three-dimensional electrical fields will be generated, which induce lateral and vertical forces. As the devices have been placed on a liquid film of a low-viscosity adhesive, they are relocatable and will be centered at the overlap position of the electrode pairs. Finally the UV-hardening adhesive will be exposed with an UV-LED and the device is attached in this way.

In this paper we will first show the basic concept of the self-assembly process. Subsequently a practicable fabrication sequence will be presented. The relevant influencing parameters are analyzed and modelled. Also the pad structures for self-alignment as well as equipment for self-assembly will be exhibited. First application examples are given.

INTRODUCTION
Adhesive bonding is a key technology for the mounting and interconnection of microsystems. The process flow comprises the steps of adhesive deposition, picking and placement of the parts and finally hardening. When precision positioning is demanded with placement accuracy in the micrometer range, the operation requires high effort with respect to equipment and cycle time. Hence both the investment costs and the process costs will be high. This is one of the reasons that in the past decade a number of studies on self-assembly of electronic or micro-mechanic components have been reported [1, 2, 3 and 5]. At the Department of Microsystems Engineering the feasibility of the novel electrostatic self-alignment was successfully demonstrated in a research project on nano-micro-integration. The self-positioning principle was then developed further in order to demonstrate a comprehensive assembly process in a project on which we report here.

In a first step the highly precise positioning of devices on a liquid film of adhesive using electrostatic forces is achieved. After the self-arrangement the parts are fixed in situ by exposure of the photo-sensitive resin to ultraviolet light. The development requires investigations of the process sequence, adhesives, assembly equipment and test facilities.

CONCEPT OF ELECTROSTATIC SELF-ASSEMBLY
During the electrostatically controlled self-assembly the component and the substrate form plate capacitors. The electrodes on the component are not interconnected galvanic but are coupled capacitive. To that purpose at least two electrode couples exist, which are switched in a series, see cross-section-view in FIGURE 1.
The geometry of an electrode pair is defined in FIGURE 2. Between the electrodes electrostatic forces will act: there are out-of-plane (vertical) attracting forces between the capacitor plates and furthermore the horizontal alignment forces, which are a result of the in-plane field portion.

FIGURE 2. Definition of the geometry parameters of a single displaced electrode pair during self-assembly.

EXPERIMENTAL INVESTIGATIONS

Self-assembly equipment
In FIGURE 3 the test equipment is exhibited. In order to avoid vibrations the complete assembly is set onto a weighing table. The platform for mounting of all the components is an optical breadboard with an array of metric mounting holes.

FIGURE 3. Test equipment for combined self-assembly and UV hardening.

On top of it a laboratory slides heater is carrying the chuck, which takes up the used 4"-substrate wafers. Moderate tempering up to 30 °C +/- 1 K is necessary to keep the adhesives’ viscosity constant. Using two needle probes with three-axis manipulators from a wafer probing station, the adjustment voltage is applied. With the equipment tests can be performed with DC- and AC-Voltages up to 1 kV. To that purpose, a function generator provides a signal with frequencies from several Hertz up to 20 MHz, which is amplified by means of a high voltage amplifier. A Multimeter is used for monitoring the AC-signal. The movement of the parts and the alignment of the parts are visualized using a stereo microscope in combination with a high resolution b/w-camera.

Using a commercial volumetric needle-dispenser, the adhesives are deposited. The smallest applicable volume is 1 nl. The device is preassembled manually using standard tweezers or vacuum tweezers. Subsequently the UV-sensitive adhesive must be hardened.

The system for in situ radiation curing of the adhesives appeared to by a crucial element. In order to avoid movement of the parts by shrinkage during curing of the resin a simultaneous and symmetric initiation of the liquid-solid phase transition was specified. This is a consequence of the fact, that in real applications the chips are not transparent and hence the curing initiation must happen near the edges of the chip. After an analysis of the necessary UV doses new UV-light sources were developed on the basis of commercial high power LEDs altogether with their corresponding drivers. The used wavelengths made available in this way are $\lambda = 365$ nm and $\lambda = 395$ nm at a typical beam power of $P = 355$ mW. LEDs exhibit several advantages, like low heating time, low intensity fluctuations, good controllability of the UV-radiation. Furthermore their exposure area is already sufficiently large. Glass fibers can be attached by gluing, if local exposure is desired. In this way they are better suited for small area exposure of UV-sensitive polymers than other UV sources.

Materials
From the materials side, the test samples and the adhesive materials are most relevant. A large portion of our research effort was dedicated to test structures on substrates and test chips. For the structures, shapes, sizes and layouts were varied. The basic shapes of the alignment pads were quadratic and hexagonal, FIGURE 4a and FIGURE 4b.
FIGURE 4a. Quadratic test structure on Pyrex with a side length of 100 µm. Images taken after the adjustment by self-assembly and UV-hardening.

FIGURE 4b. Hexagonal test structure on Pyrex with a side length of 60 µm.

Also the geometries were varied systematically. The size of the quadrates was 50, 100 and 200 µm, while their clearance was 100 to 600 µm. The hexagonal side lengths were 20 and 40 µm with clearances of 80 and 120 µm.

TABLE 1. Data of the UV-hardening test adhesives for electrostatic self-assembly.

<table>
<thead>
<tr>
<th>Adhesive</th>
<th>Permittivity ε_r</th>
<th>Viscosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellmann Siciwell 704</td>
<td>3.93 @ 1 MHz</td>
<td>80 mPas @ $T = 23 ^\circ C$</td>
</tr>
<tr>
<td>Delo Photobond AD413</td>
<td>3.80 @ 1 MHz</td>
<td>1,600 mPas @ $T = 23 ^\circ C$</td>
</tr>
<tr>
<td>DELO Katiobond AD640</td>
<td>3.70 @ 1 MHz</td>
<td>9,000 mPas @ $T = 23 ^\circ C$</td>
</tr>
<tr>
<td>Loctite 3311</td>
<td>4.02 @ 1 MHz</td>
<td>200 mPas - 400 mPas @ $T = 25 ^\circ C$</td>
</tr>
</tbody>
</table>

A further decisive criterion for the materials selection is the adhesive. The viscosity is the property which significantly affects the retarding forces and therefore velocity and time of alignment. Another significant property is the permittivity. According to the governing equations, the electrostatic alignment forces are proportional to the permittivity. The described properties of the four adhesives which were tested in this investigation are listed in TABLE 1.

Experiments

The test structures both on the chips and on the substrates were designed and fabricated at the IMTEK. The main steps are thin-film technology and photolithography, FIGURE 5. Al pads are used to make electrical contact to the capacitor structures by means of needle probes. In order to avoid short circuits, the complete structure is covered with a passivation layer of Si$_3$N$_x$. In most of the cases Pyrex glass was used as carrier for substrates and chips, as it makes optical alignment and inspection under a microscope easier than when non-transparent Si-carriers are used.

(1) Applying photoresist (5) PECVD of Si$_3$N$_x$

(2) Patterning of photoresist (6) Applying / patterning of photoresist

(3) PVD of aluminium (7) Opening contacts by RIE

(4) Lift-off (8) Removal photoresist

It could be observed that the droplet which forms the liquid bearing has a certain influence on the
alignment movement and accuracy. Therefore a reproducible deposition of the adhesive on the substrate wafer is indispensable.

For the electrostatic alignment first a coarse manual pre-positioning must be performed. The final position deviation significantly depends on the electrode geometry. If the initial component offset is too large, a shift will take place, but the device will be adjusted to the wrong position. This can be detected by an asymmetry between chip and substrate. Typically the misplacement is one or two complete pad rows in X or Y-direction.

In order to be able to move the component, voltages of $U = 35$ to 330V were used. We found that alternating voltages at frequencies f up to ~ 6 kHz are more effective than DC voltages. This phenomenon could not yet be explained completely. We presume that a small vibration movement might be induced and that possibly dielectric losses could heat the adhesive locally.

After the alignment has been accomplished, the voltage is maintained and the UV-hardening is started. Depending on the adhesive, a specific hardening wavelength between 365 nm and 395 nm is required. The radiation intensity must be at least 100 mW/cm². If the adhesive is to be hardened completely, the exposure duration must be for at least 10 s over the exposed area.

Test of accuracy and warping
An image of the components’ arrangement before and after the process can be seen in FIGURE 6. For the assessment of the results of self-assembly several criteria were taken.

Success rate during positioning:
This is a relatively simple and fast test. Under the test conditions it was tried out whether the self-alignment will take place at all. To that purpose the chips were placed on the substrate and the voltage was turned on. Subsequently the chip was shifted out of the center position using a tool and the alignment test was repeated up to three times. This was performed for many chips under various parameters. From the tests the portion of correctly aligned parts was calculated.

In-plane accuracy of positioning ΔX, ΔY:
This is the offset between the pad on the substrate and the pad on the chip after hardening the adhesive. This property is measured in a reflected-light-microscope at high magnification using special measurement software.

Adhesive layer thickness ΔZ:
Here, different methods were used. The step height between substrate surface and chip surface was measured after the hardening with a Profilometer. A second method was to prepare metallographic sections. Furthermore a confocal microscope was used on transparent chips to measure the elevation between the pad on top of the substrate and that on the underside of the chip.

RESULTS

Positioning and accuracy
In the following the results of some of the measurements of the X- and Y-adjustment will be presented and discussed. In the following evaluations the ratio between pad-length and pad-distance was used as the variable p. In this way, we can compare quadratic pads with a side length of e.g. 50 µm and a clearance of 200 µm with a hexagonal Pad with a side length of e.g. 20 µm and distances of 80 µm, as the ratio is always 1/4.

From FIGURE 7 the dependency between applied voltage, pad geometry and success rate can be taken. At high voltages of $U > 270$ V all geometries can be regarded as equivalent. All components will be aligned precisely. At lower voltages, some ratios apparently will lead to better self-alignment than others.
FIGURE 7: Influence of pad geometry and Voltage on the success rate during electrostatic self-assembly.

If the ratio p is too small, this means that the pad area is very small compared to the area of the chip. The alignment-forces are small, too, and they are not able to move the chip. If the ratio is too high, the pads will influence the electrical field of their neighborpads and the success rating is smaller again. The optimum value will be examined with the help of new structures in future experiments.

FIGURE 8. Scatter of the lateral error for different structures at a voltage of $U = 240$ V.

If one is looking at the lateral error of square-pad structures in FIGURE 8 the misalignment is always $< 5 \mu \text{m}$. The design of the structure is important to gain most precise results. Parallel structures have a higher lateral error than comb structures. A reason can be found in the interaction of the structures. The applied voltage is AC with a frequency of 6 kHz, the electrostatic field is changing its direction very often. While parallel structures only have one line (in the middle of the structure) where the changing field can interact and move the chip, comb structures have much more boundary areas all over the chip. The forces are able to adjust the chip more precise. The x-error is always smaller than the y-error. Again the reason is because of the design of the structure. The changing field is along the x-axis, the resulting forces are in x-direction. New structures with a spiral design should increase the precision again, because there are forces in x- and y-direction.

In FIGURE 9 the x- and y-accuracy of comb structures are correlated via the rotation angle ϕ of assembled structures and the area accuracy. It is visible, that again an optimum ratio p of 1/3 delivers the best results where a very small rotation angle of $0,02^{\circ}$ can be observed while the area accuracy has a maximum of 99,5%.

FIGURE 9: Scatter of the area accuracy and the rotation angle of comb structures of all self-assembly tests for different ratios p.

If one combines the result of FIGURE 7 and FIGURE 9 the ideal design has a pad size of about $a = 50 - 100 \mu \text{m}$ with a gap between them which are three times bigger (approximately $150 - 300 \mu \text{m}$). The chip can be aligned with voltages $U < 100 \text{ V}$ at a frequency of $f = 6$ kHz. All in all a very high precision is possible to align structures via electrostatic forces with these parameters.

Hardening

The hardening is an important and possibly crucial process step. It must take place immediately after the self-assembly step. There are several aspects to be taken into account. The wavelength of the UV light must be matched to the absorption behavior of the adhesive. Also the location of the LED plays a significant role. If the adhesive is exposed in an erratic manner,
the hardening can be induced in an asymmetric pattern. In FIGURE 10 a cross section can be seen with two different heights \(h_1 = 10.75 \mu m \) on the left and \(h_1 = 21.50 \mu m \) on the right.

FIGURE 10. Cross Section of a self-assembled chip on its substrate. The thickness on the right is twice the height on the left.

As the adhesive shrinks during hardening, this can lead to warping and relative displacement of the parts or even to residual stresses. The radiation must not be directed under the chip as locations under the pads will also be hardened after an initiation at the edge. When the exposing LED is too close to the adhesive, swelling of the adhesive and a thickness increase is observed. This effect must be regarded further on in more detail.

SUMMARY AND OUTLOOK

Integrated test equipment was built up in order to perform experimental investigations on self-assembly and subsequent hardening. The alignment forces are generated by electrostatic attraction between corresponding pads on the substrate and on the chip. By in situ hardening of the adhesives with UV-light from an LED the chips are fixed in place.

The accuracy of positioning in plane of chips after the hardening is in the order of < 5 \(\mu m \). The observed alignment deviations are affected both by the self-alignment and the shrinkage of the adhesive during hardening. The thickness of the adhesive is from 5 – 35 \(\mu m \). Different electrode-structures were designed for components and substrates and tested. In the case of suitable pad design controlled self-assembly is possible already at voltages under 50 V within a time of less than 1 s. Hence the feasibility was demonstrated for the principle of electrostatic positioning in combination with die attachment.

A possible field of application can be found in the manufacturing of LEDs, RFIDs and bare-chips. Shock-sensitive parts can be aligned and fixed after rough positioning without the need to touch them again. In addition expensive high-precision positioning systems can be replaced with a cheaper solution especially in the case where high parallelization is desired.

In the future, we plan to characterize the process in more detail. It is planned to generate a quantitative process model with influencing parameters and quality parameters like the accuracy. Furthermore, we consider it as attractive to fabricate adhesive bonds which also bear the function of electrical interconnection.

ACKNOWLEDGEMENTS

The IGF-Project No. 17.456N of the research association "Forschungsvereinigung Schweißen und verwandte Verfahren e. V. des DVS, Aachener Straße 172, 40223 Düsseldorf, Germany" was, on the basis of a resolution of the German Bundestag, promoted by the German Ministry of Economic Affairs and Technology via AIF within the framework of the program for the promotion of joint industrial research and development (IGF).

REFERENCES

Effect of Lapping Trajectory on Diamond Surface Topography
Ning Yang¹, WenJun Zong¹, ZengQiang Li¹, and Tao Sun¹
¹Center for Precision Engineering
Harbin Institute of Technology
Harbin, Heilongjiang, China

INSTRUCTIONS
In ultra precision machining, a fine diamond tool surface quality reduces the friction with the sliding chip in which way the wear of the tool is weakened [1]. Prolonging the service time of the tool is of great importance in order to obtain the satisfied surface quality and dimensional accuracy [2].

Obtaining of an excellent tool surface is sure of an issue to research in the diamond tool manufacturing and redefining. An effective method is via tool path selection. The importance of adopting proper trajectories for the accomplishment of the grinding process was highlighted. Previous researches suggested that changing grinding trajectories brings in improvement in surface quality [3-5]. The materials studied before mainly have relatively low hardness. And the abrasives in the wheel are diamond, with an extremely high hardness. With respect to the diamond itself, the research of lapping trajectory effect on its surface topography is seldom seen in the literature.

In this paper, three lapping trajectory types were employed. The first accomplished only rotation movement of the spindle, whereas in the second type, the reciprocation motion was also cooperated based on type one. With respect to the third type, the planetary motion was involved besides the other two motions. The three different types results in different surface topography. The third type is the best.

EXPERIMENTS
Our experiment was carried out on a natural diamond conical grinding machine (PG3B, Coborn Engineering Co. LTD). The experiment set up is shown in Fig. 1. Besides the rotation of spindle, reciprocating motion and planetary motion can be performed on this machine. The diamond specimen is adhered to a holder by a high-decomposition temperature binder. The normal force applied on the specimen is 15N. Bronze bond diamond grinding wheel was applied. After lapping, the surface morphology was measured by AFM (Nanosurf NaniteAFM system, Nanosurf AG).

In our study, the reciprocating and planetary motions take part in the generation of lapping trajectories orderly. In this way, three lapping trajectory types were employed. The first one only includes rotation movement of the spindle. Then the reciprocating motion of the slide carriage was added. For the third type, the spinning, reciprocation and planetary motion were mixed. As shown in Fig. 2, an abrasive on the diamond grinding wheel surface under the three types of trajectories can be written as Eq. 1 (for type 1), Eq. 2 (for type 2), and Eq. 3 (for type 3).
\[
\begin{align*}
 x_1 &= \rho \cos(\omega_1 t + \theta_0) \\
 y_1 &= \rho \sin(\omega_1 t + \theta_0) \\
 x_2 &= x_{20} + b \cos(\omega_2 t + \varphi_0) - \sqrt{c^2 - b^2 + b^2 \cos^2(\omega_2 t + \varphi_0)} + \rho \cos(\omega_2 t + \theta_0) \\
 y_2 &= \rho \sin(\omega_2 t + \theta_0) \\
 x_3 &= x_{30} + b \cos(\omega_3 t + \varphi_0) - \sqrt{c^2 - b^2 + b^2 \cos^2(\omega_3 t + \varphi_0)} + r \cos(\omega_3 t + \gamma_0) + \rho \cos(\omega_3 t + \theta_0) \\
 y_3 &= r \sin(\omega_3 t + \gamma_0) + \rho \sin(\omega_3 t + \theta_0)
\end{align*}
\]

where \(x_1, y_1, x_2, x_3\) and \(y_3\) are the coordinates in reference frames numbered 1, 2, and 3 for the three trajectory types, \(\omega_1, \omega_2\) and \(\omega_3\) spindle, reciprocating shaft and planetary shaft angular velocities, \(\theta_0, \varphi_0\) and \(\gamma_0\) the values of rotation angle \(\theta, \varphi\) and \(\gamma\) at time \(t=0\), \(\rho\) the radial distance of abrasive on wheel, \(b\) the crack length, \(c\) the connecting rod length, \(r\) the planetary motion eccentricity, \(x_{20}, x_{30}\) the initial abscissa of reciprocating shaft center in reference frames 2 and 3 respectively.

RESULTS AND DISCUSSION

Wavelet analysis allows the use of long intervals where we want more precise low frequency information, and shorter regions where we want high frequency information. One major advantage afforded by wavelet is the ability to perform multi-scale view of the components of a signal, so the roughness and the profile can be separated from the surface morphology [6, 7]. So far there is little theoretical foundation for the choice of wavelet type. In order to rule out the analysis error caused by wavelet selection, several types, \(\text{db4, db8, dmey, coif4, rbio6.8}\) and \(\text{sym6}\), are selected to perform the wavelet analysis.

We decomposed every measuring result at different levels using each of these wavelets. By intuitional observation, we chose the low frequency part or approximation of the surface topography data at level 4 as the surface profile. By subtracting this approximation from the tested surface data, the high frequency part or detail of the surface data, characterizing roughness, is obtained. As an example, a surface topography generated under trajectory type one is decomposed into profile and roughness parts using \(\text{db8}\) wavelet at level 4, as shown in Fig. 3. In the following comparison for results under different trajectories, the ranges of the values in profile and roughness parts are calculated respectively for different wavelets, as listed in Table 1 and Table 2.

![Fig. 3 Decomposition of a surface topography into profile and roughness parts using \(\text{db8}\) wavelet.](image-url)
From the table, it can be seen that bringing in reciprocating and planetary motion makes the diamond lapping surface very flat and smooth. The profile or flatness of the surface, corresponding to the low frequency part of surface topography, is reduced from about tens of nanometers to several nanometers, if the reciprocating motion cooperates with the first type trajectory, or if both the reciprocating and planetary motions are included. Meanwhile the roughness, corresponding to the high frequency part of the surface morphology, decreases from about tens of nanometers to several nanometers too. Comparing second and third type trajectories, it is clear that the third type leads to better roughness than the second type, but little improvements on surface flatness.

The diamond cutting tool should have a fine surface to prolong service life by facilitating chip flow during cutting process. Our analysis suggests that the trajectory generated by cooperation of spindle rotation and reciprocation of the slider is adequate for diamond lapping. The rotary of the spindle used alone cannot meet the requirement of tool face quality. The planetary motion for the spindle is unnecessary because of its weak improvement.

CONCLUSION

Effects of these lapping trajectories on diamond surface topography are analyzed by wavelet transform method. Based on our analysis, adding of the reciprocating motion can greatly improve the flatness and roughness to meet the diamond surface lapping requirement, compared with pure spindle rotation. A further improvement on roughness can be made by adding another planetary motion besides the former two, but the improvement is just a little.

ACKNOWLEDGMENTS

This work was supported by grants High-end CNC Machine Tools and Basic Manufacturing Equipment major national science and technology (No. 2011ZX04004-031), China.

REFERENCES

MEASUREMENT OF SURFACE MECHANICAL DYNAMIC CHARACTERISTICS BY PIEZO EXCITED MICRO TUNING FORK

Hisayuia Aoyama and Xiaobei Jing
Department of Mechanical Engineering and Intelligent Systems
University of Electro-Communications
Chofu, Tokyo, Japan

INSTRUCTIONS
In recent years, there is much of demand to check the biological condition of such bio-cell in the field of medical and biology. There are several techniques to observe mechanical or viscous elastic characteristics of cells with such the microscopes. Here we are proposing to measure the mechanical characteristics of bio-material, especially by using vibration of piezo driven micro tuning fork. In our device, it has a tiny needle at the end of the tuning fork. We can vibrate this tuning fork at its resonance frequency and the precise mechanically driven platform can lift up the sample so that it can touch the vibration needle. With different depth with every 1 um step, small changes of the amplitude and the phase shift of the vibration can be detected to identify the surface mechanical characteristics of the soft sample.

PRINCIPLE OF VISCOSITY AND ELASTIC MEASUREMENT
In order to check the internal condition of the soft body samples such as a biocell, it's necessary to measure the viscosity change of the elastic mechanical interior of the samples. Firstly, it is described that the principle of the measurement as shown in Fig.1. In the system, we employ a micro tuning fork in which piezoelectric elements are are attached on both sides. And a small needle tip is glued at the end of one side of the micro tuning fork. When we can give the resonance frequency signal to the tuning fork, then it can resonate the needle with the tip. Furthermore, the micro vibration of the needle can be detected by the piezoelectric element which is attached on the other side. Therefore, the amplitude and the phase shift of the vibration can be easily measured when the vibrating needle can be contacted with the soft sample and then pushed down with micro displacement. Finally we can measure the dynamic mechanical characteristic of samples over several micrometer depth. In Fig.2, the simple mechanical dynamic model of the piezo driven micro tuning fork is illustrated.

FIGURE 1. Principle of viscosity and elastic measurement with the resonated micro tuning fork

FIGURE 2. Simple mechanical dynamic model of the piezo driven micro tuning fork
Here k_1 and c_1 are coefficients of the mechanical vibration system for micro tuning fork, k_2 and c_2 are coefficients of the mechanical vibration system for the sample. The input signal X and output signal Y can be expressed by the following transfer function. From functions (1), (2) we can know that if k_2,c_2 changes the result changes together. So, it can be expected that the change of frequency response can be given as follow,

$$Y = \frac{c_1s + k_1}{ms^2 + (c_1 + c_2)s + k_1 + k_2}X$$ (1)

$$G_2 = \frac{c_1s + k_1}{ms^2 + (c_1 + c_2)s + k_1 + k_2}$$ (2)

PRECISION POSITIONING DEVICE FOR MICRO DISPLACEMENT

Figure. 3 shows the schematic diagram of the precise positioning device while Fig. 4 is a photo of the precise positioning device. It’s very important to provide a precise careful positioning with the lift stage. At first, an automatic positioning stage can adjust the position of the sample in X-Y axes. As the micro tuning fork is linked with the z-axis coarse stage, we can adjust the position of needle to approach the sample. The precise positioning device is composed of an eccentric cam mechanism which is connected with the harmonic drive with 1:100 ration and the stepping motor. The sample stage is supported by the parallel spring mechanism. This layout can lift up and down the sample stage slowly and accurately in z direction. If we keep going that after the sample can contact with the vibration needle, it means to realize actions of contacting and pushing down with micro displacement. By rotating the eccentric cam, actually we can get a sinusoidal displacement. Comparing with the positioning mechanism with piezoelectric elements which are widely used this eccentric cam mechanism can bring larger full stroke without actuator drift although the stroke over the range is non linear. However it has good rigidity and easy for fine positioning. Of course, the precision displacement is dependent on the roundness of the eccentric cam. Due to the harmonic drive mechanism, it is possible to improve the resolution with low backlash.

EXPERIMENT OF PRECISE LIFTING MECHANISM WITH ECCENTRIC CAM

Rotate the cam 360° start at the lowest point of the cam positioning. At the same time use a laser displacement meter to measure the trajectory. Fig 5 shows the experimental data. It is found that when the cam would rotate one turn with 100 rotation of stepping motot, the
trajectory of displacement can forms a sine wave. So we can refere this trajectory to realize precise positioning although some erros due to the cam form deviation.

Considering that the linear part of the trajectory has good linearity rather than at the top curve, we did check the positioning resolution by the experiment with the capacitance displacement tranceducer. Fig. 6 shows the result of experiment around the linear area. In this experiment, 5 step response is indicated and 1 step is approximately 25nm. With the help of harmonic reduction gear with 1:100 ration, the eccentric cam can be rotated with very small angle.

EXPRERIMENT OF VISCOELASTICITY MEASUREMENTS
As the primary experiments, the surface of elastomer and that with acrylic paint coating are measured by the vibrating needle as shown by the closed up view of Fig.7. The amplitude change and the phase shift are checked as shown in Fig.8. It is found that the changes of phase difference and amplitude ratio can be measured over the 10 micrometer depth. This indicates that the system can identify the micro mechanical property of the soft material surface.

Fig.8 shows the changes of phase difference and amplitude ratio corresponding to small penetration of the needle into the sample. It is found that the responses of the bulk elastomer surface and that of the acrylic coated elastomer is so different and this can mean that surface viscous elasticity can be detected by the microscopic vibrated thin needle at the resonant frequency of the micro tuning fork. After some numerical processing with equation (1) and (2),
the viscoelasticity around the target surface can be estimated and evaluated.

And we also tested similar experiments for thin film with viscous elastic liquid (the thickness is just about several um). In order to test viscous elastic characteristics of the thin film with different viscous liquid behind, at first the films that cover the cavity with air, water and silicone oil was checked. Fig. 9 shows the phase difference and amplitude ratio corresponding to each condition. From these data we can see the vibration response is different, so it is possible to measure viscous elastic characteristics of the thin film. But we can also find there are just a few differences between experiments of air and water. It means the samples that we can measure are limited.

CONCLUSIONS

With the help of the eccentric cam mechanism driven by the harmonic reduction drive and stepping motor, it could lift up the sample stage smoothly and precisely to the vibrating tip at the micro tuning fork. The vibrating needle at the resonance frequency of micro fork can measure the precise change of surface mechanical property over 10 micrometer penetration. In the future works, such live bio-cell samples are one of our targets to check the inner condition based on the micro mechanical dynamics viscoelasticity response.
FORM AND OUTLIER REMOVAL BY MODAL FILTERING OF CONFOCAL MEASUREMENTS OF LASER-SINTERED ADDITIVE-MANUFACTURED SURFACES

Colin M. Burns, Christopher A. Brown
Surface Metrology Laboratory
Worcester Polytechnic Institute
Worcester, MA, USA

ABSTRACT
Multi-scale areal and complexity analyses show the influence of the filtering on measurements of laser sintered powder AM surfaces. The modal decomposition filter diminishes the relative areas and complexities in the long and mid-range scales. The surfaces have what appear to be powder particles attached to the surface and other features that produce outliers. Multi-scale discrimination testing is used to evaluate the filter type and parameters. The unfiltered surfaces are discriminated with the highest confidence.

INTRODUCTION
This paper presents a method for studying and evaluating filters and filtering parameters for topographic measurements. The method is demonstrated with a new, modal filter, which is used for form and outlier removal on confocal measurements made on laser fused, additive manufactured surfaces. The evaluation is based on the levels of confidence in multi-scale discrimination testing on two levels of processing conditions. The ability to discriminate measured surfaces based on their processing can be valuable. Both form removal and outlier filtering can influence the confidence with which surfaces can be discriminated. Form removal is commonly used on surface measurements to separate form from roughness [1]. Many kinds of surface measurements can contain outliers [2], which would logically influence the ability to discriminate surfaces with high confidence by reducing the fidelity of the measurement.

There is literature on the influence of processing variables on surface roughness. Roughness increased with an increase in build orientation for 0-90° and decreased from 90-180°, while layer thickness marginally increased surface roughness [3]. The slice height and raster width were seen to affect the surface roughness while tip diameter did not [4]. Dimensional precision and surface roughness ultimately depend on the material chosen and production times which can both be linked to the ability of the operator [5]. Using conventional and multi-scale surface analysis on measurements of fused deposition ABS additive manufactured parts, correlations to layer thickness similar to feed in machining were found along with the ability to discriminate over certain scale ranges [6].

A new filter for removing form using modal analysis has recently been introduced [7]. The modal filter appears to be robust with respect to occasional outliers. This should enhance its ability to find outliers. It uses Grubbs method [8, 9] for removing outliers after form filtering and can then restore the form after removing the outliers.

To demonstrate this method of studying and evaluating filters, multi-scale discrimination testing [10] using relative areas and area-scale complexities [1] will be performed on unfiltered, outlier filtered, and form and outlier filtered surfaces. The measurements are areal, made with a scanning laser confocal microscope on surfaces made by additive manufacturing.

METHODS
The parts examined in this study were produced using metal based, powder fed, beam deposition [11]. A Concept Laser M2 powder bed metals additive manufacturing machine (www.concept-laser.de) was used to make 10mm cubes from Inconel 718 powder. The powder diameter is between 10 and 40μm. Two conditions of the laser, power and speed, were used at the NASA George C. Marshall Space Flight Center to make the cubes: faster-speed and higher-power (F-H), and slower-speed and lower-power (S-L). The ratios of the contour speeds and powers were 4:1 and 1.8:1 respectively.

Four measurements were made on each sidewall of the two cubes for a total of sixteen measurements of each processing condition. These were made using an Olympus LEXT OLS 4000 3D Measuring Laser confocal, optical
microscope (www.olympusamerica.com) with the 50x lens (NA 0.95) and a 405nm wavelength (A) laser. All measurements were made with the same acquisition and brightness settings. The measurement size is 250x250 µm and 1024x1024 height samples with a sampling interval of about 244nm. The Sparrow criterion [12] for the ability to resolve laterally is 200nm (=0.47λ/NA).

The topography layer was extracted from the LEXT files and conventional analyses were performed (www.digitalsurf.com). The topography layer files were filtered for outliers and form and used for area-scale analysis. Three kinds of files for the two processing conditions were analyzed: as-measured and unfiltered (UN), outlier filtered (OF), and outlier filtered and form removed (FR). The filter is based on discrete modal decomposition for removing form and Grubbs’ test to remove outliers [7]. Three modal numbers were used in the filtering: 125, 250, and 500 modes. In all cases the confidence level for outlier identification was constant at 0.001.

Area-scale analyses were done with Sfrax (www.surfract.com), which uses a series of virtual tiling exercises using triangular tiles; the size of the tile represents the scale. A range of scales, from the sampling interval squared over two, to half the measured region are used. The size of the tile is constant in three dimensions in each exercise and increments with squares of multiples of the sampling interval. The relative area is the calculated area squared divided by two [1, 13]. The complexity is the slope of the area-scale plot [1]. The complexity-scale plot uses the simplicity calculated over one decade versus the scale. The area-scale analysis was performed and area-scale and complexity scale plots were generated by Sfrax.

At each scale available in the area-scale analysis, a factorial test, an F-test [14], is used to compare the results of the different filters and the two processing conditions of the sixteen individual measurements. This is a multi-scale F-test programmed in Sfrax to calculate the mean square ratio (MSR) at each scale for which relative areas are calculated. The MSR is plotted versus scale. The critical value of the MSR for some level of confidence is indicated on the plot of the MSR to show at which scales the MSR exceeds this confidence level. The MSR and the scales at which it exceeds 99.9% confidence are used in the comparisons of the different filtering conditions’ ability to discriminate.

RESULTS AND DISCUSSION

Outliers, appearing as spikes, both up and down, are apparent in a rendering of a typical unfiltered measurement (Fig. 1). Raised regions similar in size to the smallest powders are evident, which could be powder particles partially fused to the surface. The steep transitions, or perhaps undercuts, around these raised regions are coincident with many of the outliers.

FIGURE 1. Rendering of a typical unfiltered measurement from a side of the F-H cube.

FIGURE 2.1. Rendering of a measurement from a side of the F-H cube filtered with 125 modes. The outliers and form are removed.

FIGURE 2.2. Rendering of a measurement from a side of the F-H cube filtered with 250 modes. The outliers and form are removed.
The influence of the outlier removal and form filtering with progressively more modes can be seen in Fig. 2.1-2.3. More modes are consistent with more form and spike removal. The form removal removes the large depression in the center of the measurement and introduces some waviness and ring shaped depressions around the raised regions. More modes appear to increase the spatial frequency of a background of waviness. This waviness is not evident in the rendering of the as-measured surface or in the renderings in Fig. 3, with only outliers removed. The renderings in Fig. 3.1-3.2 show the surface with only the outliers removed and compare the two processing conditions. The F-H laser conditions appear to result in rougher surfaces than the S-L. This is confirmed with the conventional height parameters in Table 1 and in the multi-scale analyses. The scale at which the relative areas deviate clearly from one is the smooth-rough crossover (SRC). The unfiltered, original measurement has the largest relative areas at all scales below the SRC. Increasing the modes reduces the relative areas below the SRC. The influence of the form removal is small at the finest scales, and is most evident at scales just below the SRC.

Complexities (slopes of the area-scale plot, Fig. 5) show most clearly the differences that occur in the mid-scale range with the different modes and the similarities at the fine scales, despite the different modes. The impact of the modal filter appears to increase as the number of modes for modal decomposition is increased. The complexity of the plot of the measurement, with only the outliers removed and no form removed, is slightly less complex at the finest scales. This suggests that the form removal might be adding complexity.

The complexity, which is a kind of finite scale derivative of the relative area, appears to be a better indicator of the influence of the filters than the relative area, especially on similarities at the finest scales. The scale of the influence of the modal form removal is consistent with the scale...
of the measurement divided by the number of modes used in the modal decomposition.

The means and coefficients of variation (CoV) for conventional height parameters, arithmetic average (Sa) and peak-to-valley height (Sz), are shown in Table 1. Both Sa and Sz decrease with outlier filtering; although, there is no tendency with respect to the modes used with the outlier filtering. The number of modes in form filtering has a clear tendency to reduce the height parameters. This is consistent with its influence on the complexities (Fig. 5).

TABLE 1. Mean Surface Height Parameters of 16 measurements.

<table>
<thead>
<tr>
<th></th>
<th>Sa (µm)</th>
<th>Sa CoV</th>
<th>Sz (µm)</th>
<th>Sz CoV</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-H UN</td>
<td>6.99</td>
<td>0.28</td>
<td>53.73</td>
<td>0.19</td>
</tr>
<tr>
<td>F-H OF 125</td>
<td>6.16</td>
<td>0.26</td>
<td>44.65</td>
<td>0.25</td>
</tr>
<tr>
<td>F-H OF 250</td>
<td>6.17</td>
<td>0.26</td>
<td>44.83</td>
<td>0.24</td>
</tr>
<tr>
<td>F-H OF 500</td>
<td>6.17</td>
<td>0.26</td>
<td>44.87</td>
<td>0.24</td>
</tr>
<tr>
<td>F-H FR 125</td>
<td>2.23</td>
<td>0.32</td>
<td>42.51</td>
<td>0.27</td>
</tr>
<tr>
<td>F-H FR 250</td>
<td>1.74</td>
<td>0.30</td>
<td>34.52</td>
<td>0.28</td>
</tr>
<tr>
<td>F-H FR 500</td>
<td>1.25</td>
<td>0.29</td>
<td>27.25</td>
<td>0.30</td>
</tr>
<tr>
<td>S-L UN</td>
<td>3.89</td>
<td>0.21</td>
<td>48.79</td>
<td>0.19</td>
</tr>
<tr>
<td>S-L OF 125</td>
<td>3.22</td>
<td>0.28</td>
<td>34.09</td>
<td>0.25</td>
</tr>
<tr>
<td>S-L OF 250</td>
<td>3.28</td>
<td>0.28</td>
<td>34.77</td>
<td>0.23</td>
</tr>
<tr>
<td>S-L OF 500</td>
<td>3.27</td>
<td>0.28</td>
<td>34.15</td>
<td>0.21</td>
</tr>
<tr>
<td>S-L FR 125</td>
<td>1.14</td>
<td>0.37</td>
<td>23.70</td>
<td>0.35</td>
</tr>
<tr>
<td>S-L FR 250</td>
<td>0.90</td>
<td>0.34</td>
<td>19.23</td>
<td>0.30</td>
</tr>
<tr>
<td>S-L FR 500</td>
<td>0.60</td>
<td>0.31</td>
<td>14.47</td>
<td>0.32</td>
</tr>
</tbody>
</table>

The confidence in discrimination versus scale with different filters is indicated by the MSR for relative areas and for complexities (Fig. 6.1-8.2). In all cases here, for the given degrees of freedom, the MSR at 99.9% confidence is 9, as indicated [14]. The ability to discriminate using relative area above the SRC, which is about 1000µm², is unimportant because the difference in relative areas is small.
With the form and outlier filter together, there is no tendency for discrimination confidence between the two processing conditions with the modes for relative area (Fig 7.1) or for complexity (Fig 7.2). In both cases, the unfiltered measurement is the best for discrimination. The complexity is better at discrimination of the two processing conditions than is the relative area, as indicated by the higher MSRs, regardless of the filtering type. By the same measure, the relative areas without form removal are better at discrimination than with. Form filtering appears to diminish the confidence in the discrimination.

The discrimination confidence between different filtering conditions for one processing condition, F-H, is similar for relative area (Fig 8.1) and for complexity (Fig. 8.2).

The biggest difference is between the unfiltered and the outlier filtered plus form removal; this difference is strongest at the larger scales where the form is removed. The lower end of scale, which appears to be modified by the modal decomposition filter, seems to be related to the number of modes. This is evident when testing the confidence in discrimination between the processing conditions for the measurements with the form removed. The scales for discrimination rank with the mode, such that the higher mode numbers begin to discriminate at lower scales (Fig. 7.1 and Fig 7.2).

The fact that the unfiltered measurements often provide the highest confidence might be explained, in part, by the tendency of certain features to produce outliers. These outliers
would emphasize the existence of these features. Removing the outliers then reduces the difference between the measurements. Removal of the form also reduces the differences between the measurements. In multi-scale analysis there might be no need to remove form because the analysis shows all the tendencies with respect to scale continuously as opposed to in relatively large, pre-defined categories.

CONCLUSIONS
1. The level of confidence and extent of the scale over which the high confidence extends can be used to evaluate filtering options.
2. Comparative multi-scale areal and complexity analyses clearly show the scales influenced by the form removal and outlier removal.
3. The influence of form removal is in the mid to large scales, consistent with the mode number and the resulting scale of the modal decomposition.
4. Large scale modifications influence the relative area at smaller scales, but not the complexities.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge the generosity of Olympus for the use of the LEXT OLS4000 laser scanning confocal microscope, of DigitalSurf for the use of MountainsMap 7 for rendering the images and calculating the conventional height parameters, and of Professors Le Goic and Favreliere for the use of their program Outlier Filtering. Sfrax, used for the multi-scale analyses, is owned by co-author Brown. We would also like to thank Kathleen Bowe for her help in editing this paper. The authors also gratefully acknowledge Stacey Bagg, Dustin Lindley, and the NASA Marshall Space Flight Center Advanced Manufacturing Lab for sample preparation and provision and the ME Dept. at WPI for its support of Burns.

REFERENCES
Traceable measurement of drivetrain components for renewable energy systems

Michele Deni and Karin Kniel

1 Company MDM-METROSOFT
Minerbio, Bologna, ITALY

2 Physikalisch-Technische Bundesanstalt, Department “Coordinate Metrology”
Braunschweig, Germany

Abstract
The production of highly accurate components of renewable energy systems such as Wind Energy Systems (WES) or Tidal Power Generators (TPG) in a globalised industrial manufacturing environment strongly requires the full adoption of well harmonized international standards dealing with specification and verification procedures to be reported in the manufacturing documents [1-3]. Europe as one of the leaders in the field of renewable energy systems has promoted and founded the Joint Research Project (JRP ENG56) “Traceable measurement of drivetrain components for renewable energy systems” within the scope of EMRP. The project - by means of a competent network of National Metrology Institutes (NMIs), European measurement instrument manufacturers, suppliers of drivetrain components, and other experts - is focused on providing methods and tools to overcome the most significant deficiencies in specification and verification procedures in the design of the key mechanical components of large scale renewable energy electrical power generators. The main focus will be on large sized components like bearings, shafts, gears, rotor-stator components of direct drives and brakes. It is well known that WES and TPG may have in the case of mechanical failures in the powertrain mechanical system, dramatic costs for accessibility issues, operations in difficult conditions, and loss of power generation. Therefore, the needed reliability for powertrain components on renewable energy systems puts mandatory constraints in the design specifications and verification procedures related to 1D-3D geometries for the tolerance of size, form, waviness and roughness. The main task of the project is to provide contribution, together with NMIs, towards the production of measurement standards and guidelines suitable for industrial use. Neither written nor embodied standards for drivetrain metrology exist and most NMIs have just some or no experience in measuring large-sized components. The project has been given the mission of promoting the transfer metrology know-how for powertrain components between NMIs and producers operating in this industrial sector.

Need for the JRP
Without a doubt, renewable energy resources are essential for guaranteeing sustainable energy for the future. WES are considered to be a promising technology for this purpose. However, only very few WES reach the objective lifetime of 20 years without two or more fatal failures of mechanical components. Documented reliability proof of drivetrain components is lacking, as with the state of the art, neither NMIs nor calibration services offer calibrated measuring standards for large-scale drivetrain components. This lack creates great difficulties for industrial components manufacturers, as they do not have the option to assess the measurement traceability of produced parts before delivery to the end user.

Scientific and Technical Objectives
The project task is to provide - in accordance with the ISO GPS philosophy - verification procedures called “metrology operators” to produce traceable 1D-3D measurements on large-sized high-quality components of energy drivetrains, like shafts up to 3 m in length and 1 m in diameter, large bearings up to 3 m, internal and external gears up to 3 m and brakes for the same. The project provides the following objectives:
- Establish new measurement and evaluation procedures for large-sized drivetrains.
- Manufacture new large scale measurement standards.
- Establish new calibration procedures and uncertainty estimators.
- Develop a numerical model on the temperature effects on large mechanical components.
- Define specification parameters related to the functionality of the drivetrain system leading to correlation uncertainties, like stress, noise due to vibrations, low energy conversion efficiency.
- Establish a traceability chain for measurements performed on the shop floor.
- Promote the transfer of achieved developments to international and national standardization bodies.
- Extend the competence of participating NMIs to perform calibration services for large scale components.

Work Packages and Participants
The JRP consortium brings together a large group of European NMIs, research institutions, instrument manufacturers and industry with expertise in the design, manufacturing and verification of energy power train components.

The JRP consortium includes 14 participants from different European countries:
- Germany: PTB, RWTH, Hexagon, Mitutoyo, Zeiss
- Czech Republic: CMI
- Denmark: DTU
- Italy: INRIM, MDM
- Finland: MIKES, Aalto
- UK: NCL, NPL, Cardiff

Seven work packages (WP) are assigned to JRP participants in compliance with the specific competence of each participant:
- WP1: 2D-3D metrology strategies for drivetrain components.
- WP2: Novel measurement standards and calibration procedures.
- WP3: Measurement uncertainty contributors.
- WP4: Virtual metrology for large drivetrain components.
- WP5: Metrology operators and associated uncertainty.
- WP6: Dissemination of procedures and standards developed for manufacturers of renewable energy systems, manufacturers of measuring equipment and standardization committees.
- WP7: Project management and coordination.

Work Packages Impact
- Transfer of traceable and reliable measurement procedures for acceptance assessment of large drivetrain components.
- Introduction of the ISO GPS (Geometrical Products Specification and Verification) in the field of large drivetrain components according to the rules of ISO TR14253.
- Correlation uncertainty analysis, in relation to specification and verification data resulting from measurement procedures and dealing with ease of assembly, functional performance and failure modes prediction.
- Provision of new specification and verification standards for mechanical energy conversion systems.
- Best practice with uncertainty measurement contributors due to temperature gravity and clamping effects in a harsh environment.
- Applicability of deliverables to other mechanical energy conversion systems.

Conclusion
For the first time, specification and verification methods for traceable metrology to the SI will be provided for high-quality components of renewable energy systems like WES and TPG.
This will reduce high costs resulting from unknown geometrical errors on mechanical components to be installed under harsh environmental conditions, onshore, offshore or undersea. A highly competent infrastructure from NMIs to industry will be established for traceability to the SI.

References
Measuring high-slope parts using coherence scanning interferometry

Martin F. Fay, Xavier Colonna de Lega, and Michael Schmidt
Zygo Corporation
Middlefield, CT

INTRODUCTION
Measuring high-slope machined parts often forces an unsatisfying compromise between sufficient data coverage and acceptable throughput, as metrology tools generally entail some sort of tradeoff between slope acceptance and measurement speed. For example, for optical systems higher-NA objectives have higher slope acceptance but generally smaller fields of view (FOV), meaning more individual measurements if the region of interest exceeds a single FOV.

Recessed and large-departure features pose the additional challenge of imposing a minimum working distance, which also generally entails a tradeoff with slope acceptance.

Coherence scanning interferometry (CSI) is commonly used to measure machined parts, providing non-contact areal topography maps with typical single-measurement topography repeatability of less than a nm on smooth, high-reflectivity surfaces [1]-[2]. Typical selection of objective magnification ranges from about 1X to about 100X.

Ideally the highest local slope θ_{max} is accommodated within the specular limit of the objective NA, satisfying $NA > \sin(\theta_{\text{max}})$.

In practice a lower-NA objective may be prescribed by constraints on minimum working distance or field-size/throughput; or by practical considerations such as cost and availability. Fortunately, measuring slopes beyond the specular limit is possible provided some light is scattered (generally by surface roughness) and the measurement is sufficiently sensitive. Even so, in the past CSI has often been challenged by high-slope parts.

Recent advances in the technology both significantly improve the baseline sensitivity of CSI and enable high-dynamic-range operation, allowing measurement of recessed or high-slope features that were previously inaccessible, or over larger fields of view for improved throughput.

MEASUREMENT & ANALYSIS
A variety of machined parts were measured using a modern commercial CSI microscope [3]. As shown schematically in FIGURE 1, CSI operates by scanning an interferometric objective relative to the sample being measured, producing localized interference patterns which define sample height at each pixel of the camera. Thus a single scan produces areal topography data at corresponding positions of best focus over the full field of the camera. Any type of interferometric objective can be used, including Mirau, Michelson, Linnik, or wide-field [4]-[5] objectives.

For the results presented here, the baseline data acquisition time is about 0.14 seconds per micron scanned. All surface plots shown represent raw height data without smoothing, masking or interpolation of missing data points. Particularly weak signals were detected using dynamic noise reduction (DNR), which allows a user-specified trade-off between throughput and sensitivity while preserving full vertical and lateral resolution [6].

FIGURE 1. Schematic representation of Coherence Scanning Interferometry.
SLOPES BEYOND THE SPECULAR LIMIT

FIGURE 2 shows a diamond-turned cone with an included angle of 90°, an outermost diameter of 4 mm, and relatively low surface roughness ($S_a \sim 1.1$ nm, as measured at normal incidence with a 10X Michelson objective). Accommodating the 45° slopes within the specular limit requires an objective with NA > 0.7, but in practice this would entail stitching over hundreds of FOV, likely with unacceptable throughput.

At the other extreme, measuring the cone within a single FOV requires a low-mag objective with NA well below 0.7. Attempting such a measurement with conventional CSI might yield only sparse data along the cone, but also a valuable hint: data at slopes above the specular limit suggest detectable scattered light.

Using a 2.5X Michelson objective (NA = 0.075) in conjunction with 4X DNR (16X increase in baseline measurement time), near-complete data coverage is achieved. These data are well-suited for measuring cone angle and roundness.

Spherical features exhibit slopes approaching 90° and occur in a wide variety of applications, such as ball bearings and sealing surfaces. The challenge of measuring spherical features grows with increasing diameter: high slopes remain alongside requirements for increasing FOV and working distance.

FIGURE 3 shows a 3-mm-diameter fuel-injector sealing ball as measured in a single FOV with a 5.5X Michelson (NA = 0.15). Data coverage is near-complete for local slopes beyond 60°. Surface roughness S_a is about 0.1 μm as measured with this same objective.

Access to larger FOVs offers advantages even when stitching is still required. Improved throughput is an obvious benefit, but larger FOVs also enable faster targeting of functional surfaces and registration to datum surfaces. Using fewer FOVs also reduces form error that can arise from stitching multiple slivers of data from smaller-aperture height maps.

FIGURE 3. 3-mm-diameter sealing ball measured in a single FOV for local slopes up to 60°.
FIGURE 4. End-mill measured with 0.4 µm lateral sampling over 7.2-mm length and 145-µm scan range in about 9 minutes. Photograph of part is shown in lower left inset.

FIGURE 4 shows a diamond end-mill [7] that was subjected to wear experiments in three locations, producing local slopes exceeding 70°. On the face of it this might appear to call for stitching hundreds of high-NA measurements. However, full data coverage was achieved by stitching only ~20 FOVs using a 20X Mirau objective (NA = 0.4, specular limit ~23°), yielding 0.4-µm lateral sampling (0.9-µm optical resolution) and nm-scale vertical resolution over the entire tool length with a total measurement time of only 9 minutes.

Note that success in measuring slopes beyond the specular limit depends on multiple contributions, including the S_a of the sample and spatial-frequency-dependent variations of the surface roughness.

RECESSED HIGH SLOPES

Sometimes high-slope features are recessed, residing some distance below a neighboring feature. Common examples include cones inside bores and shoulders along the outside of a shaft. Recessed features can play functional roles, for example as mounting or sealing surfaces, with corresponding critical parameters such as radius, roundness and angle.

Optically measuring these critical parameters requires an objective with sufficient working distance to accommodate the depth of recession. This effectively limits options to lower-NA objectives, meaning measurements must make use of whatever scattered light there might be. With conventional CSI, measuring some extreme cases of recessed high slopes might previously have been impractical.

FIGURE 5 shows a photograph of an unfinished fuel injector with surface roughness $S_a \sim 1$ µm. The highlighted region indicates a shoulder where the fuel injector mounts against an engine block. The geometry of this shoulder is critical for proper sealing and can be characterized by the circumferential radius formed at the intersection of two steep-slope regions.

FIGURE 5 shows a photograph of an unfinished fuel injector with surface roughness $S_a \sim 1$ µm. The highlighted region indicates a shoulder where the fuel injector mounts against an engine block. The geometry of this shoulder is critical for proper sealing and can be characterized by the circumferential radius formed at the intersection of two steep-slope regions.
Near-complete data coverage is achieved in spite of local slopes up to 45°.

FIGURE 6. Measurement of shoulder region of fuel injector, highlighting radius critical for proper sealing with engine block.

FIGURE 7 shows an electrical feed-through assembly comprising an array of ~1-cm pins secured by glass cladding which is recessed by ~1 mm within a metal housing. In addition to the obstructing pins, challenges with measuring the glass profile include moderate local slope up to ~15° and comparatively weak scattering due to low roughness and refractive index.

Results obtained using a 5.5X Michelson (NA = 0.15) show near-complete data coverage of the glass cladding, with missing points corresponding primarily to the location of the encased pins. To efficiently accommodate the wide range of part reflectance (metal vs. tilted glass), a high dynamic range (HDR) mode was used combining scans at varying light levels [6].

FIGURE 7. Electrical feed-through assembly. Of primary interest is the glass cladding, recessed below the metal housing along with pins extending ~1 cm beyond the housing. Blue regions in the height map correspond to glass, with missing data indicating the location of pins.

NEAR-VERTICAL SLOPES

Maximum measurable slope is a function of objective NA along with the effective reflectivity of the surface being measured. The examples shown so far have predominantly showcased measurements using lower NA objectives. How high can measured slopes become at higher NA?

FIGURE 8 shows that for a hypodermic needle measured end-on in a single FOV using a 50X Mirau objective (NA = 0.55, specular limit ~33°), the answer is *arbitrarily close to vertical*. Data are obtained on all beveled surfaces with prevailing slopes of 74° and 82°, and also along the near-vertical outer tube surface where the slope exceeds 89°. Again, no interpolation is performed, nor is there any masking: the bore region is free of false data.
FIGURE 8. Hypodermic needle measured end-on in a single FOV. Upper left: photograph of setup. Right: obtained data over 1.8-mm scan range. Lower left: same data rotated to show measured slopes up to 89° and automatic identification of bore region.

CONCLUSION

With recent advances that improve sensitivity to weak interferometric signals, CSI can now measure recessed and high-slope features that previously may have been considered beyond the reach of the technology. In addition to improving baseline sensitivity, these advances include tools to further extend dynamic range such as DNR and HDR [6]. As seen in the examples, measured slopes as high as 89° have now been demonstrated.

More generally, the improvements enable wider latitude in objective selection, allowing operation over larger fields of view for increased throughput and at greater working distances for improved ease of use.

ACKNOWLEDGMENTS

The original work presented in this paper benefited from key contributions and input from Eric Felkel, Nate Gilfoy, Mackenzie Massey, and Dan Russano.

REFERENCES

[7] Thanks to Professor Chris Evans and Chris Tyler at the University of North Carolina at Charlotte (Mechanical Engineering and Engineering Science).
INTRODUCTION

The 3-D coordinate metrology of experimental hardware is a critical step in fielding High Energy Density (HED) physics experiments on the National Ignition Facility (NIF). Assemblies on the order of 100 mm size scales must be measured with uncertainties in the 10’s of micrometers to support the stringent laser alignment specifications. Custom artifact and software routines were created to interface with the native capabilities of an optical coordinate measuring machine (OCMM) with an integrated rotary stage. The goal was to qualify an integrated axis of rotation in 3-D such that a locally defined coordinate system could be tracked without the need for re-establishing datums after each rotary stage movement. The rotary axis was required to have less than 25 micrometers of volumetric positional error as a function of angular position and the machine setup should take less than 20 minutes to qualify.

QUALIFICATION ARTIFACT

An artifact consisting of multiple spherical touch probes was created (see Figure 1) representing a 100 mm long by 95 mm diameter cylindrical work volume over which the qualification was performed. The artifact was designed to evaluate radial error motion and axis tilt of the rotary stage. In addition, the probes act as a pseudo ball bar measurement for quickly assessing the performance of the machine over a volume representative of the parts to be measured independent of the rotary stage position within the work volume of the OCMM. This allows for the rapid reconfiguration of the OCMM based on the specific activity and/or measurement need. The contribution of sag due to gravity to the overall error budget was measured to be 10 micrometers at the furthest position. Mounting of the artifact is done via a kinematic 3-ball 3-groove in similar manner to that of the target within the target chamber.

ROTARY AXIS MAPPING

With a mathematical representation of the rotation axis in global machine coordinates and the information from the rotary stage encoders, a coordinate transformation as a function of rotary angle can be generated to track a local coordinate system defined on the rotating part. If an initial guess of the virtual axis deviates from the actual rotation center, then a single point appears to traverse a circular path when transformed into a local coordinate system, as shown in Figure 2. The size and position of the apparent path indicates the magnitude and direction of the error in the virtual axis. This information can be iteratively fed back to update the position of the axis.
Much of the hardware measured for HED experiments is too fragile to be evaluated using traditional contact probe methods, so a fully optical system was employed. Backlit edge detection was used for X and Y machine coordinates, and an integrated through-the-lens laser probe was used to define the Z coordinate. An automated software routine was created to track sphere center locations through 360 degrees of rotation, update the virtual axis, and characterize the error after each iteration. Figure 3 shows a successful calibration run in which the error introduced by the rotary was reduced from 200um to <10um in the course of 5 minutes.

FIGURE 2. A planar representation of the apparent path traversed by the center of a sphere when the virtual axis deviates from the actual axis of rotation.

ERROR ANALYSIS

The test article shown in Figure 4 represents the generic features of common experimental hardware. It was assembled to assess the errors in a typical work environment. Data was taken on multiple machines with various users and the hardware being mounted and dismounted from the rotation stage numerous times.

FIGURE 3. Sphere center measurements in a local “on-axis” coordinate system before (left) and after (right) iterative calibration steps.

FIGURE 4. Representative test article

All measured points shown in Figure 5 fell within a 12um spherical volume with one standard deviation of 7um.

FIGURE 5. Repeated measurements of a single point in 3-D performed on a test article

Prepared by LLNL under Contract DE-AC52-07NA27344.

REFERENCES

THE EFFECT OF STYLUS TIP DIMENSION AND FILTER BAND PASS ON SURFACE ROUGHNESS MEASUREMENT

Wolfgang Holzhauer and Ryan D. Evans
The Timken Company
Canton, OH USA

ABSTRACT
The effect of stylus tip dimension and short wavelength cutoff filter was investigated for measurement of surface roughness of typical rolling element bearing surfaces finished using grinding and honing manufacturing processes. An ISO Type-D random/repeating precision roughness specimen was also investigated and shown to have excellent sensitivity to stylus tip dimension, demonstrating its effectiveness as a tool for assessment of stylus radius and condition.

BACKGROUND
The surface roughness component of overall surface texture lies within a spatial wavelength band defined by both a long and a short wavelength cutoff filter [1]. The wavelength band can be specified by the designer and/or selected by the operator of the roughness measurement instrument. In addition, mechanical filtering due to the finite dimension of the stylus tip can introduce additional short wavelength filtering, altering the effective transmission band of the digital filter. The importance of mechanical filtering by the stylus is well known [2], but actual data sets showing the impact of the stylus tip dimension on real manufactured surfaces are often unavailable.

Additionally, stylus tip wear can result in changes in tip dimension. ISO Type-B precision test specimens [3] with a triangular waveform are available as a common means of testing for stylus wear. However, the authors have observed them to provide inconsistent results, often sensitive to only large amounts of wear, and less effective for detection of small differences in the nominal tip dimension of the stylus.

OBJECTIVE
ASME Standard B46.1-2009 [1] specifies that a stylus radius of 2 μm or less should be used for roughness measurements with 0.8mm cutoff and 300:1 band pass, and that under these conditions the filtering effects of the stylus will not intrude into the filter transmission band. However, many shop-worthy roughness instruments employed in manufacturing use a larger stylus radius and unspecified band pass filtering. The objectives of this work are to demonstrate the magnitude of the differences that can occur as a result of differences in stylus radius and filter band pass, and to evaluate the effectiveness of the ISO Type-D roughness specimen as a check for stylus radius and stylus condition.

RESULTS – BEARING SURFACES
Four bearing raceway and roller surfaces spanning a range of roughness levels were measured using a PGI Form Talysurf skid-less surface roughness instrument. In addition to the standard stylus with a nominal tip radius of 2 μm, custom styli with nominal 5 μm and 10 μm stylus tip radii were also used. The 2, 5 and 10 μm styli were otherwise identical in nominal dimensions and mass. The bearing components were measured at 12 locations distributed around the raceway surface. Measurements were made using a 0.8mm (0.030 inch) long wavelength cutoff (Gaussian M1 filter), and the same data sets were analyzed with a short wavelength cutoff of either 1/100th or 1/300th of the long wavelength cutoff; i.e., band pass settings of 100 and 300. Changing styli required re-measurement of the surfaces, with the 12 measurements in approximately the same positions based on visual location of reference marks on the surfaces.

The surface roughness parameters summarized in this paper are roughness average (Ra), average maximum height of profile (Rz) and skewness (Rsk). These parameters are commonly used for the specification of machined surfaces. Table 1 gives the mean values of the roughness results for the four bearing surfaces using the 2 μm stylus and 300:1 band pass. This baseline condition is typical of a laboratory-grade surface roughness instrument.
TABLE 1. Mean values of roughness results for surfaces tested.

<table>
<thead>
<tr>
<th>Component</th>
<th>Ra (µm)</th>
<th>Rz (µm)</th>
<th>Rsk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roller 1</td>
<td>0.053</td>
<td>0.560</td>
<td>-1.353</td>
</tr>
<tr>
<td>Roller 2</td>
<td>0.127</td>
<td>1.351</td>
<td>-1.423</td>
</tr>
<tr>
<td>Inner Ring</td>
<td>0.131</td>
<td>1.299</td>
<td>-1.131</td>
</tr>
<tr>
<td>Outer Ring</td>
<td>0.168</td>
<td>1.726</td>
<td>-1.520</td>
</tr>
</tbody>
</table>

Figure 1 and Table 2 show the results for Roller 1, the smoothest surface in Table 1 based on mean Ra.

Figure 1 shows the mean +/-1 standard deviation as well as the individual values. Table 2 shows the percent change in mean value of each roughness parameter in Figure 1, relative to the mean value obtained with the 2 µm stylus and 300:1 band pass.

Figures 2 through 4 and Tables 3 through 5 show corresponding results for the remaining surfaces. Note in Tables 2 through 5 that Rsk is generally a negative number, and a negative percent change indicates Rsk becoming more negative.

FIGURE 1. Roughness measurements as a function of nominal stylus tip radius and filter band pass. **Component: Roller 1.**

TABLE 2. Percent change in mean value of Ra, Rz and Rsk relative to 2 µm stylus and 300:1 band pass. **Component: Roller 1.**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Band Pass</th>
<th>Stylus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Ra</td>
<td>300</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-20.5</td>
</tr>
<tr>
<td>Rz</td>
<td>300</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-28.6</td>
</tr>
<tr>
<td>Rsk</td>
<td>300</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>8.9</td>
</tr>
</tbody>
</table>

FIGURE 2. Roughness measurements as a function of nominal stylus tip radius and filter band pass. **Component: Roller 2.**

TABLE 3. Percent change in mean value of Ra, Rz and Rsk relative to 2 µm stylus and 300:1 band pass. **Component: Roller 2.**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Band Pass</th>
<th>Stylus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Ra</td>
<td>300</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-19.9</td>
</tr>
<tr>
<td>Rz</td>
<td>300</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-24.3</td>
</tr>
<tr>
<td>Rsk</td>
<td>300</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>6.8</td>
</tr>
</tbody>
</table>
These results demonstrate the expected reduction in magnitude of the height-characterization parameters Ra and Rz. The magnitude of the reduction varies, depending on the surface. Rsk shows less consistent response, and becomes less negative for the 10 μm stylus, presumably because the stylus is not able to reach the bottom of some of the valleys on the surface.

For each stylus and band pass condition, the range of individual measurements gives a good indication of the variation that can be encountered with surface roughness measurements. For most surface roughness assessments, an average of several measurements is required to make meaningful comparisons.

TABLE 4. Percent change in mean value of Ra, Rz and Rsk relative to 2 μm stylus and 300:1 band pass. **Component: Inner Ring.**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Band Pass</th>
<th>Stylus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ra</td>
<td>300</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-18.7</td>
</tr>
<tr>
<td>Rz</td>
<td>300</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-24.8</td>
</tr>
<tr>
<td>Rsk</td>
<td>300</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>7.8</td>
</tr>
</tbody>
</table>

FIGURE 3. Roughness measurements as a function of nominal stylus tip radius and filter band pass. **Component: Inner Ring.**

TABLE 5. Percent change in mean value of Ra, Rz and Rsk relative to 2 μm stylus and 300:1 band pass. **Component: Outer Ring.**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Band Pass</th>
<th>Stylus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ra</td>
<td>300</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-15.1</td>
</tr>
<tr>
<td>Rz</td>
<td>300</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-20.3</td>
</tr>
<tr>
<td>Rsk</td>
<td>300</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>3.8</td>
</tr>
</tbody>
</table>

FIGURE 4. Roughness measurements as a function of nominal stylus tip radius and filter band pass. **Component: Outer Ring.**

STYLUS CHARACTERIZATION

Figure 5 shows SEM images of the three styli. Backscatter mode was used with very low EV to avoid charging or heat damage. For each image, two circles of radii that bound the tip profile have
been added. The actual stylus tip radius is estimated as the average of these two radii. Using this method, the nominal 2 μm stylus has an estimated actual radius of 2 μm. The nominal 5 μm stylus measured 3.6 μm and the nominal 10 μm stylus measured 8 μm. All three styli appear to have excellent spherical form. The actual tip radii for all three styli are within the allowable limit of +/-30% deviation from nominal [1].

Using this method, the nominal 2 μm stylus has an estimated actual radius of 2 μm. The nominal 5 μm stylus measured 3.6 μm and the nominal 10 μm stylus measured 8 μm. All three styli appear to have excellent spherical form. The actual tip radii for all three styli are within the allowable limit of +/-30% deviation from nominal [1].

Figure 5. SEM photomicrographs of three stylus tips.

RESULTS – ISO TYPE-D ROUGHNESS SPECIMEN

Most precision specimens used to calibrate or assess the performance of roughness measuring equipment have a simple waveform such as a sinusoid, square-wave or triangular waveform (ISO Type A, B, C [3]). These are useful for setting or verifying instrument gain. ISO Type-D [3] specimens are unique in that they have a pseudo-random waveform that simulates a real, manufactured surface, and this waveform repeats with a specified period matches the long wavelength cutoff at which they are to be measured [3,4]. Thus, if a roughness assessment is made over an integer number of cutoffs, the same waveform, with only a shift in phase, will be measured at any location on the surface – resulting in a very consistent measurement result anywhere on the specimen.

Figure 6 shows the measurement results on an ISO Type-D specimen (Rubert Item #503E, Serial #P197) with a calibrated Ra of 0.0876 μm (uncertainty = 0.0079 μm at K=2). The specimen was measured at nine locations using a 0.25 mm (0.010 inch) long wavelength cutoff and a band pass of 100. Table 6 shows the change in mean value of each roughness parameter relative to the mean of the measurements made using the 2 μm stylus.

FIGURE 6. Measurements of Ra (μm), Rz (μm) and Rsk as a function of nominal stylus tip radius on an ISO Type-D random roughness specimen (bars show mean +/-1 standard deviation).

These results indicate excellent sensitivity of Ra to stylus radius, with tight grouping of the individual nine measurements, and excellent
Separation of the mean and +/-1 x standard deviation for each nominal stylus radius.

TABLE 6. Percent change in Ra, Rz and Rsk relative to 2 μm stylus on ISO Type-D roughness specimen.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Band Pass</th>
<th>Stylus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Ra</td>
<td>100</td>
<td>-13.8</td>
</tr>
<tr>
<td>Rz</td>
<td>100</td>
<td>-13.0</td>
</tr>
<tr>
<td>Rsk</td>
<td>100</td>
<td>-4.6</td>
</tr>
</tbody>
</table>

Applying a linear regression to the data in Table 6 results in an equation that can be used to estimate the actual stylus radius based on measured Ra:

\[\text{Stylus Radius} = 22.7 - (235 \times \text{Ra}) \]

\[R^2 = 0.94 \]

DISCUSSION AND CONCLUSIONS

The dependency of surface roughness measurement results on stylus and band pass is expected and documented in the literature [5]. The data presented here, using three different styli on a single instrument in a well-controlled laboratory environment, demonstrate that these effects can be significant. Reference measurements are often performed using a laboratory instrument with a 2 μm stylus. Such an instrument may default to using a 300:1 band pass. However, the components may be measured by a customer or supplier, or on a manufacturing line, using portable roughness measuring equipment with a 5 μm or 10 μm stylus and a default band pass of 100:1. Based on Tables 2 through 5, this can result in differences in roughness measurements of 20% or more. Since the 5 μm and 10 μm styli used in this study had actual tip radii that measured somewhat smaller than nominal, the actual differences observed could be greater for styli with radii that are closer to or larger than nominal, or styli that are worn.

It is also common practice to assume that the band pass filter selection will mitigate the effect of any further mechanical filtering from the stylus. This should result in little difference in roughness results for the 2 μm and 5 μm styli if a 100:1 band pass is selected. However, the data presented here show a significant difference in Ra results for all three styli, even for the 100:1 band pass. Thus, the digital band pass filter alone cannot be relied upon to provide consistent filtering of the short wavelength content of the signal.

The ISO Type-D roughness specimen, while primarily intended as an overall system performance check, is shown to be an excellent tool for quickly assessing stylus tip radius. The ISO Type-D roughness specimen can also be assumed to have excellent sensitivity to stylus tip wear.

However, it should be noted that all measurements in this study were made using a skid-less instrument. Care should be taken if a skid-type instrument is used, as the higher skid forces could cause wear or damage to the specimen.

REFERENCES

PROPOSAL FOR AN INTERFEROMETER TO SIMULTANEOUSLY ACQUIRE INTERFEROGRAMS WITH DIFFERENT CARRIER FREQUENCIES FOR THE TWO-STEP FOURIER TRANSFORM METHOD

Kazuhide Kamiya¹, Ami Tambo¹, Kimihisa Matsumoto¹, Hatsuzo Tashiro², Shinya Suzuki³, and Takashi Nomura¹
¹Department of Intelligent Systems Design Engineering
Toyama Prefectural University
Imizu, Toyama, Japan
² Department of Mechanical and Intellectual Systems Engineering
Toyama University
Toyama, Toyama, Japan
³ Department of Electronics and Control Engineering
Nagano National College of Technology
Nagano, Nagano, Japan

1. INTRODUCTION
The phase shifting method is a method of analysis in order to extract a phase from a fringe pattern [1]. As the phase shifting method usually uses three or more images for the analysis, it is not suitable for measuring a high-speed deformation or for measuring under conditions of air turbulence or vibration. Therefore, using polarization optics, a single shot phase analysis method is proposed [2].

The Fourier transform method is also a method of analysis to extract a phase from a fringe pattern [3]. The phase analysis is possible using a single image. However, when noise and shape components overlap each other in the Fourier domain, it is difficult to eliminate only the overlapped noise components using conventional filtering techniques, such as bandpass filtering.

To solve this problem of the filter range, the two-step Fourier transform method is proposed by using two interferograms with slightly different carrier frequencies [4]. In the proposed method, the Fourier transform of the two interferograms with slightly different carrier frequencies is calculated, respectively. Both Fourier spectra that are obtained by the Fourier transform of the interferograms contain the same noise components. Though the Fourier spectra contain the same shape components, the location of the spectra of the shape components is slightly different. Therefore, by calculating the subtraction of both Fourier spectra, the components are automatically removed. In previous reports, the proposed method has been applied to the grating projection method using gratings with different colors according to the carrier frequency and the validity of the proposed method was investigated [5].

In this paper, an optical system that multiplexes the Mach-Zehnder interferometer is proposed to obtain two different interferograms at the same time for application in ultra-precision measurement. As an example of a specular object, the surface of a flat mirror is measured using the proposed interferometer. The fringe patterns with slightly different carrier frequencies were obtained and analyzed by the two-step Fourier transform method. The validity of the proposed filtering method is confirmed by experiments.

2. TWO STEP FOURIER TRANSFORM METHOD
Intensity distribution models of interferograms with slightly different carrier frequencies \(f_0 \) and \(f_1 \) are written as follows.

\[
g_0(x) = a(x) + b(x) \cos[2\pi f_0 x + \varphi(x)] (1)
\]

\[
g_1(x) = a(x) + b(x) \cos[2\pi f_1 x + \varphi(x)] (2)
\]

where \(x \) is the coordinate of the measurement point and \(\varphi(x) \) represents information on the surface under test and \(a(x) \) is an average.
intensity and $b(x)$ is an intensity modulation. Fourier transforms of $g_0(x)$ and $g_1(x)$ produce

\begin{align}
g_0(f) &= A(x) + C(f - f_0) + C^*(f + f_0) \\
g_1(f) &= A(x) + C(f - f_1) + C^*(f + f_1)
\end{align}

(3)
(4)

where the capital letters denote the Fourier spectra. Subtracting Eq. (4) from Eq. (3) gives the following equation.

\begin{align}g_0(f) - g_1(f) = C(f - f_0) - C(f - f_1) + C^*(f + f_0) - C^*(f + f_1)
\end{align}

(5)

Note that unnecessary components $a(x)$ have been filtered out in this calculation without the process being based on experience. When $f_0 - f_1$ is small, Eq. (5) can be rewritten as

\begin{align}\frac{d}{df} g(f) = \frac{d}{df} c(f - f_0) + \frac{d}{df} c^*(f + f_0)
\end{align}

(6)

Integrating Eq. (6) with respect to f gives the following equation.

\begin{align}g(f) = c(f - f_0) + c^*(f - f_0)
\end{align}

(7)

To eliminate $c(f - f_0)$ or $c^*(f - f_0)$ is easy because $c(f - f_0)$ and $c^*(f - f_0)$ are completely separated. An inverse Fourier transform of $g(f)$ produces

\begin{align}c(x) = (1/2)b(x) \exp[i \phi(x)]
\end{align}

(8)

The desired information $\phi(x)$ can be determined from an arctangent as follows.

\begin{align}\phi(x) = \tan^{-1}\left[\frac{\text{Im}[c(x)]}{\text{Re}[c(x)]}\right]
\end{align}

(9)

where $\text{Re}[c(x)]$ and $\text{Im}[c(x)]$ are a real part and an imaginary part of $c(x)$, respectively.

3. PROPOSED INTERFEROMETER

Figure 1 shows a schematic diagram of the proposed interferometer. In this configuration, the shape of Mirror 1 is measured.

The interferometer is composed of two Mach-Zehnder interferometers to obtain two interferograms with slightly different carrier frequencies simultaneously.

The first interferometer (A) consists of PBS1, $\lambda/2$ plate2, BS1, BS2, PBS2 and a polarizer. In the first interferometer, the path of the measurement light is PBS1 - $\lambda/2$ plate2 - BS1 - M1 - BS1 - PBS2 - polarizer, and of the reference light is PBS1 - BS2 - PBS2 - Polarizer.

![FIGURE 1. Proposed Interferometer.](image-url)
The second interferometer (B) consists of PBS1, \(\lambda/2\) plate2, PBS2, BS1, PBS2, \(\lambda/2\) plate, M2, PBS3 and a polarizer. In the second interferometer, the path of the measurement light PBS1 - \(\lambda/2\) plate2 - BS1 - M1 - BS1 - PBS2 - \(\lambda/2\) plate2 - PBS3 - polarizer, and of the reference light is PBS1 - BS2 - M2 - PBS3 - Polarizer.

In the interferometer, polarization techniques are used to prevent crosstalk between interference signals. If polarized components are not used, the path of unnecessary signals is PBS1 - BS2 - PBS2 - \(\lambda/2\) plate - PBS3 - Polarizer. The signal generates a noise when mixed into the second interferometer.

A principle of crosstalk prevention processing is as follows. The polarization plane of the laser is rotated appropriately at the \(\lambda/2\) plates. Then the polarized beam splitter (P.B.S.) filters the required light. The polarizer between the P.B.S. and the screen is inserted in order to interfere with the measurement light and reference light that are orthogonal to each other.

Two interferograms are projected so as to be adjacent to each other in the same screen. Therefore, it is possible to acquire two interferograms using a single camera [6].

The carrier frequency of the interferograms is adjusted at an angle of B.S. 2 and M2, respectively, at the same time.

FIGURE 2. Experimental apparatus.

(a) Interference fringe A with carrier frequency \(f_0\).

(b) Interferencefringe B with carrier frequency \(f_1\).

FIGURE 3. Interference fringes with slightly different carrier frequencies obtained by the proposed interferometer.
4. EXPERIMENTS AND RESULTS
The validity of the proposed interferometer is confirmed by experiments. Figure 2 shows a photograph of the proposed interferometer in the experiment.

The light source is a He-Ne laser with a wavelength λ of 633 nm and the power of 10 mW. The collimator lens consists of an achromatic lens (Focal length: $f=220$ mm) and an objective lens (Magnification: 40x, N.A.: 0.65). The surface under test is a plane mirror with a diameter of 50 mm. The screens, for simplicity, are prepared by placing two ground plates on the same plane. The measurement area of the mirror under test was 17 mm x 17 mm that was limited by the aperture size of the $\lambda/2$ plate. The interferograms were acquired using a digital single-lens reflex camera with a shutter speed of 1/640 sec and f/4.2. The resolution of the camera is 1,024 x 685 pixels. The acquired interferograms are in 12-bit color, but only red plane data is used for the analysis.

The interferograms obtained by the proposed interferometer are shown in Figure 3. By adjusting to the angle of B.S.2 and M2, the difference of carrier frequency from f_0 and f_1 of the interferograms is set to less than 1 (line/frame). Two interferograms with slightly different carrier frequencies were obtained in one shot.

Figure 4 shows the analysis results using the two step Fourier transform method and conventional Fourier transform method. The solid line and the broken line show the proposed method and conventional method, respectively. Both results show that the shape error of the surface under test is about 0.5 (rad) and the results agreed well with each other.

4. CONCLUSIONS
In this paper, an interferometer that simultaneously acquires interferograms with different carrier frequencies is proposed for the two-step Fourier transform method and the validity of the proposed method was confirmed by experiments.

REFERENCES
Real-time straightness motion error measurement and compensation system for the 8G high-resolution flat-panel manufacturing machine

Jung-Jae Kim¹, Sang-Hyun Park¹, Tae-Kyu Son¹ and Sang-Don Jang¹
¹Manufacturing Technology Center, Samsung Electronics, Hwasung-si, Gyeongki-do, Republic of Korea

INTRODUCTION
To enable large-size high-resolution flat panel displays, manufacturing equipment need sub-micron repeatability over wide working area. The straightness motion error of scan stage is the main error source which degrades pattern quality. It is impossible to assemble the scan stage with sub-micron motion error when the travel range exceeds several meters to cover large glass size. Therefore we have to measure and compensate the stage motion errors to guarantee sub-micron repeatability.

Traditionally reversal method and laser calibrator have been used to measure stage motion error, but these cannot be applied to long travel stage due to limited accuracy and repeatability [1][2]. In addition, off-line mechanism limits real-time measurement during on-line process. The real-time motion error measurement method using position sensitive diode was proposed [3]. They measured straightness using collimated laser beam, multiple retro-reflectors and a PSD. But PSDs have inherently drift problem so long-term repeatability cannot be guaranteed. Error separation methods were proposed to separate the straightness error from surface profile of reference block [4]. The profile of straightness motion error can be determined under on-line machine conditions. However capacitive probes and target block used for measurement setup limits measuring area and the autocollimator to measure yaw error has inherently drift issue so long-term repeatability cannot be guaranteed.

We developed a new real-time stage motion error measurement and compensation system for high-precision large flat-panel manufacturing machines. The key idea is to directly measure the relative distance between chuck and metrology frame. We used the newly developed 2-dimensional grating scale called 1Dplus linear scale, which made it possible to measure and compensate straightness motion error in a nanometer level during on-line process. The linear scale system is more advantageous to conventional laser interferometer monitoring system in terms of its robustness to environmental change at high speed motion. This embodiment resulted in improving overlay accuracy and pattern quality. We successfully implemented this straightness measurement and compensation system into the 8G high-resolution flat-panel manufacturing machine and verified its effectiveness by testing and making 8G flat-panels.

STRAIGHTNESS MEASUREMENT SYSTEM
The most important principle for accurately measuring stage motion error is to measure the relative distance between glass and optic heads. To do this, we directly measure the distance between chuck and metrology frame using the 1Dplus linear scale. The 1Dplus linear scale is newly developed narrow and long shape 2-dimensional grating scale from Heidenhain [5]. It has gratings in both x and y directions. The long grating for y-direction is the same with conventional linear scale measuring long y-directional scan motion. The short grating for x-direction measures straightness error, perpendicular to the scan direction. It is made from Zerodur so that high thermal stability is assured.

The proposed straightness error measurement system was implemented into the 8G high-resolution flat-panel manufacturing machine which requires nanometer accuracy over long scan stroke over 2.5 m. The scan stage is driven by linear motors and air bearing guides. The position along x, y and yaw axes are controlled using three differential type laser interferometers. By applying differential type measurement, position of the scan stage is accurately controlled with relative to the metrology frame. The resolution of the laser interferometers is 5nm. The positioning stability is 60 nm in x, y and yaw axes. The straightness error measurement system consists of the two 1Dplus linear scales attached
on the sides of the chuck and four encoder head assemblies attached below four corner-sides of the metrology frame. Figure 1 shows the straightness measurement system in detail. Since the scale is located near the glass and the height of scale is the same with glass substrate, position of the glass can be accurately measured without Abbe error caused by the offset between measurement and processing point. An encoder head assembly attached below the metrology frame consists of six encoder heads. The left three encoder heads are for the first scan and the right three heads are for the second scan measurements. During each scan motion, one encoder head measures y-directional displacement and the other two heads measure x-directional straightness error. The reason for two x-direction measurement is to separate the straightness error from the shape of the 1Dplus linear scale by applying two probe method. Also we can calculate the yaw error using the two y-encoder heads located at opposite sides of metrology frame. The length of the 1Dplus scale is 2600mm and the resolution is 10nm with interpolation. The distance between the two x-encoder heads was set to 17 mm. Measurement area can be increased by using both the front and rear side’s encoder head assemblies. The proposed measurement system has advantages compared with laser interferometer. The distance between the scale and encoder heads is just 1 mm so that the signal is negligibly affected by environment change such as air turbulence and temperature variation even during high speed scan motion. This improves measurement accuracy.

The raw measurement data of the two x-encoder heads includes the straightness motion error of the scan stage and the shape of the 1D plus linear scale deformed during installation. We used the two-probe measurement method to separate the straightness error from the shape of the 1D plus linear scale. Figure 3 shows the principle of the two probe measurement method schematically. Two encoder heads are installed to a metrology frame and a 1Dplus linear scale is attached to the scan stage. The raw measurement data of the two x-encoder heads can be expressed as follows:

\[X_1(y_n) = S(y_n) + T(y_n). \]
\[X_2(y_n) = S(y_n) + T(y_n + d) + \Theta(y_n) * d. \]

Here, \(S(y_n) \) is the straightness error, \(T(y_n) \) is the shape of the 1Dplus linear scale, and \(\Theta(y_n) \) is yaw error of the scan stage. The increment of shape profile, \(\Delta T(y_n) \) is calculated by eliminating \(S(y_n) \),

\[\Delta T(y_n) = T(y_n + d) - T(y_n) = X_2(y_n) - X_1(y_n) - \Theta(y_n) * d. \]

Assuming the shape profile of the 1Dplus linear scale monotonously changes within the distance between the two encoder heads, an approximate derivative \(\Delta T'(y_n) \) can be defined as follows:

\[\Delta T'(y_n) = \Delta T(y_n)/d. \]

The shape profile of the 1Dplus linear scale, \(T(y_n) \) can be determined by the 1st approximation

\[T(y_{n+1}) = T(y_n) + \Delta T'(y_n) * (y_{n+1} - y_n). \]

By numerical integration, \(T(y_n) \) is calculated by

\[T(y_n) = \Sigma (X_2(y_n) - X_1(y_n) - \Theta(y_n) * d)/(y_{n+1} - y_n). \]

Since all variables are measured and known value, \(T(y_n) \) is calculated directly. Consequently, the straightness error of the scan stage is calculated by

\[S(y_n) = X_1(y_n) - T(y_n). \]

Since the encoder signals are always measured during each scan motion, the straightness error is calculated during on-line operating condition.
The straightness motion error is automatically compensated by adjusting motion command in x-direction.

![Figure 2: Schematics of the two-probe straightness measurement method.](image)

MEASUREMENT RESULT

The accuracy of the 1Dplus linear scale was once calibrated in x and y directions using the laser interferometer measurements. Figure 3 shows the straightness error calculated by applying the two-probe algorithm. The sampling period was set to 1 mm. The two x-encoder signals were measured during 1st scan motion. The straightness error was 22 um with curved shape over 2500 mm travel. The straightness error is mainly caused from the curved surface of the bar mirror used for the x-axis laser interferometer feedback. Although the 1Dplus scale was deformed by 200 um during installation, the straightness error was measured independently of the deformed shape. The straightness error was compensated by adjusting the x-directional motion command based on the measured straightness error. The straightness error was dramatically reduced to 0.2 um after compensation. The long-term repeatability of the straightness profiles was measured during on-line exposure condition. During 24 hours 120 measurements were performed and the result is shown in Figure 4. The peak value was less than 0.15 um and the mean value of the 3 sigma was 0.1 um.

CONCLUSION

We developed a new stage motion error measurement and compensation system which enables real-time measurement during on-line operating condition. We implemented the compensation system into the 8G high-resolution flat-panel manufacturing machine. The straightness error was measured using the 1Dplus linear scales. The direct measurement of the relative distance between the chuck and the metrology frame enables nanometer precision even at high scan speed over long travel. The two-probe measurement algorithm was applied to separate the straightness error from the shape of the 1Dplus linear scale. The straightness error was compensated by adjusting the x-directional motion command. The straightness error was dramatically reduced from 22 um to 0.2 um after compensation. We verified the effectiveness of the stage motion error measurement system by compensating the motion error and making 8G flat-panels.

![Figure 3: Measured straightness error. The straightness error was calculated using two-probe algorithm. The error was dramatically reduced from 22 um to 0.2 um after compensation](image)

![Figure 4: The long-term repeatability of the straightness error. During 24 hours 120 measurements were performed and the variation was maintained within ±0.1 um](image)

REFERENCES

separation and absolute testing. CIRP Annals. 1996;45:617-634

PRESSURE-VESSEL EFFECTS IN AN AIR BEARING SPINDLE

Mel Liebers, Dave Arneson, Byron Knapp, Dan Oss
1Professional Instruments Company
Hopkins, Minnesota, USA

INTRODUCTION

A design goal for this spindle was volumetric efficiency, meaning maximum bearing area in a given size which brings up the question of how thick to make the thrust plates and how much they should be allowed to flex. We chose plates 25mm thick with 25 mm overhang and this results in about one micrometer of flare effect at 10 bar. In addition, the shaft elongates about the same amount under 550 kg piston-preload force. This “pressure-vessel effect” has important consequences including the need to adjust thrust surface concavity to compensate for convex bending of the inner surface and also to allow for shaft lengthening.

DESCRIPTION

In Blockhead spindle structures, axial preload is established by equal piston pressure on the thrust plates [1]. For maximum stiffness, the air films are made to be as thin as possible and under the maximum pressure that is practical.

Under pressure, the rotor shaft gets longer and the thrust plates flare outward. Even though the rotor is robustly proportioned, the displacement is significant.

In this report, we compare theory with measurement results of this interesting effect.
FIGURE 3. The rotor is robustly proportioned with a 1:1 ratio of thrust plate thickness vs. overhang. At 10 bar the 550 kg piston force will bend the plates and stretch the shaft.

FIGURE 4. Pressure profile of a typical step bearing. Air enters the bearings at full pressure, decreases linearly from the restriction due to the narrow gap in the recess, then drops quickly to atmospheric pressure across the step at the periphery of the thrust plate.

The stiff air films result in a high natural frequency, which is especially valuable when taking interrupted cuts as when flycutting.

FIGURE 5. This is the result of stiff air and a stiff structure; the first natural frequency is over 2,000 Hz.

The job of the air films is to push back hard and fast when the load changes, whether due to cutting force or drive influence. To do this requires thin, hard air backed up by an intrinsically stiff spindle rotor.

FIGURE 6. This finite element analysis shows the distortion of the rotor at 10 bar.

Finite Element Analysis is used to predict theoretical stretch and flare. Using a simplified model of the rotor cut at the shaft centerline, the force profile per Figure 4 was applied to the thrust plate bearing surface. The shaft surface at the centerline is constrained. A series of 16 concentric areas under constant pressure are used to approximate the rotationally symmetric pressure profile.
The calculated displacement at the rim is 1.74 micrometers for one half of a rotor, so the overall displacement is expected to be about 3.5 micrometers, which agrees with the measurement result shown in Figure 7.

Note that elongation of the shaft contributes about one third of the overall expansion. Adding a fixture plate can reduce the flare but it will not reduce the shaft stretch.
FIGURE 11. A sequence of flaring as seen with the Tropel Flatmaster. The rate of flaring is linear to 8 bar but then decreases a bit as is also seen in Figure 7.

CONCLUSION

We show here that the bearing air films are forceful enough to bend robustly proportioned solid steel spindle structures.

REFERENCES

Uncertainty Sources in Multi-Probe Error Separation

Eric Marsh\(^1\), Byron Knapp\(^2\), David Arneson\(^2\)

\(^1\)Pennsylvania State University
University Park, PA, United States
\(^2\)Professional Instruments Co
Minneapolis, MN, United States

ABSTRACT

This paper reviews an interesting characteristic of the multi-probe error separation technique for removing the contribution of target form error in spindle measurements. Briefly, the calculations require the repeated inversion of a matrix whose frequency-dependent contents may become ill-conditioned at predictable harmonics. As has been shown previously, it is very important to choose the sensor angles wisely, because poor choices lead to disastrous results, even at relatively low harmonics (i.e., undulations per revolution).

INTRODUCTION

This review is motivated by the need to characterize the radial and tilt error motion of precision air bearing spindles with nanometer-level accuracy. This task is complicated by the requirement that the necessary measurements are usually made using a lapped spherical artifact whose out-of-roundness is too large to be ignored; a research-grade lapped spherical artifact will have an out-of-roundness at its equator of between 5 and 25 nm. State of the art air bearing spindles now have error motion of better than 12 nm which necessitates the use of an error separation method to extract the artifact form errors from the raw measurements.

A variety of methods have been proposed to remove the contribution of an imperfect artifact from a spindle measurement. The definitive survey of reversal and other error separation methods is by Evans, Hocken, and Estler [1], which provides a comprehensive overview of the three general classes of methods for dealing with spindle and roundness metrology.

Of the three classes, multi-probe methods use simultaneous measurements from three or more displacement sensors to separate spindle error from artifact out-of-roundness. Neither sensors nor artifact are indexed, but all must be precisely arranged to measure the same artifact track at the correct angles. Furthermore, the sensitivity (i.e., calibration) of the sensors must be well known.

![Figure 1. The multiprobe method with simultaneous measurement of mA, mB, and mC. Angles φ and ψ are chosen to minimize sensitivity to various imperfections in test hardware, sensors, and alignment.](image)
Ideally, an accurate separation correctly assigns the appropriate contribution of the recorded data to the spindle or artifact in the correct proportion. This can be achieved if the geometrical assumptions built into the algorithms are met; the displacement sensor(s) must be precisely arranged, measurement data must be reliably triggered in equal angular increments, the test hardware must be rigid and thermally stable, and the various other challenges of working at the nanometer-level must be addressed.

Accurate implementation requires tight tolerances on the geometry of the sensor fixtures, artifact and/or sensor indexing hardware, and the test stand to achieve nanometer repeatability when working with the highest quality artifacts and spindles [2-4]. However, once sufficient hardware is available, the measurements may proceed without any particular requirement on the artifacts; none of the three separation classes rely upon a calibrated artifact. Instead, all are designed around sufficient measurements to determine the spindle error and artifact form error without prior knowledge of either component. This allows the metrologist to obtain reliable information without comparison to independently-calibrated and certified master artifacts. Many researchers have published high quality reversal results [5-10].

Multi-probe methods, while conceptually and mathematically more involved than reversal, do offer an important advantage: once an adequate probe holding fixture is made, it becomes very quick and easy to make measurements.

DISCUSSION
The multi-probe method estimates a single component of spindle error motion from three measurements. Each of the three measurements may be thought of as supplying an equation of known value at each angular measurement location. The three corresponding, angle-dependent, unknowns are the spindle error motion in a radial direction, the spindle error motion in the orthogonal direction, and the form error of the artifact. Note that given two orthogonal components of radial error motion, the error motion at any other angular orientation may be computed.

![Figure 2](image-url)

FIGURE 2. Demonstration of multiprobe method using sample data.

The mathematics of multi-probe separation require the definition of two constants, a and b that are calculated from the chosen displacement sensor locations ϕ and ψ:

$$a = \frac{\sin \psi}{\sin(\phi - \psi)} \quad b = \frac{-\sin \phi}{\sin(\phi - \psi)}$$

Given a and b, two additional parameters may be calculated. These parameters change with each increase in the harmonic number k. Note that k is always an integer value greater than 1.

$$\alpha_k \equiv 1 + a \cos k\phi + b \cos k\psi$$

and

$$\beta_k = a \sin k\phi + b \sin k\psi$$

Finally, the two-by-two matrix that must be inverted for each new integer value for k:
\[
\begin{bmatrix}
\alpha_k & -\beta_k \\
\beta_k & \alpha_k
\end{bmatrix}
\]

Calculation of the harmonic coefficients (and therefore the accuracy of the overall error separation) will suffer in accuracy whenever the determinant of this matrix is near zero. Regardless of the multiprobe sensor locations, this matrix will inevitably become ill-conditioned at various values of \(k \). In practice, given the limited knowledge that can be had for the true values of \(\phi \) and \(\psi \), there are an infinite number of reasonable choices for the angles. There are also an infinite number of very poor choices, like the well-known case of \(\phi = 120 \) and \(\psi = 240 \).

The figure of merit used here to quantify the conditioning of the matrix is the ratio of its two eigenvalues. Figure 3 shows the figure of merit plotted over a range of possible values of \(\phi \) and \(\psi \). In this particular figure, the highest (least favorable) conditioning number is taken from the first 15 harmonic terms in the error separation. Figures 4-5 show the figure of merit when 50 and 250 terms are included. In the example shown here, the figure of merit is computed at locations aligned with a 720 count rotary encoder. As more harmonics are included in the multiprobe calculation, a correspondingly larger area of the design space becomes unusable, as reflected by the growing amount of darker shaded areas in Figures 4 and 5 compared to Figure 3.

FIGURE 3. Multiprobe error separation figure of merit suggesting good choices of sensor location when the first \(k = 15 \) harmonic terms are considered. Dark areas have poor numerical conditioning and would lead to inaccuracies in the results.

FIGURE 4. Figure of merit when \(k = 50 \).

FIGURE 5. Figure of merit when \(k = 250 \).

CONCLUSIONS

The performance and limitations of the multiprobe error separation method have been exhaustively documented in the literature. This
A brief note seeks to demonstrate that the choice of sensor locations becomes more restricted as higher harmonics \(k \) are needed. It is worth noting that even if perfect angles existed, that it would be unlikely that the physical hardware would be sufficiently perfect to provide the promised results. Beyond some level of uncertainty, other considerations overshadow the contribution of the choice of \(\varphi \) and \(\psi \).

REFERENCES

LASER SCANNER TWO-FACE ERRORS ON SPHERICAL TARGETS

National Institute of Standards and Technology, Gaithersburg, MD 20899

INTRODUCTION
Geometric misalignments within the construction of a laser scanner such as offsets, tilts, and eccentricities [1], result in systematic errors in the measured point coordinates (range and angles). Many of these sources of error are sensitive to two-face testing. That is, when a target is measured in the front face and again in the back face, the coordinates obtained are not identical whereas they should be so for a perfect scanner with no geometric misalignments. The differences between the front and back face coordinates along the three principal directions (ranging, horizontal angle, and vertical angle directions) are referred to as two-face errors in this paper.

Two-face tests can therefore be employed in the performance evaluation of laser scanners, just as they are used to assess laser tracker performance [2]. The advantage of using two-face tests is that they are quick and easy to perform and require no calibrated artifact. The only requirement is that the target remains stationary between the front face and back face measurement. It should be noted though that two-face tests are not sensitive to all sources of geometric misalignment. Therefore, other tests, such as volumetric length tests, are required to expose the different sources of error within an instrument.

In this paper, we describe two-face tests performed on spherical targets using three different laser scanners. The primary objective here is to assess the repeatability in the detection of the sphere center and then determine whether systematic error sources within these instruments are discernible from two-face testing. Additionally, a geometric error model for a laser scanner is used to explain possible causes for any observed systematic two-face error.

APPARATUS AND SETUP
Three different laser scanners are considered in this study. They are labeled A, B, and C. All measurements are performed at a point density of 56 points per degree and 56 lines per degree. The targets used are commercially available 100 mm diameter laser scanner target spheres made of Aluminum and painted non-glare white. Eight spheres are mounted on a vertical rail as shown in Fig. 1. While the variation in form and diameter from sphere to sphere does not influence two-face results, these features were measured for three of the eight spheres on a Coordinate Measuring Machine (CMM). The results are shown in Table 1.

TABLE 1. Diameter and radial out-of-roundness (oor) for three target spheres

<table>
<thead>
<tr>
<th>Sphere #</th>
<th>Diameter (mm)</th>
<th>Oor (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.105</td>
<td>0.254</td>
</tr>
<tr>
<td>2</td>
<td>99.977</td>
<td>0.219</td>
</tr>
<tr>
<td>3</td>
<td>101.104</td>
<td>0.256</td>
</tr>
</tbody>
</table>

FIGURE 1. Eight laser scanner target spheres are mounted on a vertical rail. The scanner is placed in front of the rail. The picture also shows eight contrast targets on the rail next to the spheres. The contrast targets were used in a previous study [1].
TABLE 2. One standard deviation repeatability along the horizontal angle direction, vertical angle direction, ranging direction, and sphere radius for the three scanners A, B, and C. The repeatability is scaled by the nominal range for the angular axes so they are in units of micrometers.

<table>
<thead>
<tr>
<th>Target</th>
<th>2 m</th>
<th>4 m</th>
<th>2 m</th>
<th>4 m</th>
</tr>
</thead>
<tbody>
<tr>
<td># ABC</td>
<td>A B C</td>
<td>A B C</td>
<td>A B C</td>
<td>A B C</td>
</tr>
<tr>
<td>1</td>
<td>15 26 35</td>
<td>8 35 46</td>
<td>1</td>
<td>24 32 18</td>
</tr>
<tr>
<td>2</td>
<td>10 21 32</td>
<td>7 26 34</td>
<td>2</td>
<td>23 27 30</td>
</tr>
<tr>
<td>3</td>
<td>4 19 21</td>
<td>7 28 60</td>
<td>3</td>
<td>25 24 21</td>
</tr>
<tr>
<td>4</td>
<td>2 22 18</td>
<td>6 27 48</td>
<td>4</td>
<td>23 27 26</td>
</tr>
<tr>
<td>5</td>
<td>4 27 17</td>
<td>6 32 42</td>
<td>5</td>
<td>24 25 17</td>
</tr>
<tr>
<td>6</td>
<td>9 26 19</td>
<td>8 24 39</td>
<td>6</td>
<td>22 24 26</td>
</tr>
<tr>
<td>7</td>
<td>12 34 22</td>
<td>9 24 34</td>
<td>7</td>
<td>26 26 13</td>
</tr>
<tr>
<td>8</td>
<td>19 27 33</td>
<td>12 34 52</td>
<td>8</td>
<td>27 28 21</td>
</tr>
</tbody>
</table>

One standard deviation repeatability (µm) along ranging direction

<table>
<thead>
<tr>
<th>Target</th>
<th>2 m</th>
<th>4 m</th>
<th>2 m</th>
<th>4 m</th>
</tr>
</thead>
<tbody>
<tr>
<td># ABC</td>
<td>A B C</td>
<td>A B C</td>
<td>A B C</td>
<td>A B C</td>
</tr>
<tr>
<td>1</td>
<td>7 29 37</td>
<td>9 33 60</td>
<td>1</td>
<td>3 21 23</td>
</tr>
<tr>
<td>2</td>
<td>5 36 42</td>
<td>12 53 72</td>
<td>2</td>
<td>4 18 25</td>
</tr>
<tr>
<td>3</td>
<td>10 49 32</td>
<td>8 34 64</td>
<td>3</td>
<td>4 26 18</td>
</tr>
<tr>
<td>4</td>
<td>7 53 44</td>
<td>14 42 95</td>
<td>4</td>
<td>3 21 30</td>
</tr>
<tr>
<td>5</td>
<td>8 43 37</td>
<td>8 88 37</td>
<td>5</td>
<td>3 33 27</td>
</tr>
<tr>
<td>6</td>
<td>7 61 24</td>
<td>15 39 88</td>
<td>6</td>
<td>6 24 14</td>
</tr>
<tr>
<td>7</td>
<td>15 19 22</td>
<td>9 33 60</td>
<td>7</td>
<td>7 10 16</td>
</tr>
<tr>
<td>8</td>
<td>13 122 42</td>
<td>9 54 75</td>
<td>8</td>
<td>6 88 31</td>
</tr>
</tbody>
</table>

REPEATABILITY
Repeatability measurements are performed to estimate the noise associated with detecting the location of the sphere centers. For this purpose, each scanner is first placed 2 m from the instrument and 10 scans of the targets are acquired. The scanners are then moved to a location 4 m away from the targets. Another set of 10 scans is acquired. The sphere centers are determined using an unconstrained least-squares fit. The coordinates are then converted from Cartesian to spherical. The standard deviations of the center coordinates and radii are calculated; they are tabulated in Table 2.

The repeatability in the horizontal and vertical angle directions is important because the ability to detect systematic errors along the two angular directions, either from two-face tests or from volumetric length tests, is dependent on the noise floor along these directions. Table 2 shows that the one standard deviation repeatability along the horizontal angle direction is smaller than 20 µm for scanner A. Scanners B and C have slightly poorer repeatability, on the order of 20 µm to 50 µm. Scanner A has a noticeably poorer repeatability along the vertical angle direction in comparison to its own performance along the horizontal angle direction. However, all three scanners have comparable repeatability along the vertical angle axis, on the order of 20 µm to 50 µm. These repeatability values indicate that systematic two-face errors on the order of 0.2 mm may in fact be discernible in these directions. For purpose of completeness, the one standard deviation repeatability along the ranging direction, and the one standard deviation repeatability of the radii determined from the least-squares fit are shown in Table 2. In subsequent sections, we address sources of geometric misalignment within the instrument that might produce systematic two-face errors and then describe experiments to expose these error sources.

SYSTEMATIC ERRORS
A schematic of a laser scanner that has a source and spinning mirror on a platform that can rotate about the vertical axis OZ is shown in Fig. 2. All three scanners considered in this study belong to this class of construction. The laser emerges from O’, strikes the mirror at O, and is directed to the target P. The mirror rotates about the horizontal axis OT.
A geometric error model for a large volume laser scanner incorporating this design is given below. In the model, \(R_m \), \(H_m \), and \(V_m \) are the measured range, horizontal angle, and vertical angle, respectively. The corrections to the measured coordinates are denoted by \(\Delta R_m \), \(\Delta H_m \), and \(\Delta V_m \). The true coordinates \((R_c, H_c, V_c)\) can be determined from the measured coordinates and the corrections as shown below:

\[
\begin{align*}
H_c &= H_m + \Delta H_m \\
V_c &= V_m + \Delta V_m \\
R_c &= R_m + \Delta R_m
\end{align*}
\]

\[
\Delta R_m = k (x_2 \sin V_m) + x_{10}
\]

\[
\Delta H_m = k \left[\frac{x_{12}}{R_m \tan V_m} + \frac{x_3}{R_m \sin V_m \tan V_m} + \frac{x_5}{\sin V_m \tan V_m} + \frac{x_8}{x_{8y} \cos H_m} \right] + \\
\frac{x_{11}}{R_m} + x_{5n} + x_{11a} \cos 2H_m + x_{11b} \sin 2H_m
\]

\[
\Delta V_m = k \left[\frac{x_{12}}{R_m \cos V_m} + \frac{x_2}{R_m \cos V_m} + \frac{x_8}{x_{8y} \cos H_m} \right] \frac{x_{5n}}{x_{5n} \cos V_m + x_{9n} \cos V_m} + \\
\frac{x_{12}}{x_{12a} \cos 2V_m + x_{12b} \sin 2V_m}
\]

In the model above, the variable \(k \) is +1 for the front-face and -1 for the back-face. The individual terms comprising the model are listed in Table 3. The model was briefly described in [1]; a detailed description is beyond the scope of this paper.

TABLE 3. Model parameters, description and sensitivity to two-face testing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Two-face sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_{1n})</td>
<td>Beam offset along (n)</td>
<td>Vertical angle</td>
</tr>
<tr>
<td>(x_{1z})</td>
<td>Beam offset along (z)</td>
<td>Horizontal angle</td>
</tr>
<tr>
<td>(x_2)</td>
<td>Transit offset</td>
<td>Vertical angle, ranging</td>
</tr>
<tr>
<td>(x_3)</td>
<td>Mirror offset</td>
<td>Horizontal angle</td>
</tr>
<tr>
<td>(x_4)</td>
<td>Vertical index offset</td>
<td>Vertical angle</td>
</tr>
<tr>
<td>(x_{5n})</td>
<td>Beam tilt along (n)</td>
<td>Vertical angle</td>
</tr>
<tr>
<td>(x_{5z})</td>
<td>Beam tilt along (z)</td>
<td>Horizontal angle</td>
</tr>
<tr>
<td>(x_6)</td>
<td>Mirror tilt</td>
<td>Horizontal angle</td>
</tr>
<tr>
<td>(x_7)</td>
<td>Transit tilt</td>
<td>Horizontal angle</td>
</tr>
<tr>
<td>(x_{8x})</td>
<td>Horizontal angle encoder eccentricity along (x)</td>
<td>Horizontal angle</td>
</tr>
<tr>
<td>(x_{8y})</td>
<td>Horizontal angle encoder eccentricity along (y)</td>
<td>Horizontal angle</td>
</tr>
<tr>
<td>(x_{9n})</td>
<td>Vertical angle encoder eccentricity along (n)</td>
<td>Vertical angle</td>
</tr>
<tr>
<td>(x_{9z})</td>
<td>Vertical angle encoder eccentricity along (z)</td>
<td>Vertical angle</td>
</tr>
<tr>
<td>(x_{10})</td>
<td>Zero-offset (Bird-bath error)</td>
<td></td>
</tr>
<tr>
<td>(x_{11a})</td>
<td>Second order scale error in the horizontal angle encoder</td>
<td></td>
</tr>
<tr>
<td>(x_{11b})</td>
<td>Second order scale error in the horizontal angle encoder</td>
<td></td>
</tr>
<tr>
<td>(x_{12a})</td>
<td>Second order scale error in the vertical angle encoder</td>
<td></td>
</tr>
<tr>
<td>(x_{12b})</td>
<td>Second order scale error in the vertical angle encoder</td>
<td></td>
</tr>
</tbody>
</table>

Two-face sensitivity arises from the fact that some of the terms in the model reverse in sign in the back face. For example, consider a scanner with a transit offset \(x_2 \). The vertical angle coordinate measured in the front face would be

\[
V_m = V_c - \frac{x_2 \cos V_m}{R_m}
\]

The vertical angle coordinate measured in the back face would be

\[
V_m = V_c + \frac{x_2 \cos V_m}{R_m}
\]

The difference between the front and back face vertical angles of the same target is the two face error \(E \), given by

\[
E = -2 \frac{x_2 \cos V_m}{R_m}
\]

Therefore, two-face errors are indications of geometric and optical misalignments within the system, and two-face testing is a valuable
procedure for performance evaluation of laser scanners. In the next section, we describe experiments that attempt to characterize the magnitude of two-face errors in three different scanners and provide model-based explanations.

TWO-FACE MEASUREMENTS

Scanner A is first placed 2 m from the vertical rail. The eight targets on the rail are scanned in the front face and then in the back face. Sphere centers are determined using unconstrained least-squares fitting procedures. The front and back face center coordinates are converted from Cartesian to spherical. The differences between front and back face horizontal angles, differences between front and back face vertical angles, and differences between front and back face range data are calculated. This process is repeated four times. The scanner is then rotated by 90° in azimuth and the four sets of front and back face measurements and calculations as described above are performed. The scanner is then placed 4 m from the rail and measurements and calculations as described above are performed for both the 0° and 90° azimuth orientations of the scanner. The entire process is repeated for scanners B and C.

The difference between the front and back face horizontal angles, the difference between front and back face vertical angles, and the difference between front and back face range data for the eight targets measured using scanner A are shown in Figs. 3 (a), (b), and (c) respectively as discrete points. Similar plots for scanner B are shown in Figs. 3 (d), (e), and (f), and for scanner C in Figs. 3 (g), (h), and (i).
Model parameters that are sensitive to two-face testing (see Table 3) are determined from the data shown in Fig. 3. We first estimate the magnitude of the transit offset x_2 from the difference between front and back face range to targets located at scanner height. We then estimate beam offset x_{1n}, vertical index offset x_4, and beam tilt x_{5n} from the differences between front and back face vertical angles to the different targets using the method of least-squares. Finally, we estimate beam offset x_{1z}, mirror offset x_5, beam tilt x_{5z}, mirror tilt x_6, and encoder eccentricities x_{6x} and x_{6y}, from the differences between front and back face horizontal angles to the different targets using the method of least-squares. The model predictions based on the estimated parameters are shown in Fig. 3 as a solid line.

Figs. 3 (a), (d), and (g) clearly demonstrate that all three scanners exhibit horizontal angle two-face errors as a function of elevation. A horizontal angle two-face error of 300 μrad translates to lateral distance two-face error of 0.6 mm at 2 m and 1.2 mm at 4 m. The error in locating the coordinate in the front face (or in the back face) is therefore half this amount, that is, 0.3 mm at 2 m and 0.6 mm at 4 m. These errors are an order of magnitude larger than the repeatability values listed in Table 2. Figs. 3 (a), (d), and (g) also show that the model captures the observed systematic two-face errors. Two model parameters, beam offset x_{1z} and beam tilt x_{5z} are the likely sources of error that produce the observed trend in Fig. 3(a) while mirror tilt x_6 is the likely source of error seen in scanners B and C. The determination of likely sources comes from analyzing the relative contributions of the different model terms to the observed two-face errors seen in Fig. 3.

Figs. 3 (b), (e), and (h) demonstrate that all three scanners exhibit vertical angle two-face errors as a function of elevation. The figures also show that the model captures the overall trend of the two-face errors. However, the two-face errors for scanner B at the 90º azimuth position are different at 2 m and 4 m. The reason for this difference is not yet understood. Vertical index offset x_4 and beam tilt x_{5n} are the likely sources of error in scanner A while a linear combination of four parameters (transit offset x_2, beam offset x_{1n}, vertical index offset x_4, and beam tilt x_{5n}) is responsible for the observed errors in scanners B and C.

Figs. 3 (c), (f), and (i) show that the two-face errors in range are smaller than 0.1 mm for scanner A. At the same time, two-face errors are as large as 1 mm for scanner C. Range data are observed to be noisy, especially for scanners B and C. The dominant error sources along the ranging direction are likely related to the intrinsic ranging technology, the material and optical properties of the target surface, and the orientation of the target (changing surface slopes in the case of the sphere), among others. These sources of error are not included in the model described in the previous section.

CONCLUSIONS

Two-face tests are a quick and efficient way of assessing laser scanner performance. These tests capture several sources of geometric misalignment within laser scanners. In this paper, we describe two-face tests performed on three different laser scanners using sphere targets. The results show that the observed two-face errors are on the order of 0.5 mm while the repeatability in locating a sphere target is an order of magnitude smaller. While we have presented a geometric error model and attempted to explain the source of the observed two-face errors, the primary purpose of this paper is to demonstrate that two-face errors in laser scanners are significantly larger than the noise floor and therefore two-face tests can in fact be used to assess instrument performance.

DISCLAIMER

Commercial equipment and materials may be identified in order to adequately specify certain procedures. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

REFERENCES

INTRODUCTION
A precision linear positioning system (Plasmonic Nano-Lithography Machine, PNLM) has been built for maskless nano lithography using flying plasmonic lens as a line writing tool [1]. A carriage driven by two linear Halbach motors and feedback controlled by two optical linear scales (Renishaw, RGH25F UHV) is used to position the lens over the wafer (a spinning disc in this case), FIGURE 1. To characterize the positioning performance of this machine, an error model represented by a vectorized tool-to-part model has been developed and updated. Geometric and thermal induced positioning errors are included in this vector model and an instrumentation test-bed implemented to measure these modeled errors. The metrology loop of this machine is modeled and the effect of overlapping metrology loop with structure loop evaluated.

Displacement measuring interferometry (DMI) comprised a home-built plane mirror interferometer optic and a commercial heterodyne laser head (Agilent 5519A). The static positioning noise of the carriage was 5.26 nm (1 sigma standard deviation) over a 1000 Hz measurement band. The pitch angle was measured over the motion of 35 mm with maximum deviation of 22.5 μrad. The yaw angle was measured over the motion of 20 mm with a maximum deviation of 5 μrad.

FIGURE 1. Solid model of PLNM [2]

GEOMETRIC ERROR AND METROLOGY LOOP
Geometric errors of precision machines result from the deviations in coordinate directions other than those of an ideal positioning element. Typically, the ideal motions of a stage are designed using principles of rigid body kinematics. Mathematically, the kinematic error is defined as the difference between the commanded position and the measured position in a same coordinate system. Kinematic errors are often repeatable and, therefore, correctable on the rigid body assumption for the mechanical components that carry motions.

To model these errors, a metrology loop from the moving element through successive coordinate systems (\(\{O\}_C \), \(\{O\}_B \) and \(\{O\}_D \) for carriage, base and DMI coordinate systems respectively) is defined, see FIGURE 2. Equation (1) is the transformation from the carriage coordinate system \(\{O\}_B \) to DMI coordinate system \(\{O\}_D \) using a 3 by 3 rotation matrix \(R_{C-D}^{-1} \) and a 3 by 1 translational vector \(\vec{p}_{C-D} \). The final 3D vector expression of the kinematic error \(\vec{e}_D \) in the DMI coordinate system is given by equation (2).

\[
\vec{e}_D = R_{C-D}^{-1} \cdot \vec{p}_C + \vec{p}_{C-D} - \vec{p}_D
\]

\[
\begin{pmatrix}
\Delta X \\
\Delta Y \\
\Delta Z
\end{pmatrix} =
\begin{pmatrix}
-e_{XY}(Y) \cdot Y_{offset} + \delta_{XY}(Y) \\
e_{XY}(Y) \cdot D_{Abbe} + \delta_{YY}(Y) + Y_{thermal} \\
e_{XY}(Y) \cdot Y_{offset} + \delta_{ZY}(Y)
\end{pmatrix}
\]
Linear Positioning Measurement
The carriage is positioned in the Y direction, the measurement setup shown in FIGURE 3. Both the Abbe offset and deadpath of the DMI were aligned a minimum using a hollowed cylindrical mount where its geometric center was aligned to the center of the spindle-disc unit.

![Image of setup](image)

FIGURE 3. Setup of DMI based measurement

The static positioning noise was measured while the carriage was on servo control at a pre-defined “home” position. The DMI has nominal resolution of 4.95 nm and that of the optical scale is 5 nm (1 bit). The 10 seconds DMI based measurement was shown in the FIGURE 4.

![Graph of static linear positioning measurement](image)

FIGURE 4. Static linear positioning measurement in 10 second

Lateral Straightness Measurement
Straightness error in the X direction was measured by capacitive gage (Lion Precision C5) using the straightedge reversal method [4]. The straightedge was finished by a diamond turning machine. A mounting disc was used to host the straightedge which was aligned using a holder as shown in FIGURE 5.

![Image of straightedge mounting and lateral straightness measurement](image)

FIGURE 5. Straightedge mounting and lateral straightness measurement

The capacitive probe was held using a mechanical adapter such that the operator could manually reverse the probe 180 degree with respect to the axis of translation motion of the carriage. Straightness error was measured from 0 mm to 20 mm as indicated in FIGURE 5.

THERMAL ERROR MODELING AND LONG TERM POSITIONING MEASUREMENT
A one dimension thermal model has been developed to link major mechanical components. The same DMI was used to pick up the displacement between the carriage and the optics due to length change of machine components caused by thermal expansion. The thermal expansion model used in this study is illustrated in FIGURE 6.

![Diagram of one dimension thermal expansion model](image)

FIGURE 6. One dimension thermal expansion model for the carriage, base and thermal plate

Temperatures of major components around the metrology loop were measured by three surface thermistors. The thermal expansion model was developed in equation (3), where the subscript i represents c, b and p for carriage, base and thermal plate respectively. Mechanical (density \(\rho \), volume \(V_i \), surface area \(A_{si} \)) and thermal properties (coefficient of thermal expansion of aluminum \(\alpha_{Al} \), heat capacity \(C_p \), thermal transfer time constant \(\tau_i \)) of those components (made of AL6061 aluminum alloy) [3]. The amount of length change due to thermal...
expansion is ΔL_i, depends on the initial length of the target components L_i.

$$
\Delta L_i = L_i \cdot \alpha_i \cdot (T_i - T_{i0})
$$

$$
T_i - T_{i0} = e^{(t - t_{i0})/\tau_i}
$$

$$
\tau_i = \frac{\rho_i c_p V_i}{k_i A_i}
$$

A four hour DMI based measurement is given in FIGURE 7. The left plot indicates the measured temperature change of room air, carriage, base and thermal plate. The right plot shows the measured displacement between the carriage and DMI optics when the carriage was servo-controlled at a fixed command position. Due to the change of air temperature in the non-temperature controlled environment, the laser interferometer data with and without refractive index correction are shown on the right half of FIGURE 7.

FIGURE 7. (Left) Temperature measurement of machine components. (Right) long term carriage drift measured by DMI

The drift reached to around -175 nm with visible fluctuation on the interferometer data. During the drift measurement, the pressure of compressed air supply to the air bearings that support the carriage was varying at about 5 psi in a period of 19 minutes. So the appeared DMI fluctuation was most likely caused by the air bearing fly height change that coupled to the carriage.

CONCLUSIONS AND FUTURE WORK

To summarize the results from these studies, he measured results of each error term are given in TABLE 1.

<table>
<thead>
<tr>
<th>Error Term</th>
<th>Symbolic</th>
<th>Maximum Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear positioning</td>
<td>$\delta_{yy}(Y)$</td>
<td>-1.25 μm</td>
</tr>
<tr>
<td>Thermal expansion of scale</td>
<td>$Y_{thermal}$</td>
<td>-1.75 μm</td>
</tr>
<tr>
<td>Pitch angle</td>
<td>$\epsilon_{xy}(Y)$</td>
<td>22.5 μrad</td>
</tr>
<tr>
<td>Out of straightness in X</td>
<td>$\delta_{xy}(Y)$</td>
<td>-900 nm</td>
</tr>
<tr>
<td>Yaw angle</td>
<td>$\epsilon_{xy}(Y)$</td>
<td>5 μrad</td>
</tr>
</tbody>
</table>

The metrology work on the Plasmonic Nano Lithography Machine finalized the performance study after delivery. Nano and micro scale patterns will be written on a wafer disc to fully release the capability of PNLM in future.

ACKNOWLEDGE

The authors thank the help from Dr. Jimmie Miller, Greg Caskey and John Brien at UNCC’s Center for Precision Metrology. The financial support of this work came from the Graduate Yong Investigator Award at the Center for Integrated and Scalable Nano Manufacturing by National Science Foundation.

REFERENCES

Investigation of the Measurement Error Induced by Sensor Gain Error in the Mixed Sequential Two-probe Method

Jeong Seok Oh¹, Gyungho Khim¹, Chang-Ju Kim¹, Ji Hun Jeong¹ and Chun Hong Park¹
¹Advanced Manufacturing Systems Research Division
Korea Institute of Machinery & Materials
Daejeon, South Korea

INTRODUCTION
Recently, the demand for ultra-precision machines that employ static pressure bearing has been increased with the rapid progress of consumer electronics, medical devices and aerospace industry. Thanks to averaging effect of static pressure bearings, currently achievable straightness error of a linear motion table is less than 1 μm per every 500 mm.

Normally, straightness error (or rail form error) of a precision linear motion table is measured using laser interferometer or autocollimator, but they often suffer from thermal drift, floor vibrations, and long measurement time which make the measurement difficult with sub-micron accuracy. As an alternative, error separation techniques such as the reversal and the multi-probe method are widely used to measure the straightness error (or rail form error) of a linear motion table [1-8].

In applying multi-probe method, measurement accuracy is critically influenced by the gain error of the displacement sensor, and understanding the effects the sensor gain error is very important. In this study, the effect of the sensor gain error is theoretically analyzed and experimentally verified when mixed sequential two-probe method (MTPM) [7, 8] is applied for the measurement of straightness error (or rail form error) of a precision linear motion table.

MODELLING OF SENSOR GAIN EFFECT
The mixed sequential two-probe method was devised to overcome the drawbacks of conventional sequential two-probe method. In this method, straightness error (and form error of straightedge or rail) is basically measured using the principle of sequential two-probe method, but rotational motion error of the feed table is simultaneously measured using a laser interferometer. The principle of the MTPM is shown in Figure 1.

![Figure 1. Principle of the mixed sequential two-probe method](image)

Taking R_A and R_B as the outputs of displacement sensors corresponding to the profile of the straightedge, the outputs of the displacement sensors are represented as follows: [9]

$$R_A(x) = e_f(x) + e_s(x) + k \cdot x_i + \frac{\Delta}{L}$$
$$R_B(x) = e_f(x) + e_s(x) + l_i \cdot \theta(x) - \Delta + k \cdot x_i$$
$$R_A(x_i) = e_f(x_i) + e_s(x_i) + k \cdot x_i$$

where $e_f(x)$ and $\theta(x)$ is the straightness and yaw error of the feed table, $e_s(x)$ is the form error of the straightedge, l_i is the distance between two displacement sensors, k is the misalignment slope of the straightedge with respect to the axis of motion of the feed table, Δ is the offset between two displacement sensors, L is the entire measuring length and $i (i=0, l_i, \ldots, L/l_i)$ is the index of measuring step.

From equation (1) ~ (3), the straightness error of the feed table $e_s(x)$ and the form error of the straightedge $e_f(x)$ can be represented as follows:

$$e_s(x_i) = e_s(x) + R_A(x_i) - R_B(x_i) + l_i \cdot \theta(x) - \Delta$$
$$e_f(x_i) = e_f(x) + R_B(x_i) - R_A(x_i) - l_i \cdot \theta(x) + \Delta - k \cdot l_i$$
The $-\Delta$ element in equation (4) and $\Delta-k/l_x$ element in equation (5) are constants, so they do not affect the measurement results.

To consider the effect of sensor gain error, the sensor gain is defined as the ratio between the measured displacement and real one in this study. Therefore, the sensor gain is 1 in an ideal case, and any deviation from 1 is regarded as the sensor's gain error.

If the gains of sensor A and B are defined as G_A and G_B, the straightness error $e_s^*(x)$ and the form error of the straightedge $e_f^*(x)$ are calculated by using the measured $R_A^* (=G_AR_A)$, $R_B^* (=G_BR_B)$.

\[
e_s^*(x_{i+1}) = e_s^*(x_i) + R_A^*(x_{i+1}) - R_A^*(x_i) + l_x \cdot \theta(x_i) - \Delta = e_s^*(x_i) + R_A^*(x_{i+1}) - R_A^*(x_i) + l_x \cdot \theta(x_i) - \Delta + (G_A - G_B) \cdot e_f^*(x_i) - (G_B - 1) \cdot l_x \cdot \theta(x_i) + (G_A - G_B) \cdot k \cdot x_{i+1} + (G_B - 1) \cdot \Delta
\]

\[
e_f^*(x_{i+1}) = e_f^*(x_i) + R_B^*(x_{i+1}) - R_B^*(x_i) + l_x \cdot \theta(x_i) + \Delta - k \cdot l_x = e_f^*(x_i) + R_B^*(x_{i+1}) - R_B^*(x_i) + l_x \cdot \theta(x_i) + \Delta - k \cdot l_x + (G_B - G_A) \cdot e_f^*(x_i) + (G_B - 1) \cdot l_x \cdot \theta(x_i) + (G_B - 1) \cdot k \cdot x_{i+1} + (G_B - 1) \cdot \Delta
\]

So the measurement error when there are gain errors can be expressed as follows:

\[
\{e_s^*(x_{i+1}) - e_s^*(x_i)\} - \{e_f^*(x_{i+1}) - e_f^*(x_i)\} = (G_A - G_B) \cdot e_f^*(x_i) - (G_B - 1) \cdot l_x \cdot \theta(x_i) + (G_A - G_B) \cdot k \cdot x_{i+1} + (G_B - 1) \cdot \Delta
\]

\[
\{e_f^*(x_{i+1}) - e_f^*(x_i)\} - \{e_f^*(x_{i+1}) - e_f^*(x_i)\} = (G_B - G_A) \cdot e_f^*(x_i) + (G_B - 1) \cdot l_x \cdot \theta(x_i) + (G_B - 1) \cdot k \cdot x_{i+1} + (G_B - 1) \cdot \Delta
\]

As can be seen in equation (10) and (11), large amount of the measurement error can be reduced by coinciding sensor gains, and the alignment error k no longer affects the measurement error.

EXPERIMENTAL VERIFICATION

Figure 2 shows the layout of the hydrostatic bearing table used to investigate the effect of sensor gain difference on the measurement of straightness error. The table was equipped with double-sided hydrostatic bearings in the vertical and horizontal directions. Iron core type linear motor and linear scale were used to control the table. The resolution of the linear scale is about 1 nm after interpolation.

Figure 3 shows the picture of the experimental setup. To verify the sensor gain effect in the precision measurement of straightness error (or rail form error), two capacitive sensors (ADE, 6810) which have gain difference of about 3% were used for the experiment. The sensors were calibrated by the manufacturer before shipment.
but their gains have been changed with the passage of time. Aluminum coated ceramic bar (flatness less than \(\lambda/4\)) was used as a straightedge. Two capacitive sensors were mounted on the hydrostatic bearing feed table and the distance between two sensors was 15 mm. The rotational motion of the feed table was measured using a laser interferometer (Agilent, 5529A). To observe the amplification of the measurement error by the alignment error \(k\), experiments were done for three alignment conditions. \((k=0, 5, 10 \ \mu m/465 \ \text{mm})\)

Figure 4 shows the measurement results of the straightedge’s form error according to the alignment conditions. All of the measured results are represented with the averaged value and its standard deviation \(2\sigma\), which is calculated from five iterative measurements. In case of \(k=0\), the measured form error of the straightedge was 0.07 \(\mu m\), which is comparable with the flatness specification of the straightedge. But it was dramatically increased as the alignment error was increased.

Figure 5 shows the measurement results of the straightness error according to the alignment conditions. In case of \(k=0\), the measured straightness error was 0.60 \(\mu m\), but it was increased to 1.90 \(\mu m\) when alignment error \(k\) is 10 \(\mu m/465 \ \text{mm}\). These two measurement results shown in Figure 4 and Figure 5 demonstrate that the measurement error is greatly amplified by the alignment error \(k\) and the sensor gain difference when the measuring range is large.

Figure 6 shows the measured straightness error after compensating the sensor gain difference. Since we compensated only the gain difference, each sensor could have gain error. As estimated in equation (10), measurement results were no longer influenced by the alignment error \(k\). The difference of the measurement results according to the various alignment conditions was less than 0.1 \(\mu m\).

CONCLUSION

In this study, the effect of the sensor gain error is theoretically analyzed when mixed sequential two-prove method is applied for the precision measurement of straightness error of a linear motion table. According to the theoretical

![Angular Interferometer](image1)

FIGURE 3. Picture of the experimental setup

![Form Error](image2)

FIGURE 4. Measurement results of the straightedge’s form error according to the various alignment conditions

![Straightness Error](image3)

FIGURE 5. Measurement results of the straightness error according to the various alignment conditions

![Straightness Error after compensation](image4)

FIGURE 6. Measurement results of the straightness error after compensating the sensor gain difference
analysis, gain difference between two displacement sensors increases measurement error. Also the measurement error is amplified greatly by the alignment error of the straightedge and sensor gain difference. On the other hand, if the gain errors of the two sensors are identical, most of error terms are cancelled out and the alignment error doesn’t give influence on the measurement error. These analysis results were verified by real experiment using hydrostatic bearing table.

ACKNOWLEDGEMENT
This research was supported by the Industrial Core Technology Development Program, funded by the Korean Ministry of Trade, Industry & Energy (MOTIE) (grants 10033595 and 10038577).

REFERENCES
INTRODUCTION

With the advent of diamond turning and more sophisticated methods of testing, aspheric surfaces in optical systems are becoming common. Aspheric surfaces give the optical designer more degrees of freedom to work with in an optical design so the final system will either have better performance than one with all spherical surfaces, or will have fewer surfaces making it a more cost effective and smaller system. To achieve better performance, however, the aspheric surfaces must be aligned in 5 degrees of freedom rather than 3 in the case of a spherical surface. Even small misalignments of aspheric surfaces can cost all the performance gain of the more sophisticated aspheric design.

The problem of alignment of aspheric surfaces is that the surface is held in its assembly by mounting features that are either part of the substrate or are rigidly attached to the aspheric surface. Since the substrate or mounting features may not have been machined at the same time as the surface itself, there may be a tolerance build up that tilts and/or decenters the aspheric surface when it is attached to its cell or optical bench using the mounting features. The problem also presents itself during in-coming inspection; how does one know that the aspheric surface is in proper relationship with the mounting features or datums?

This note will discuss the problem of how to determine the relationship of the optical axis of an aspheric surface to its mounting features using a precise rotary bearing and an autostigmatic microscope that has an accessory attachment that produces a focused beam and an offset collimated beam of light. The method is non-contact to the optical surface and sensitive to micrometer level decenters and arc second tilts. The method does not require that the asphere has an accessible vertex and the asphere may be an off-axis segment.

APPROACH

The alignment method uses the axis of rotation of a precise rotary bearing, typically an air bearing, as a reference axis. The aspheric surface is then set roughly centered on an x-y, tip-tilt stage on the rotary table. This stage will be used to bring the aspheric surface optical axis into coincidence with the rotary table axis. Once this is done the substrate or mounting features may be mechanically indicated to determine their relationship with the rotary table, and aspheric surface, optical axes.

FIGURE 1 Dual Beam Accessory (DBA)

To give a specific example we use an Edmund Optics (32-065-353) symmetric parabola [1] with an efl of 444.5 mm and a diameter of 108 mm as the aspheric surface and a Dual Beam
Accessory (DBA) mounted on a Point Source Microscope (PSM) [2] with a beam separation of 34 mm. The DBA is shown in Fig. 1, and fits on the PSM where the objective normally goes.

The beamsplitter inside the DBA sends the collimated beam exiting the PSM into a periscope where it projected from the DBA with a 34 mm offset from the axis of the objective. The straight through collimated beam is focused by an objective just as if the objective were directly mounted on the PSM.

The plane parallel plate beamsplitter and 45 degree mirror in the periscope can be seen in Fig. 1 shaded in a slight purple inside the DBA. The orange cap encloses a tip/tilt stage to adjust the 45 degree mirror so the collimated beam exits parallel to the optical axis of the DBA input. Also inside the DBA are computer controlled beam blocks so either beam may be interrogated separately.

In Fig. 2 it is shown how the DBA is aligned relative to the asphere, the parabola of our example. The Figure is to scale but the light path has been shortened for the sake of space. The focus of the objective is located at the focus of the parabola and the collimated beam is initially approximately parallel with the rotary table axis. Light from the objective is collimated by the parabola and enters the offset collimated beam port in the DBA while collimated light from the port is focused by the parabola to the focus of the microscope objective and enters the objective. In other words, light out of the collimated port re-enters through the objective and light from the objective re-enters the collimated beam port. Each beam that re-enters produces a spot on the PSM camera. As the table rotates, both of these spots will precess as the table rotates unless the axes of the rotary table and the parabola are precisely coincident.

The x-y, tip-tilt table is used to bring the asphere into alignment so both spots stop precessing, the indication the axes are coincident. Then the outside diameter of the asphere and the tilt of the tip-tilt stage may be indicated mechanically to show the degree to which the aspheric surface is centered and tilted with respect to the mechanical mounting features. Notice this alignment is done without ever physically contacting the aspheric surface.

PRECISION OF THE METHOD

Using the lens design program Zemax, a two configuration model was made of the DBA used to align the Edmund parabola. The model included the optics in the PSM and assumed a 10x microscope objective with a 20 mm efl.
Table 1 shows the return spot motion on the PSM detector in terms of the diameter of the circle swept out as the rotary table revolves. The much greater sensitivity in the collimated beam is due to the long lever arm from the mirror to the objective focus and the further magnification within the PSM. For the focused beam the mirror just changes the angle of the beam and this small angular change must be sensed with the 100 efl collimator in the PSM. The 2 um diameter circle is 4 times larger than the minimum sensitivity of the PSM.

Another possible misalignment is not setting the axial distance precisely. For centering this will not matter as long as the distance is a mm or so from the correct distance. Light from the objective will enter the collimated beam port but at the wrong angle so the spot will not be centered on the detector. As long as the spot does not precess that conjugate is centered.

Light from the collimated port re-entering through the objective will simply be out of focus if the axial distance is incorrect. This will not affect not ability to precisely centroid.

OTHER TYPES OF ASPHERES

While it is good to see the high sensitivity to measuring the tilt and decenter of parabolas, these aspheres are an important, but small class, of all aspheres. Next we examine what happens if, for example, we have an ellipse with a conic constant of -0.2, something quite close to a sphere. In our model we will keep the same vertex radius and simply change the conic constant from -1 for the parabola to -0.2 for the ellipse. It turns out that the only thing that happens is that the long conjugate gets shorter by 0.25 mm and the return spot becomes elongated. The elongation of the spot has no effect on the centroiding of the spot as long as the spot does not become longer than the detector array. The sensitivities to tilt and decenter are the same as in the case of the parabola. For this case, effectively nothing changes from the parabola case.

To the other side of a parabola is the case of a hyperbola. If we change the conic constant to -5 we again find the long conjugate changes get longer by 0.3 mm than in the case of the parabola and the spot becomes elongated. Again the sensitivities are the same as in the case of the parabola.

A final question of alignment deals with off-axis aspheres. Sticking to a parabola for the sake of simplicity, we would again use the rotary table but would obviously have to have the off-axis segment located somewhere under the collimated beam. Since the field of view of a 10x objective of the PSM is about +/- 0.5 mm, the off-axis segment would have to be aligned correctly to +/- 0.5 mm in decenter and about 1.5 minutes of arc for light from the collimated beam to re-enter the objective.

With this degree of alignment one is already within a factor of 100 of the ultimate ability of this method to perform alignment. It is simply a matter of systematically reducing the spot motion as the rotary table is moved under the collimated beam. Naturally the smaller the off-axis segment is in relation to the amount of table rotation to keep the segment under the collimated beam, the less sensitive the alignment will be. On the other hand, many times an alignment as good as getting light back in the objective at 0.5 mm and 1.5 minutes would make many people very satisfied.

DISCUSSION

We have shown that it is possible to align the optical axis of a concave asphere to the axis of a rotary table to a precision of 1 um in decenter and 1 arc second or better in tilt with conic
constants ranging from -0.2 to -5. There is no reason to expect the method will not work beyond this range. In fact, it will work for oblate spheroids with a conic constant of 2.0 with essentially the same sensitivity. Note that the method works for aspheres with central holes. There is no need for the vertex to be a physical part of the asphere. As noted, the method works for off-axis segments of aspheres as well. Finally, we note the method is completely non-contact.

This does not mean the method will work for every asphere. At some point if the conic constant departs too far from a parabola the return spot will elongate to the point that it exceeds the size of the detector array and the centroiding will no longer work. Further, the asphere must have a zonal radius larger than the separation of the focused and offset beams, and there are physical constraints on how closely spaced the two beams can be. Also, the hole in the center of the asphere must not be larger in radius than the separation of the beams although the DBA can always be lengthened in this case.

Finally, while the method may not work in all cases it certainly does work in many cases of practical importance. Also, the very fact that the method works with high sensitivity points out that with suitable design changes in hardware the method can be made to work for more radical aspheres and for smaller aspheres. It is this knowing that a method works and has high sensitivity that leads to the next step forward in technology.

REFERENCES

[1] www.edmundoptics.com

A METHOD OF DETERMINING SPHERE CENTER TO CENTER DISTANCE USING LASER TRACKERS FOR EVALUATING LASER SCANNERS

Prem K. Rachakonda¹, Bala Muralikrishnan¹, Vincent D. Lee¹, Daniel S. Sawyer¹, Steven D. Phillips¹ and John Palmateer².

¹National Institute of Standards and Technology, Gaithersburg, MD, USA.
²Boeing Research and Technology, Seattle, WA, USA.

INTRODUCTION

The Dimensional Metrology Group (DMG) at the National Institute of Standards and Technology (NIST) is involved in the development of documentary standards for volumetric performance evaluation of laser scanners.

Testing using a calibrated grid of spheres is one of the proposed methods for evaluating the performance of laser scanners. Challenges in establishing a calibrated grid of spheres include the commercial availability of high quality spheres which are conducive to laser scanners. Surface finish and other properties such as stiffness, reflectivity, optical penetration and geometrical form affect the usage of such spheres for the performance evaluation of laser scanners.

This paper will present techniques explored at NIST for the purposes of establishing a grid of spheres, calibrated using a laser tracker. Such a grid can be used to evaluate the volumetric performance of laser scanners. These techniques determine the center-to-center distance of two spherical targets.

MOTIVATION FOR ESTABLISHING DOCUMENTARY STANDARDS VIA ASTM E57.02

Laser trackers are also 3D measurement instruments, and they offer uncertainties which are an order of magnitude lower than the current generation of laser scanners. However, these instruments require cooperative targets such as a spherical mounted retro-reflector (SMR).

Currently there are no existing standards for evaluating the volumetric performance of laser scanners. The ASTM E57.02 standards committee is attempting to prescribe methods for the performance evaluation of laser scanners in the medium range (2 m to 150 m). This evaluation could be performed by determining the measurement error between two derived points (volumetric performance) at many positions in the scanning volume of such systems [1].

Planar contrast targets that are preferred by some laser scanners are not dimensional standards; that is, the center of the target is determined by processing the returned intensity images and is not derived from 3D coordinates. Such contrast targets have been used to evaluate laser scanners in the past [2], but are unsuitable as a standardized target for laser scanner performance evaluation. To overcome this issue, a sphere is chosen as the target geometry, for which the derived point is its center and the measurand is the center-to-center distance between two spheres. A sphere is also a good candidate because of the prevalence of spheres as one of the most common targets for laser scanners.

DESCRIPTION OF THE EXPERIMENT AND THE HARDWARE USED

The purpose of the paper is to determine the uncertainty in measuring the point-to-point distance between two geometrical
targets by using techniques that could be employed by a user who has access to a laser tracker.

We chose a 4 inch diameter steel sphere as a target because we have access to a high quality 4 inch SMR and the identical sizes minimizes the abbe errors. We note that this size SMR is generally not available to laser tracker users, but we use it to establish a calibrated reference value, with low uncertainty, of the center-center distance between two points measured using a laser tracker. This calibrated value will be compared to measurements involving a 4 inch steel sphere, obtained by walking a 1.5 inch SMR (commonly available to laser tracker users) over the 4 inch steel sphere (SMR-walking method). The difference between the center-to-center length measurement using the SMR-walking method and the calibrated reference value is used to establish the accuracy of using the SMR-walking method to calibrate the grid of spheres used for laser scanner evaluation.

The setup is based on existing hardware and the components are listed below:

1. Laser tracker: Leica AT901-B
2. 4 inch ProSystems-1003 SMR
3. 1.5 inch Faro SMR
4. A 4 inch diameter, solid steel sphere, with a calibrated least-squares diameter of 101.60924 mm ± 130 nm (k=2) and sphericity value of 4 µm (measured with over 400 points on the M48 Coordinate Measuring Machine at NIST)
5. Brunson model 230 tripods

A test method was developed to measure the center-to-center distance between two spherical targets using a laser tracker and is illustrated in FIGURE 1. Two tripods with kinematic nests are located at positions A and B. Tripod A is located closer to the tracker in its initial position. Pos0, Pos1 and Pos2 are the consecutive positions of the laser tracker. The tracker at Pos0 is in-line with a 4 inch SMR located in the kinematic nest of both the tripods A and B (sequentially measured). Pos0 enables the measurement of the distance between targets in the kinematic nests on the two tripods without any significant contribution of errors due to the laser tracker’s angular encoders.

FIGURE 1: Experimental setup to determine center-to-center distance, with the laser tracker at Pos0, Pos1 and Pos2 and tripods at A & B.

The tracker is then moved to Pos1 and Pos2 where the targets are not in-line with the laser tracker. This is performed to evaluate the errors introduced due to the laser tracker’s angular encoders.

FIGURE 2: Procedure to record data points on the surface of the sphere.

The test procedure is described below:

1. Tripods A and B are aligned in such a way that the tracker at Pos0 and the 4 inch SMR on tripods A and B are in-line within 10 µrad. The nominal distance between the

† Disclaimer: Commercial equipment and materials may be identified in order to adequately specify certain procedures. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

‡ Sphericity is defined as the smallest separation of two concentric spheres that contain all the points of the surface under consideration.
tripods at A and B is 2 m. The tracker is placed at a nominal distance of 1.75 m from tripod A (diametrically opposite to tripod B). Care is taken that the tripods are lowered and secured to the floor before making any fine adjustments.

2. A repeatability test is performed on the distance measurement between the two kinematic nests on tripod A and B with the 4 inch SMR. The SMR is seated first on tripod A and the tracker’s measurement is recorded. It is then unseated and placed in tripod B and the tracker’s measurement is recorded. The process is repeated 10 times yielding 10 length measurements with the mean value \(d_{SMR}\) and 1σ standard deviation (repeatability) shown in TABLE 1. This mean value \(d_{SMR}\) measured at Pos0 is used as the calibrated center-to-center distance.

3. The SMR is removed from the tripod A, and the 4 inch solid steel sphere is placed in its kinematic nest. A set of 50 approximately equally spaced data points are recorded by walking the 1.5 inch SMR on the surface of the steel sphere that is mounted on the tripod (SMR-walking method). FIGURE 2 illustrates the procedure where the 1.5 inch SMR is positioned over a steel sphere, making contact, while being tracked by the laser tracker. If the beam breaks while recording the 50 data points, the 1.5 inch SMR is inserted back into the tracker’s home position (commonly called the R0 position), the interferometer is zeroed and then the measurements on the steel sphere are resumed. At each measurement point, care is taken to ensure that there is only one point of contact between the 1.5 inch SMR and the steel sphere. Due to mechanical interference with the kinematic nest, only about 30% of the surface area of the sphere can be measured using the SMR-walking method. The steel sphere is then moved to tripod B and the procedure is repeated.

4. The centers of the spheres are calculated using a sphere fitting algorithm based on non-linear least squares, by constraining the diameter to 101.60924 mm, and the center-to-center distance is then calculated and reported in TABLE 2.

5. Step#3 and step#4 are repeated with the tracker at Pos1 and then at Pos2. Tests for repeatability using the 4 inch SMR were not performed at these positions.

SUMMARY OF THE RESULTS

TABLE 1: Distance between the two tripods using the 4 inch SMR.

<table>
<thead>
<tr>
<th>Tracker position</th>
<th>Distance (mm)</th>
<th>Repeatability (1σ, in µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos0</td>
<td>1956.191</td>
<td>1.1</td>
</tr>
<tr>
<td>Pos1</td>
<td>1956.198</td>
<td>-</td>
</tr>
<tr>
<td>Pos2</td>
<td>1956.225</td>
<td>-</td>
</tr>
</tbody>
</table>

TABLE 1 lists the distances measured using the 4 inch SMR. The mean distance measured by the tracker at Pos0 is 1956.191 mm \(d_{SMR}\) and is the best estimate of the distance between the spheres with minimal errors due to the encoders. This value is used as the calibrated center-to-center distance. Distances measured by the tracker at Pos1 and Pos2, using the 4 inch SMR, have errors introduced due to the errors in the angular encoders of the laser tracker. No repeatability tests were conducted at Pos1 and Pos2 as these positions will have their angular errors and the tests will not represent the quality of the kinematic nest.

In a separate experiment, the SMR-walking method was repeated 10 times at Pos0 (using step#3 and step#4), and the repeatability (1σ) of the distance measurement was 3.3 µm.

TABLE 2 lists the distances measured by calculating the centers using a constrained fit algorithm (non-linear least squares fit, with a calibrated diameter of 101.60924 mm) on the 50 data points measured on the steel sphere. The distance errors in TABLE 2 are the difference in the distances calculated at each position \(d_{Sphere}\) using the SMR-walking method and the calibrated distance \(d_{SMR}\).

TABLE 2: Distance between the two tripods using the steel sphere SMR-walking method.

<table>
<thead>
<tr>
<th>Tracker position</th>
<th>Distance (mm)</th>
<th>Error (d_{Sphere}) (d_{SMR}) (µm)</th>
<th>Repeatability (1σ in µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos0</td>
<td>1956.192</td>
<td>1.9</td>
<td>3.3</td>
</tr>
<tr>
<td>Pos1</td>
<td>1956.200</td>
<td>9.5</td>
<td>-</td>
</tr>
<tr>
<td>Pos2</td>
<td>1956.207</td>
<td>16.3</td>
<td>-</td>
</tr>
</tbody>
</table>

FIGURE 3 illustrates the errors in the center-to-center distances at various tracker positions using two different algorithms; a constrained fit algorithm (where the diameter is constrained to 101.60924 mm) and an unconstrained fit algorithm (where the diameter is determined from the fit, along with its center).
SOURCES OF UNCERTAINTY AND THE UNCERTAINTY BUDGET

Measurement point density

The number of points that are measured using the SMR-walking method (shown in Figure 2) affects the determination of the center of the sphere. A simulation was performed on a synthetic sphere with errors introduced due to the form of the sphere and the laser tracker.

The form errors are introduced by superimposing sinusoidal waveforms (representing the sphericity and topography) along the radial direction of a sphere in a spherical coordinate system. The tracker errors are added based on MPE (Maximum Permissible Errors) values from the laser tracker manufacturer’s specifications and drift tests.

Results for 300 simulations

Errors in center location

It was observed that the improvement in the sphere center errors diminished as the number of points increased and is shown in Figure 4. Based on this simulation, a value of 50 is chosen as the number of points that are measured on the surface of the sphere. Measuring more number of points on the sphere is a labor intensive process, with diminishing returns.

Laser Tracker’s RMS Error

Each point on the sphere surface that is measured by the tracker is itself an average of 50 samples after the 1.5 inch SMR stabilizes. The laser tracker is programmed to reject any points outside a 40×10^{-6} RMS (Root mean square) threshold§ and the RMS error that is within the 40×10^{-6} threshold is recorded.

In the setup illustrated in Figure 1, a 40×10^{-6} RMS threshold amounts to 70 µm at 1.75 m, 80 µm at 2 m and 150 µm at 3.75 m. A lower RMS threshold of 20×10^{-6} value results in numerous points being rejected due to higher RMS error caused by shaking hand. This RMS threshold value accounts for the stability of the measured point due to various sources of errors, of which the significant part is the human error (shaking hand).

A simulation was performed to understand the effect of the RMS error on the error in calculation of the center of the sphere. The recorded coordinates of the 1.5 inch SMR is the mean of the 50 samples (provided they are all within the RMS error threshold limit). The standard deviation of the mean of the 50 samples is approximately $0.14 \left(\frac{1}{\sqrt{50}}\right)$ times that of the individual samples. Although we have the RMS error setting corresponding to 80 µm at Pos2, the largest observed RMS value at this position was 40 µm. Hence, the mean has a standard deviation of 5.6 µm.

Using this distribution for the point coordinate variation, the simulation of the steel sphere measurement (using the radius-constrained sphere fit) yields a sensitivity coefficient of 0.46. Thus the 4 inch steel sphere center varies by 2.6 µm for the tracker RMS error.

Form of the target sphere

The form of the sphere affects the calculation of the center of the sphere. The SMR-walking technique covers only a portion of the sphere (≈30 % of the surface area); therefore, the calculation of the center of the sphere is also affected by the form of the sphere in the region of the measurement. A calculation was performed to understand the effect of the form of the sphere on the calculation of the sphere center. This calculation considers the sphericity with a frequency of 2 cycles per revolution (which represents the typical form of

§ RMS threshold setting is programmed in the laser tracker’s instrument software.
the spheres that are being used). This added to the radial distance from the center point of a sphere in a spherical coordinate system. Using a radius-constrained fit in the calculation yields a sensitivity coefficient (associated with the sphericity) of 0.204 for this particular form error. However, this sensitivity coefficient varies with the sampling strategy and nature of the form error of the steel sphere.

Uncertainty budget for the measurement of the distance between sphere centers

TABLE 3 lists the different sources of uncertainty, including the sources discussed in the previous sections. It also lists their standard uncertainty values, distributions and their corresponding contribution to the expanded uncertainty. It should be noted that some of the listed error sources result in the error in measurement of the position of a data point. For such sources (similar to the explanation given in section on laser tracker’s RMS error), the error in calculating the center of the sphere would reduce to 0.46 times the value of the error in the position of the point on the sphere.

Adding all the uncertainty terms in a root-sum-of-squares (RSS) manner will give a combined standard uncertainty (u_c) of 14.92 µm, and using a coverage factor of $k=2$ yields expanded uncertainty of 29.84 µm.

It may be observed that the major contributors to the uncertainty budget are the angular errors (in azimuth and elevation). It should also be noted that the form of the 4 inch steel sphere used in this experiment contributes very little to the overall uncertainty. However, obtaining such high quality spheres is very expensive. They are also very heavy and not amenable to mounting with a stem, oriented horizontally. Horizontal stem mounting is necessary to enable the laser scanners to measure a larger surface area of the sphere without being occluded by the mounting apparatus.

<table>
<thead>
<tr>
<th>Source of Uncertainty</th>
<th>Sphere A u_i (µm)</th>
<th>Sphere B u_i (µm)</th>
<th>Type</th>
<th>Distribution</th>
<th>Contribution \dagger</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Laser tracker: Range†</td>
<td>0.27</td>
<td>0.27</td>
<td>B</td>
<td>Uniform</td>
<td>0.1 %</td>
</tr>
<tr>
<td>2 Laser tracker: Azimuth†</td>
<td>7.17</td>
<td>7.17</td>
<td>B</td>
<td>Uniform</td>
<td>46.2 %</td>
</tr>
<tr>
<td>3 Laser tracker: Elevation†</td>
<td>7.17</td>
<td>7.17</td>
<td>B</td>
<td>Uniform</td>
<td>46.2 %</td>
</tr>
<tr>
<td>4 Laser tracker: Thermal drift</td>
<td>0.69</td>
<td>0.69</td>
<td>A</td>
<td>Gaussian</td>
<td>0.4 %</td>
</tr>
<tr>
<td>5 Laser tracker: R0 position</td>
<td>0.30</td>
<td>0.30</td>
<td>A</td>
<td>Gaussian</td>
<td>0.1 %</td>
</tr>
<tr>
<td>6 Laser tracker: RMS error</td>
<td>2.60</td>
<td>2.60</td>
<td>A</td>
<td>Gaussian</td>
<td>6.1 %</td>
</tr>
<tr>
<td>7 Repeatability of kinematic nest†</td>
<td>0.78</td>
<td>0.78</td>
<td>A</td>
<td>Gaussian</td>
<td>0.5 %</td>
</tr>
<tr>
<td>8 Form of the 1.5 inch SMR</td>
<td>0.31</td>
<td>0.31</td>
<td>B</td>
<td>Uniform</td>
<td>0.1 %</td>
</tr>
<tr>
<td>9 Thermal exp. of the 1.5 inch SMR</td>
<td>0.35</td>
<td>0.35</td>
<td>A</td>
<td>Gaussian</td>
<td>0.1 %</td>
</tr>
<tr>
<td>10 Form of the 4 inch sphere</td>
<td>0.47</td>
<td>0.47</td>
<td>B</td>
<td>Uniform</td>
<td>0.2 %</td>
</tr>
<tr>
<td>11 Thermal exp. of the 4 inch sphere</td>
<td>0.15</td>
<td>0.15</td>
<td>A</td>
<td>Gaussian</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Combined standard uncertainty (center calculation)</td>
<td>10.55</td>
<td>10.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expanded uncertainty (U_{pos2})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29.84</td>
</tr>
</tbody>
</table>

\dagger Contribution percentage = $(u_i/u_c)^2$

† From the manufacturer MPE values and accounting for the averaging effect explained in section on RMS errors. Rest of the sources of uncertainties are determined experimentally.

* These sources correspond to the errors in the center distance of a sphere without any averaging effect.
CONCLUSION

A method to determine the center-to-center distance of a sphere is developed and its uncertainty is described. This method is a building block in the development of a grid of spheres for evaluating the volumetric performance of laser scanners. All the uncertainty sources are listed and their corresponding contributions are calculated. The largest error observed using the 50 point sphere fit method was 16.3 µm, which is well within the 29.84 µm expanded uncertainty evaluated for the center-to-center distance of a 1956 mm length. We believe that this level of accuracy is sufficient to calibrate a grid of spheres for the evaluation of current technology of laser scanners.

Experiments are planned to reduce the major sources of uncertainty due to the angular errors of the laser tracker and also due to the anticipated errors due to lower quality spheres that may be used for the grid.

REFERENCES

[1] Scope document of the ASTM E57.02, “New test method for evaluating the point-to-point distance measurement error for a 3D imaging system” (Retrieved on July 14, 2014)
http://www.astm.org/DATABASE.CART/WORKITEMS/WK43218.htm

INTRODUCTION
The main goal of any machining operation is to produce interchangeable workpieces with maximum functionality at reasonable costs. Such need requires each workpiece or workpiece assembly of a final product to be manufactured according to predefined specifications for dimensions, geometry and surface finish [1].

A circular feature in a mechanical object is one of the most common geometric primitives and it has several functional advantages, such as its symmetry offering simplicity in assembly [2].

However, the geometric form of any manufactured will always deviate from its nominal design at some degree. In order to satisfy certain functional requirements or assembly conditions, geometric tolerances are usually assigned to some selected features which are particularly vital in high accuracy designs [3].

The development of instruments and procedures aiming to verify if these tolerances are in accordance with the design requirements is of utmost importance to ensure the interchangeability and functionality of the manufactured workpiece. In this context, the Coordinate Measuring Machines (CMM) is firmly established in the modern production process. Thanks to CMM it is possible to perform measurements which earlier demanded the use of specialized equipment. The time required to perform a measurement was reduced significantly over the years [4].

The coordinate measuring machines are fast, accurate, flexible and allow a reliable quality control. Nevertheless, their performance has been limited by several factors, which ones can have complex interactions, generating a so-called volumetric error [1]. The main error sources that can limit the performance of a CMM include hardware, workpiece, measurement strategy, computer program and external factors, such as environmental conditions and operator [5, 6, 7, 8].

Despite the different possible configurations of CMMs, their working principle is similar. They work by digitally storing the coordinates of the measurement points (X, Y and Z). Computational programs use these coordinates to calculate the desired feature (circle diameter, sphere diameter, distance, angle, form deviations, etc.) by fitting algorithms [1].

Four methods are commonly used to evaluate the diameter and circularity deviation: least square circle (LSC), minimum circumscribed circle (MCC), maximum inscribed circle (MIC) and minimum zone circle (MZC). Many researchers have devoted to developed different approaches to solve these four methods [2, 3, 9, 10, 11, 12, 13, 14, 15, 16].

These different fitting methods produce significantly different results, especially when measuring workpiece that show significant deviations form. If these algorithms are implemented incorrectly, they can generate fitting errors and numerical able to invalidate the results of measurements [8].

Commonly, the computer programs dedicated to MMCs are based on the least squares method since it requires less computational effort and has low sensitivity to the presence of outliers, and can also be applied to any geometry. However, over the years severe problems were identified with the performance of computer programs that use this method, since in many applications does not provide adequate results [8, 12, 17, 18].

The MCC method is more suitable for circle features that have a tighter requirement for its exterior while the MIC method is more
concerned with the interior surface. In turner, the ZM method complies with ANSI [19] and ISO [20] standards and yields smaller zone value than the other methods [13, 15].

Although the computer program of the MMC can be a critical source of errors, most users accept without question the graphs and statistical summaries provided, even not knowing clearly which mathematical methods were used to obtain the results [8, 12]. It is worth highlighting that there are no internationally accepted specifications to establish the integrity of computer programs [8].

This paper aims to evaluate the performance of the fitting methods LSC, MCC, MIC and ZM implemented in the computer program of a coordinate measuring machine, specifically in measuring the diameter of holes.

METHODOLOGY

The internal diameters of three steel ring gauges and three workpieces of aluminum, obtained by turning, were measured using a CMM, type moving bridge, manufactured by Mitutoyo, model BR-M443. The machine, shown in Fig. 1, has a resolution of 0.001 mm and a work volume of 400 mm (axis X), 400 mm (axis Y), 300 mm (axis Z).

![FIGURE 1. Coordinate Measurement Machine used in the experiments.](image)

According to the calibration certificate, nº 07081/13, the CMM used in the measurements has linear expanded uncertainties of (0.8+L/1500) µm and k = 2.03 for the X axis; of (0.8+L/3000) µm for the Y axis and k = 2.08; and of (0.9+L/3000) for the Z axis, k = 2.11. The probing error is 1.9 µm.

The computer program dedicated to the machine is the MCosmos 3.0®. For the measurements a single stylus was used with ruby sphere of 2 mm diameter.

The rings gauges are manufactured by Mitutoyo, with diameter of conventional value (CV) 15.996 mm, 30.002 mm and 40.000 mm, and have a calibration certificate nº 8262/10, 9330/10 and 8265/10, respectively, emitted by Metrology Laboratory Mitutoyo Sul Americana. The expanded uncertainty associated the calibration is 0.0010 mm for k = 2.00 and coverage probability of 95.45%.

Regarding the measurement strategy, the points were probed on a single cross section of the chosen feature. Thus, the Z axis of the machine was locked, so that the probe moved itself only in the plane XY. It were probed 12, 20 and 28 points in measurement of the rings gauges of 15.996 mm, 30.002 mm and 40.000 mm diameters respectively. For the workpieces 1, 2 and 3, it were probed 44 points.

The diameter conventional value of the aluminum workpiece was obtained in a universal length measuring machine, manufactured by Carl Zeiss. The resolution of this equipment is 0.2 µm and measurement range of 100 mm. According to the calibration certificate, nº 0009/1, emitted by Laboratory Dimensional Metrology of University Federal of Uberlandia, the expanded uncertainty associated the machine calibration is 0.4 µm for k = 1.96 and coverage probability of 95.45%.

All measurements were repeated five times. The measurements were carried out at a controlled environment with temperature of (20±1) °C [21]. A thermo-hygrometer with a digital increment of 0.1 °C and measurement range of (-20 to 60) °C was used to monitor the temperature. It has calibration certificate nº R4996/13, emitted by the Laboratory Temperature and Humidity Instrumentation Elus. The expanded uncertainty associated the calibration is 0.3 °C for k = 2.00 and coverage probability of 95.45%.

Evaluation of measurement uncertainty

In CMM measurement, the standard uncertainty associated with the coordinates of a point P combines in space and generates an uncertainty cloud that represents the tridimensional or volumetric uncertainty of this point, as shown in Fig. 2.
For evaluation of the measurement uncertainty of the diameter was applied the methodology proposed in Guide to the Expression of Uncertainty in Measurement [22]. The uncertainty was determined initially for the coordinates of measured points and then to the calculated diameter by means of the Eq. (1) and (2), in which Ci and D represent the coordinates of the points and the diameter, respectively.

\[
Ci = \Delta R + \Delta E_A + \Delta I + L_i \Delta \alpha \Delta T_{20} + L_i \Delta \alpha \Delta T
\]

(1)

\[
D = \Delta s(D) + \Delta R + \Delta E_A + \Delta I + L_0 \Delta \alpha \Delta T_{20} + L_0 \Delta \alpha \Delta T
\]

(2)

The variables of influence are: corrections associated to the CMM resolution (\(\Delta R\)); CMM probing system error (\(\Delta E_A\)); uncertainty associated with the CMM indication system (\(\Delta I\)); corrections associated with the difference between coefficients of thermal expansion of the scale and workpiece (\(\Delta \alpha\)); corrections due to the distancng of the temperature in relation to 20 °C (\(\Delta \alpha \Delta T\)); variability of the diameter considering the \(n\) measurement cycles (\(\Delta s(D)\)); coordinates of the point \(X\), \(Y\) or \(Z\) (\(L_i\)); mean value of the diameter (\(L_0\)).

The standard uncertainty related to \(\Delta s(D)\) can be calculated as shown in Eq. (3).

\[
s(D) = \frac{s}{\sqrt{n}}
\]

(3)

Where \(s\) is the standard deviation of the deviation readings and \(n\) is the total number of measurement cycles.

The correction due to the CMM resolution is given by Eq (4).

\[
u(\Delta R) = \frac{R}{2\sqrt{3}}
\]

(4)

The correction due to errors of the CMM probing system is given by Eq. (5).

\[
u(\Delta E_A) = \frac{E_A}{\sqrt{6}}
\]

(5)

The correction due to the uncertainty associated with the CMM indication system is given by Eq. (6).

\[
u(\Delta I) = \sqrt{\left(\frac{\Delta I_{(x)}}{k_{(x)}}\right)^2 + \left(\frac{\Delta I_{(y)}}{k_{(y)}}\right)^2 + \left(\frac{\Delta I_{(z)}}{k_{(z)}}\right)^2}
\]

(6)

The correction due to difference between coefficients of thermal expansion of the scale and workpiece is given by Eq. (7), where \(\alpha_p\) is the coefficient of thermal expansion of the workpiece and \(\alpha_E\) is the coefficient of thermal expansion of the scale.

\[
u(\Delta \alpha) = \frac{0.0\times(\alpha_p - \alpha_E)}{\sqrt{3}}
\]

(7)

Both variables related to environment temperature variation were measured using the same measurement system. Therefore, they were treated as correlated. The correction due to the distancing of the temperature in relation to 20 °C (\(\Delta T_{20}\)) is determined using Eq. (8), and the uncertainty due to temperature variation during measurement is given by Eq. (9).

\[
u(\Delta T_{20}) = \sqrt{\left(\frac{\Delta T}{2\sqrt{3}}\right)^2 + \left(\frac{\Delta R_T}{k_T}\right)^2 + \left(\frac{\Delta I_T}{k_T}\right)^2}
\]

(8)

\[
u(\Delta \alpha) = \sqrt{\left(\frac{\Delta T}{\sqrt{3}}\right)^2 + \left(\frac{\Delta R_T}{2\sqrt{3}}\right)^2 + \left(\frac{\Delta I_T}{k_T}\right)^2}
\]

(9)

Where \(\Delta T\) is the difference between the room temperature and 20 °C; \(\Delta R_T\) is the correction in relation to the thermometer resolution and \(\Delta I_T\) is the uncertainty associated with the thermometer indication system.
RESULTS AND DISCUSSION

The average diameters values obtained applying the four fitting methods during the measurement of the three rings gauges and the three aluminum workpieces are shown in Fig. 3a-c and 4a-c, as well the conventional value (CV) related. Also the values of the expanded uncertainty are presented (error bars) for 95% of coverage probability.

![Figure 3](image1)

Figure 3. Values obtained in the measurement of diameters of the rings gauge of conventional value: (a) 15.996 mm; (b) 30.002 mm; (c) 40.000 mm.

![Figure 4](image2)

Figure 4. Values of diameters obtained in the measurement: (a) workpiece 1; (b) workpiece 2; (c) workpiece 3.

From the analysis of Fig. 3 and 4, it is observed that the highest values of diameters were provided by the MCC fitting method and the lowest values by the MIC. This is because for both methods the presence of outliers affects the value of the feature fitted, agreeing with the mathematical principle of these algorithms.

Moreover, as the methods LSC and MZC have low sensitivity to the presence of outliers, these exhibited values of diameter intermediate when compared with the MCC and MIC.
In the measurement of ring gauges (Fig. 3) the MZC method was the most accurate, providing the lowest values of systematic error, these being of the order of 0 µm for the ring gauges of conventional value 15.996 mm and 30.000 mm, and -1 µm for the ring gauge of conventional value 40.000 mm.

On the other hand, the MIC method provided higher values of systematic error, being 4 µm for the ring gauges of conventional value 15.996 mm and 30.000 mm, and 6 µm for the ring gauges of conventional value 40.000 mm. Therefore, the MIC was the method least accurate. The error values obtained can be considered suitable since the volumetric uncertainty associated the measurement of these rings assume maximum value of 1.2 µm. These results were expected since the ring gauges exhibit small circularity deviation.

Regarding the measured workpieces (Fig. 4), the systematic error is considerably greater than that found in measurement of the ring gauges, assuming maximum values for the MIC method, being of -90 µm, -70 µm and -74 µm for the workpieces 1, 2 and 3, respectively. In contrast, the MCC method showed the smallest systematic errors, of the order of 24 µm for the workpiece 1, 16 µm for the workpiece 2 and -30 µm for the workpiece 3.

Considering that the workpieces have quality IT9 and tolerance field JS, with tolerance equal to 74 µm, it is noted that for the workpiece 1 the MCC method gave a value of greater diameter than the maximum diameter specified (70.037 mm), whereas for the workpieces 1 and 2 the MIC method provided values smaller than the minimum diameter allowed (69.963 mm).

Thus, if these fitting methods were used for the determination of the substitute geometry, the workpieces 1 and 2 would fail. On the other hand, the LSC and MZC method would enable to assign all pieces the condition of approved or within tolerance.

Therefore, while in the measurement of the ring gauges the CMM has shown adequate metrological performance, in measurement of workpieces it was compromised. This is justified due to workpieces present significant circularity deviations (Fig. 5).

So, during the measurement of workpieces presenting open geometric tolerances, should be know all the particularities and limitations of the fitting methods used in computational programs. Those produce results significantly different, what may lead to rejection of workpieces with dimensions within of the project specification.

Considering a coverage probability of 95%, the values of expanded uncertainty associated with the measurement of the diameters are small and similar for the ring gauges and workpieces, following the bias of the experimental standard deviation. For the ring gauges, the expanded uncertainty assumed value of 0.002 mm, for all fitting methods. As for the workpieces, the maximum value of uncertainty was obtained for the method MIC, being of 0.005 mm for the workpieces 1 and 2.

The component that most contributed to the final uncertainty of the measurement, in all cases, was the variability of the diameter values. To minimize this effect it recommended an increase to the number of replica.

CONCLUSIONS
Under the conditions of the experiments performed, the MZC method showed the best performance during the measurement of the ring gauges, while the MCC method was more efficient during the measurement of workpieces with significant circularity deviations.

This work showed that the performance of computer programs (fitting methods) cannot be evaluated using standard artefact that have high dimensional and geometrical accuracy.
ACKNOWLEDGMENTS
The authors thank the institutions CAPES, CNPq and FAPEMIG for financial support. Also thank the Faculty of Mechanical Engineering of Federal University of Uberlandia.

REFERENCES
POINT REMOVAL FOR FITTING SPHERES TO 3-D LASER SCANNER DATA

M. Shilling, B. Muralikrishnan, D. Sawyer
Semiconductor and Dimensional Metrology Division
National Institute of Standards and Technology
Gaithersburg, MD 20899, USA

ABSTRACT
The proliferation of laser scanners in a number of industries such as the metrology of large artifacts, digitization and reverse engineering, historical preservation and archiving has led to the need for documentary standards to establish and compare the performance of laser scanners. Volumetric performance can be established by measuring a set of point to point distances. With laser scanners, the points are not directly measured but instead derived from finding the best-fit center coordinates of spheres that are within the measurement volume of the scanner. Laser interaction with spherical targets leads to a number of target-dependent errors that are particularly predominant where the angle between the laser beam and the sphere normal (angle of incidence) is high. In an effort to eliminate data points that adversely affect the center coordinate of the best-fit sphere to the data, we will investigate the impact of removing the data points from areas of high angle of incidence.

INTRODUCTION AND MOTIVATION
In volumetric performance evaluation, we are interested in determining the systematic error arising from geometric misalignments within the system. [1] Different laser scanners will interact with targets differently depending on the properties of the target including form, surface texture, color, reflectivity, and orientation. To determine errors introduced by misalignments, it is important to minimize the contribution of errors resulting from the optical, material, and physical properties of the target. Typical target materials are chosen to minimize specular reflection and typically have a matte white or matte metallic surface.

For the laser scanners that are used in this test, the beam diameter is approximately 3 mm as it exits from the laser scanner with a divergence angle between 0.19 mrad to 0.22 mrad. The data presented were taken between 2 m and 5 m away from the scanner, giving a spot size between 3 mm and 4 mm at the target. Point spacing is typically smaller than the laser spot size, thus neighboring data points are derived from reflections of overlapping regions of the sphere.

At the edges of the sphere (as seen by the laser scanner), the laser beam may reflect off of both the sphere and an object in the background, creating what is called a “mixed pixel” [2]. Because these points are not purely a representation of the sphere, they are not appropriate to include when determining the center coordinate of the sphere. Also at the edges of the sphere, the angle of incidence is higher, causing a decrease in the intensity of return signal and thus a decrease in the signal to noise ratio [3]. In addition, at the edges of the visible portion of the sphere, the distance from the target to the scanner and the angle of incidence (thus the amount of light returning) changes rapidly within a single laser beam footprint, making it difficult to correctly interpret the return signal.

METHODOLOGY
We are interested in determining the effect of removing the outside portion of the sphere data on the best-fit center coordinate. Removing the outside portion of the data will remove the data points which are subject to errors from mixed pixels as well as a lower signal to noise ratio.

Typically, the data from a laser scanner does not include data from the entire hemisphere. FIGURE 1(a) shows a blue target sphere and a gray area that represents the data points generated by the scanner. We are interested in excluding the outside points, leaving the dark gray center section for analysis.

To remove outside points, we construct a right cone with an opening angle of \(\theta \), see FIGURE 1(b), whose axis is the line connecting the origin at the scanner and the center of the sphere, as
determined by a fit of the data with points that have high residuals removed. The opening angle of the right cone, θ, will be referred to as the cone angle in this paper. Points that lie outside the constructed cone are excluded and the center coordinate of the best-fit sphere to the remaining data is found using two different fitting methods; a constrained radius fit that allows only the center location to vary and an unconstrained radius fit that allows both the center location and the diameter to vary. In both cases, the sum of the squares of the orthogonal distances from the data points to the best-fit sphere is minimized. In this work, the cone angle is varied from 60° to 150°, in steps of 1°.

FIGURE 1. Data points in the light gray region will be excluded from the data set used to find the best-fit center coordinate (dark gray region) based on their location on the sphere (light blue). A cone angle, θ, is used to describe the range of included data. The figure above shows a front (a) view and side view (b).

Three laser scanners were used in this testing. All three are of a similar mechanical design that incorporates a laser source and a spinning mirror on a platform that can rotate about the vertical axis. The spinning mirror rotates about a horizontal axis, allowing the light source to sweep a vertical path covering as much as 310° of rotation (depending on the particular scanner). The scanner platform allows rotation of the unit about a vertical axis, covering 360° of rotation. Typically, the area around the base of the scanner is not part of the scan volume.

The scanners were used to collect data from a 100 mm diameter hollow aluminum sphere that was painted white by the manufacturer to create a diffuse surface. Manufacturer’s software was used to export (x,y,z) data sets that include the sphere of interest. The data set was then segmented from the large volume scan using software written specifically for this work, extracting the region that represents the sphere of interest.

RESULTS

Laser Scanner 1
The first laser scanner (LS1) measured the sphere at 56 points per degree (ppd) in both the horizontal and vertical directions from a distance of approximately 2 m, yielding 17,661 data points on the 100 mm diameter sphere.

At each cone angle, constrained and unconstrained fits were performed. The constrained fit was performed with three different radii (49 mm, 50 mm, and 51 mm) in order to determine the impact of an incorrect constrained radius on the results. FIGURE 2 shows movement of the center coordinate at each cone angle with respect to the center coordinate calculated using the full data set for LS1. The full data set has not had any mixed pixels removed. Examination of the figure shows that the center coordinate for the constrained
radius fit at the nominal radius (50 mm) moves a maximum of approximately 150 µm, 330 µm for r = 51 mm, 200 µm for r = 49 mm and 630 µm for the unconstrained radius fit.

This movement can be broken down in spherical coordinates, looking at the horizontal, vertical, and ranging directions separately. This is shown in FIGURE 3 for the constrained fit with nominal radius. There is minimal movement in the vertical direction, a total movement of about 120 µm in the horizontal direction and 80 µm in the radial direction.

The center coordinate movement, broken down by direction, for the unconstrained fit is shown in FIGURE 4. Again there is minimal movement in the vertical direction. In the horizontal direction there is a total movement of about 130 µm, of similar magnitude as in the constrained fit. However, the movement in the radial direction is significantly higher, 620 µm, which accounts for the difference in the overall center movement between the two fitting methods.

The residuals from the nominal-radius constrained best-fit of the full data set are shown in FIGURE 5. The largest residuals are along the right edge of the data and represent mixed pixels. FIGURE 6 shows the best-fit residuals at 140° cone angle. The edge points, including the mixed pixels, have been removed. The residuals appear to vary with incident angle. This may be due to the interaction of the sphere with the surface, an error in the constrained radius value,
or related to the sphericity value of the target sphere, which is known to be approximately 0.25 mm for these targets.

Laser Scanner 2

A second scanner (LS2) was used to scan the same target at 56 ppd and 2 m, yielding 17 292 data points on the 100 mm diameter sphere. The difference in absolute center movement for the constrained and unconstrained fits is larger than for LS1 (FIGURE 7) but, like LS1, that difference is largely in the radial direction (see FIGURE 8 and FIGURE 9).

![FIGURE 7: Center Movement (in micrometers) from full data set for LS2.](image)

![FIGURE 8: Center coordinate movement in micrometers by direction for the constrained fit of LS2 data at nominal radius value.](image)

![FIGURE 9: Center coordinate movement in micrometers by direction for unconstrained fit of LS2 data.](image)

![FIGURE 10: Oblique view of full data set for LS2. A large number of mixed pixels are evident, both in front of and behind the surface of the sphere.](image)

![FIGURE 11: LS2 best-fit residuals, in micrometers, for nominal-radius constrained best-fit at 140° cone angle.](image)
The data set has a large number of mixed pixels at the edges of the data set as seen in FIGURE 10. These pixels exist both in front of and behind the surface of the target. The residuals of a fit of the data with a cone angle of 140° are shown in FIGURE 11. The magnitude is significantly higher than that of LS1, ±2500 μm vs ±400 μm. The results do not indicate any systematic variation of the residuals with incident angle.

Laser Scanner 3

A third scanner (LS3) was used to scan the same target at 56 ppd and 2 m, yielding 15 301 data points on the 100 mm diameter sphere. The difference in absolute center movement for the constrained and unconstrained fits is larger than for the other two scanners (see FIGURE 12) and, again, the difference is largely in the radial direction (see FIGURE 13 and FIGURE 14).

![FIGURE 12. Center Movement (in micrometers) from full data set for LS3.](image)

![FIGURE 13: Center coordinate movement, in micrometers, by direction for the constrained fit of LS3 data at nominal radius value.](image)

![FIGURE 14: Center coordinate movement, in micrometers, by direction for unconstrained fit of LS3 data.](image)

![FIGURE 15: Side view of full data set for LS3. A large number of mixed pixels are evident, both in front of and behind the surface of the sphere.](image)

The data set has a large number of mixed pixels at the edges of the data set as seen in FIGURE 15. Unlike LS2, these mixed pixels are almost exclusively behind the surface of the target. The residuals from a fit of the data with a cone angle of 140° are shown in FIGURE 16. The magnitude is similar to LS2; however residuals appear to vary with incident angle. Because of the magnitude, it is unlikely that this is due to form error of the sphere or an incorrect constrained radius, and is instead likely due to the interaction of the scanner with the target or the processing of the return signal.
FIGURE 16: LS3 best-fit residuals, in micrometers, for nominal-radius constrained best-fit at 140° cone angle.

DISCUSSION AND CONCLUSIONS
One of the more striking things about these results is the significant difference in the data from the three laser scanners, especially as it relates to the location and quantity of mixed pixels. LS1 has very few mixed pixels and has relatively small residuals once the edge data is removed. LS2 has more mixed pixels, both in front of and behind the target surface, as well as significantly higher residuals when compared to LS1. LS3 has significant mixed pixels, mostly behind the surface of the target and residuals of the same magnitudes as LS2. The higher residuals from LS2 and LS3, when compared to LS1, are expected and in line with the relative noise specifications of the three scanners. Interestingly, LS1 and LS3 both show a spatial variation in the magnitude of the residuals. In the case of LS1, this may be a result of the form of the target, the radius used in the constrained best-fit, the interaction of the scanner with the target, or the processing of the signal returning from the target. In the case of LS3, because the magnitudes of the residuals are significantly higher, the systematic variation is likely due to the interaction of the scanner with the target or the processing of the return signal.

It is important that the algorithm used to remove mixed pixels performs consistently independent of the scanner under test. Removing data based on cone angle is one method that can effectively remove mixed pixels across substantially different data sets. Selection of an optimal cone angle will require further work to understand the interaction between the laser scanners and spherical targets.

The results presented in this paper make a strong case for the use of a constrained-radius fitting algorithm. Even with a ±1 mm variation of the constrained best-fit radius, the movement in the center coordinate using a constrained fit is lower than that of an unconstrained fit, significantly lower in most cases. However, there are other aspects of the data evaluation process that need to be considered when selecting a fitting algorithm as well as other non-orthogonal fitting algorithms that need to be considered. These may indicate that an unconstrained best-fit outperforms a constrained best-fit. This work is ongoing.

DISCLAIMER
Commercial equipment and materials may be identified in order to adequately specify certain procedures. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

ACKNOWLEDGEMENTS
Thanks to Geraldine Cheok and Kamel Saidi both with the National Institute of Standards and Technology for providing equipment and assistance in support of this work.

REFERENCES
FUNDAMENTAL STUDY OF STRUCTURAL HEALTH MONITORING BY LAMB WAVES PROPAGATION

Mamoru Shimazaki1, Makoto Sakamoto1, and Manabu Ono1
1Department of Mechanical Systems Engineering, Tokyo Metropolitan College of Industrial Technology 1-10-40, Higashi-oi, Shinagawa-ku, Tokyo 140-0011, Japan

INTRODUCTION
Structural health monitoring by Lamb waves propagation was proposed to detect various damages with thickness changes of structural members such as corrosion wastages in piping structures, debondings in carbon fiber reinforced plastic bonding structures, and so on. In the monitoring, the Lamb waves were propagated in the structural members, and damages were detected by using changes of modal dispersions of received Lamb waves propagated through the damages. As the first phase in this study, damage length detection tests using aluminum plate specimens were carried out.

ULTRASONIC WAVE PROPAGATION SYSTEM
Figure 1 shows an ultrasonic wave propagation system used in this study. In the system, as shown in Figure 2, macro fiber composites (MFC) consisting of ultra-thin PZT fibers were used as ultrasonic wave transmitting actuators and receiving sensors. The MFC is extremely thin, lightweight, and flexible because of their high fracture strain. Therefore, MFCs were suitable for the structural health monitoring.

LAMB WAVES PROPAGATION TESTS
As shown in Figure 3, an aluminum plate specimen of an 8 mm thickness was used in the propagation tests. Two MFCs as an actuator and two MFCs as a sensor were attached to the top and bottom surfaces of the specimen. The distance between the actuators and the sensors was 60 mm.
Figure 4 shows the theoretical dispersion curves of the Lamb waves which propagate through the aluminum (A5052). As shown in the figure, symmetric (S) and antisymmetric (A) modes are overlapped, and it is seemed to be extremely difficult to identify each mode from the experimental results. Hence, MFCs as actuators were attached to the top and bottom surfaces of the specimen to be excited in the same phase or opposite phase to enable propagation of only the S modes or A modes.

In addition, MFCs as sensors were also attached to the top and bottom surfaces, and by taking the sum and difference between the two received waveforms, it was possible to separate the S modes and A modes. This modal separation method enabled comparatively easy modal identification.

As shown in Figure 5, an input voltage signal to the MFC actuators was one cycle of a 400 kHz sinusoidal wave with hamming window. This signal was a broadband signal which has frequency range from 100 to 800 kHz.

In the tests, propagated Lamb waves were received by the MFC sensors, and the modal dispersion characteristics were obtained by the wavelet transform. As shown in Figures 6 and 7, S0, S1, A0 and A1 modes were identified by the comparing experimental results with its theoretical dispersion curves.
DAMAGE LENGTH DETECTION TESTS

As shown in Figure 8, aluminum plate specimens of an 8 mm thickness were used in the detection tests. In these specimens, various damages of a length \(L \) (=10, 20, 30, 40, 50, 60 mm) to simulate the corrosion wastages in the piping structures were produced artificially.

In each specimen, two MFC actuators and two MFC sensors were also attached to the both surfaces, and a distance between the actuators and the sensors was 120 mm. By preliminary tests, it was demonstrated that the \(S_0 \) mode in the intact area was converted to the \(S_0 \) mode in the damaged area.

Figure 9 shows the relationships between theoretical propagation velocity and propagation frequency when \(S_0 \) mode was propagated the intact and damaged area. From Figure 9, the propagation velocity around 350 kHz of the \(S_0 \) mode in the damaged area was about 5 km/s, on the other hand, that of the \(S_0 \) mode in the intact area was about 2 km/s, it was the only modal conversion with a large difference in propagation velocity.
When the damaged length is different, propagation distance ratio between the damaged area and intact area was also changed, and thus it was expected that the arrival time of the S_0 mode received at the intact area is changed. Damage length detection tests were carried out for the specimens.

Figure 10 shows the modal dispersion characteristics received by the MFC sensors when damaged length L was 20, 40 and 60 mm respectively. Figure 11 shows the relationship between the damaged length L and the arrival time of the S_0 mode. It was confirmed that as the damaged area lengthens, the arrival time of the S_0 mode becomes shorter.

CONCLUSION

When we focused on modal conversions with a large difference in propagation velocities, it was found that there was a major difference in arrival time depending on the damaged length. Therefore, the possibility of quantitative detection of the damaged length was demonstrated.

REFERENCES

DIFFERENTIAL SCANNING CALORIMETRY

Differential scanning calorimetry (DSC) is a thermal technique for analyzing changes in the physical and/or chemical properties of materials as a function of a change in energy. This requires heating the sample under test as well as a reference sample, in separate crucibles (sample pans), keeping both samples at the same temperature, comparing the amount of energy input as a function of time. This is commonly used to investigate the phase transitions of a material, such as melting or crystallization. It is also used to investigate more subtle changes such as glass transitions or chemical changes such as oxidation.

The crucible used for differential scanning calorimetry is a key component of the system because its physical properties impact changes in the material being analyzed. For example, thermal gradients across a non-uniform crucible surface and/or changes in mass transfer rates near a rough crucible surface, impacting chemical reaction processes. Measurement of the surface topography of the crucible surface enables understanding of how the topography impacts the DSC measurement results. This allows grading of the quality of the crucible, with high performance crucibles used for measurements that require high measurement precision. This paper discusses a method for measurement of the surface topography, calculations to quantify the surface topography, and the impact of the crucible topography on DSC measurement performance.

MICROXAM-800 OPTICAL PROFILER

The MicroXAM-800 is a 3D optical profiler that uses White Light Interferometry (WLI) technique to generate high-resolution height maps. This is also known as Coherence Scanning Interferometry (CSI). The principle of operation, as shown in Figure 1, is based on splitting a beam of incoherent light into two beams, redirecting one to reflect from a reference mirror and the other to reflect from the sample surface. After reflecting, the beams travel to the CCD camera, where each pixel acts as an independent light detector. The light recombines coherently when the path distances for the two beams are matched. The resulting interference pattern at each camera pixel contains high resolution height information about the corresponding surface point. By sweeping the objective's vertical position by a known distance, different pixels in the camera view will go in and out of coherence at a known height. This produces a high resolution 3D surface image, constructed across all pixels of the camera.

Measurement Setup

Four DSC crucibles were measured on the MicroXAM-800 for shape and texture. Four crucibles were provided for analysis, two from each vendor, with each vendor providing one each of standard and advanced quality.
Crucible 1 – Standard Sample from Vendor A
Crucible 2 – Standard Sample from Vendor B
Crucible 3 – Advanced Sample from Vendor A
Crucible 4 – Advanced Sample from Vendor B

The MicroXAM-800 was equipped with a 5x Michelson objective with the field of view (FoV) of 1427 x 1091 µm. This setup has a XY lateral resolution of 3.7 µm and a sub-nanometer Z vertical resolution. The crucible shape measurements required using a 6 x 6 stitching grid that combines multiple fields of view to cover the entire surface of each DSC crucible. The texture scans utilized a single FoV measured at the center of the crucible as its texture is representative of the full surface.

Crucible Shape

Figure 2 shows a 3D view of each crucible’s surface shape using the 5x objective and 6 x 6 grid stitching. This covers an area of approximately 6 x 6 mm, the entire surface of a crucible. Note that the vertical range is different for each crucible, as indicated in the vertical scale next to each crucible. The surface flatness for crucibles 1 and 3 are similar, with a flatter overall topography when compared to crucibles 2 and 4.

![Crucible Shapes](image)

FIGURE 2. 3D View of the Crucible Shapes.

The crucible flatness was calculated using ISO 12781 calculation definitions. The flatness parameters shown in Table 1 are measured in microns, (also known as µm or micrometers). The parameters shown are FLTq – root mean square (RMS) flatness deviation, FLTp – maximum peak height, FLTv – maximum valley height, with FLTp and FLTv calculated from the mean plane of the surface, and FLTt – total height of the surface.

TABLE 1. Flatness Parameters in Microns.

<table>
<thead>
<tr>
<th>Crucible(s)</th>
<th>FLTq</th>
<th>FLTp</th>
<th>FLTv</th>
<th>FLTt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.4</td>
<td>7.9</td>
<td>11.1</td>
<td>19.0</td>
</tr>
<tr>
<td>2</td>
<td>18.2</td>
<td>32.3</td>
<td>57.3</td>
<td>89.5</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>13.3</td>
<td>18.7</td>
<td>32.0</td>
</tr>
<tr>
<td>4</td>
<td>18.8</td>
<td>42.8</td>
<td>54.9</td>
<td>97.6</td>
</tr>
</tbody>
</table>

Figure 3 shows the bow across the diameter of each crucible. The 2D profile size is 6 mm, covering the diameter of each crucible surface. The vertical range is set to a total of 150 µm for each crucible to allow direct comparison between crucibles. The 2D profile data was extracted from the 3D crucible shape, shown in Figure 2. For each crucible, two profiles were extracted, with first extracted across the diameter and the second perpendicular to the first, with the orientation set to capture the maximum bow of the crucible in one of the profiles.

![Crucible Bow](image)

FIGURE 3. 2D View of the Crucible Bow.

Table 2 summarizes the bow measurement data. The bow measurement results show the same trend as the flatness data taken across the
entire surface that was shown in Figure 2 and Table 1.

TABLE 2. Bow Measurements in Microns.

<table>
<thead>
<tr>
<th>Crucible(s)</th>
<th>Bow Left</th>
<th>Bow Right</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.6</td>
<td>15.8</td>
<td>Bowl</td>
</tr>
<tr>
<td>2</td>
<td>77.9</td>
<td>48.9</td>
<td>Roller</td>
</tr>
<tr>
<td>3</td>
<td>16.3</td>
<td>13.5</td>
<td>Saddle</td>
</tr>
<tr>
<td>4</td>
<td>45.3</td>
<td>38.0</td>
<td>Saddle</td>
</tr>
</tbody>
</table>

Surface Texture

Figure 4 show a top-down view of the surface texture on the top of each crucible using a single FoV with the 5x objective. This covers an area of 1427 x 1091 µm for each crucible surface. Note that the vertical range is the same for all crucibles, as indicated in the vertical scale next to crucible 4. The surface texture for crucibles 1 and 3 are similar, randomized roughness. In contrast, the surface texture on crucibles 2 and 4 have an obvious pattern.

FIGURE 4. Top-Down View of the Crucible Roughness.

The surface roughness was calculated using ISO 25178 calculation definitions. The roughness height parameters shown in Table 3 are measured in microns. The parameters shown are Sq – root mean square (RMS) surface roughness, Sp – maximum peak height, Sv – maximum pit height, with Sp and Sv calculated from the mean plane of the surface, and Sz – total height of the surface.

TABLE 3. Roughness Parameters in Microns.

<table>
<thead>
<tr>
<th>Crucible(s)</th>
<th>Sq</th>
<th>Sp</th>
<th>Sv</th>
<th>Sz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.41</td>
<td>5.91</td>
<td>2.92</td>
<td>8.83</td>
</tr>
<tr>
<td>2</td>
<td>0.64</td>
<td>9.70</td>
<td>5.72</td>
<td>15.41</td>
</tr>
<tr>
<td>3</td>
<td>0.34</td>
<td>1.95</td>
<td>2.93</td>
<td>4.87</td>
</tr>
<tr>
<td>4</td>
<td>1.30</td>
<td>4.09</td>
<td>4.05</td>
<td>8.15</td>
</tr>
</tbody>
</table>

Texture direction is a function that calculates the Fourier Transform Modulus (frequency spectrum) of the surface topography, summing the energy of the spectrum as a function of angle. When this is combined with a calculation of the surface isotropy, it enables determination of whether the highest energy angles represent a statistically significant calculation; an isotropy value of less than 30%. The isotropy percentage is the ISO 25178 Str parameter, but converted to a percentage.

The results of the texture direction calculations are shown in Figure 5 and Table 4. Note that angle axis is the same for each crucible, as indicated on the scale for crucible 4, 0 to 180° when moving counterclockwise. For the crucibles with a low isotropy, the angle closest to the highest energy is shown in the figure, with the exact angle shown in Table 4. Crucibles 1 and 3 have very random surface topographies, with nearly uniform directional energy. Alternatively, crucibles 2 and 4 have structured surfaces with a high directional energy in one angle.

FIGURE 5. Crucible Texture Direction
Table 4. Texture Direction Measurements.

<table>
<thead>
<tr>
<th>Crucible(s)</th>
<th>Isotropy</th>
<th>Texture Direction</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76.1%</td>
<td>n/a</td>
<td>Random</td>
</tr>
<tr>
<td>2</td>
<td>25.7%</td>
<td>53.5°</td>
<td>Directional</td>
</tr>
<tr>
<td>3</td>
<td>73.7%</td>
<td>n/a</td>
<td>Random</td>
</tr>
<tr>
<td>4</td>
<td>58.7%</td>
<td>12.2°</td>
<td>Directional</td>
</tr>
</tbody>
</table>

Conclusion

The MicroXAM-800 is able to discern differences in the shape and texture of the crucibles from vendor A and vendor B as well as differences in the standard and advanced crucibles. The crucibles from vendor A, crucibles 1 and 3 have a flatter surface topography as shown by the flatness measurements and the bow measurements on the crucible surface. In addition, the crucibles from vendor A have a smoother texture, as shown by the RMS roughness calculation as well as a randomized texture, as shown by the large isotropy values. Similar trends are seen when comparing the standard and advanced crucibles from both vendors, with the advanced crucibles have a flatter surface topography and a smoother roughness. This leads to better heat and mass transfer, resulting in more precise DSC analysis when using the crucibles from vendor A, and in particular the advanced crucible from vendor A.

References

None
INFLUENCE OF THE PHOTODETECTOR GEOMETRY ON THE DEFLECTION MEASUREMENT IN ATOMIC FORCE MICROSCOPES

Juergen Steininger, and Georg Schitter
Automation and Control Institute (ACIN)
Vienna University of Technology
Vienna, Austria

INTRODUCTION
The atomic force microscope (AFM) [1] is a very important tool for imaging [2], metrology [3], and manipulation of matter [4][5] on the nanometer scale under various environmental conditions.

FIGURE 1. Schematic of an atomic force microscope
The working principle of an AFM (Fig. 1) is to probe the surface of a sample by a sharp tip mounted on the free end of a micro cantilever while raster scanning the sample and tip relatively to each other. The interaction between the tip with a radius of only a few nanometers and the sample comprises several attractive and repulsive forces such as Van der Waals forces and Pauli repulsion [6]. The deflection of the cantilever typically is measured by an optical lever system [7][8], in which a laser beam is reflected off the back of the cantilever onto a quadrant photodetector (QPD), which consists of four photodiodes that are separated by a small gap of typically 30 μm to 130 μm (Fig. 1). As the distance s between the cantilever and the QPD is much longer than the length of the cantilever, the small angular deflection of the cantilever is geometrically amplified [6].

Optimizations on the optical lever system have shown that a deflection noise density as low as 17 fm/√Hz is possible [9]. Furthermore the range of systems with a high sensitivity can be extended by the use of an array detector [10]. As the capacitance of the QPD influences the detection bandwidth [9], in [11] a method is proposed to reduce the spot size on the QPD enabling utilization of smaller QPDs with a lower capacitance.

This publication analyzes the influence of the gap separating the photodiodes for a small laser spot size on the QPD. To find the optimal spot size, in a first step an analytic expression for the output signal of the detection circuit is obtained. In a second step the sensitivity given by the directional derivative of the output signal is discussed with respect to the relation between the spot size and the gap width. In a third step design rules are derived in order to maximize the system performance.

THE DEFLECTION MEASUREMENT
In the optical lever system a laser beam is reflected off the back of the cantilever onto a QPD. The total radiant power $\phi_{e,i}$ of each photodiode leads to a small output current I_i in the order of 100 μA. Usually a transimpedance amplifier [12] with the transimpedance R converts the current I_i into a voltage $U_i = R \cdot I_i$. The vertical and horizontal position of the laser spot on the QPD (representing deflection and friction) can be measured by a detection circuit generating the output voltage [12]

$$U_{\text{vert}} = \frac{(U_A + U_B) - (U_C + U_D)}{U_A + U_B + U_C + U_D}$$

and

$$U_{\text{horiz}} = \frac{(U_A + U_D) - (U_B + U_C)}{U_A + U_B + U_C + U_D}.$$

Although the deflection of the laser spot is proportional to s, the measured deflection signal depends on the spot size of the laser beam on the QPD too. Fig. 2 shows that the same displacement Δy of a laser spot on the QPD leads to a different output signal depending on the spot size.
The smaller spot on the left side of Fig. 2 causes a full scale step of the output signal while the same displacement of the bigger spot causes a much smaller variation in the output signal. The measured output signal increases as the laser spot diameter on the QPD decreases because the output signal of the QPD is proportional to the total irradiation and independent of the spatial distribution on the certain quadrant. Therefore the centroid of the spot on the quadrant does not affect the measured signal. Although the sensitivity is higher for the small spot of the left side of Fig. 2, the range is reduced.

FIGURE 2. The same displacement Δy of the laser spot leads to a different deflection signal depending on the spot size.

As the laser beam is usually focused on the back of the cantilever with a spot size D_0, the reflected beam is diverging over the distance s. If the distance s is much greater than $\pi D_0^2/4\lambda$ [13] with the wavelength λ, the beam diameter and the displacement of the laser spot on the QPD are both proportional to s and the sensitivity is limited by the divergence of the beam. Additionally an increased spot size requires a larger detection area which leads to an increased capacitance of the photodetector limiting the achievable bandwidth of the optical readout system [9]. However, an additional lens in the optical path can be used to reduce the spot size on the QPD [11].

THE DEFLECTION SIGNAL

To analyze the relation between the spot size and the geometry of the QPD, the output voltage of the detection circuit has to be expressed with respect to these properties. Assuming that the beam reflected of the back of the cantilever is a Gaussian beam, the intensity distribution on the QPD can be defined using the spot width $2w(s)$ with a beam waist of $2w_0$. The intensity on a point (x, y) on the QPD is

$$I(x, y, s) = I_0 \left(\frac{w_0}{w(s)}\right)^2 e^{-2\left(\frac{x^2+y^2}{w(s)^2}\right)}$$

where I_0 is the intensity at the center of the beam waist.

FIGURE 3. Infinitely large QPD with photodiodes A, B, C and D separated by finite gaps of $2a$.

As this analysis focuses on a maximum spot size around ten times the gap width, which is small compared to the area of the QPD, without loss of generality an infinitely large QPD as shown in Fig. 3 can be considered. The four photodiodes A, B, C and D are separated by a gap of $2a$. The output current for each photodiode is proportional to the total incident power that can be calculated by integrating the intensity $I(x, y, s)$ over the respective photodiode as shown in Fig. 3. For a displacement of the laser spot by $(\Delta x, \Delta y)$ with respect to the separation gap the output of the detection circuit

$$U_{vert} \propto [f(-\Delta x) - f(\Delta x)] [f(-\Delta y) - f(\Delta y)]$$

and

$$U_{horiz} \propto [f(-\Delta y) - f(\Delta y)] [f(-\Delta x) - f(\Delta x)]$$

where

$$f(\delta) = \text{erf} \left(\frac{\sqrt{2}(a + \delta)}{w(s)} \right)$$

with the error function

$$\text{erf} = \frac{2}{\sqrt{\pi}} \int_0^\infty e^{-\tau^2} d\tau.$$

Fig. 4 shows the calculated output voltage U_{vert} with respect to the displacement of the laser spot for an exemplary spot size ten times the gap width. The steep area around the horizontal axis would indicate...
\((\Delta y = 0)\) shows the almost linear range of the deflection measurement. If the spot moves out of the linear range the output of the QPD starts to saturate.

FIGURE 4. Output voltage \(U_{\text{vert}}\) with respect to the displacement of the laser spot with a spot size ten times the gap width \(w(s) = 10a\).

A reduction of the output voltage by 16% can be seen when the spot moves along the vertical separation gap which covers the high intensity center of the beam. If the spot size is equal to the gap this effect becomes more prominent as shown in Fig. 5. In comparison to Fig. 4, the output voltage along the vertical gap drops by 95%, as the gap width is on the same order of the spot size. Additionally a saddle point along the horizontal axis \((\Delta y = 0)\) can be seen and the steep parts are shifted towards the edges of the separation gap.

FIGURE 5. Output voltage \(U_{\text{vert}}\) with respect to the displacement of the laser spot with a spot size equal to the gap width \(w(s) = a\).

THE POSITION DEPENDENT SENSITIVITY

To get the maximum sensitivity, the dependence on the relation between the spot size and the geometry of the QPD is discussed.

The directional sensitivity is a measure for the change of the output voltage due to a displacement of the laser spot in the corresponding direction. The directional sensitivity to a change in the vertical or horizontal direction is given denoted by the derivative of the position dependent output in the respective direction:

\[
S_{\text{vert}} = \frac{dU_{\text{vert}}(\Delta x, \Delta y)}{d\Delta y} \quad S_{\text{horiz}} = \frac{dU_{\text{horiz}}(\Delta x, \Delta y)}{d\Delta x}
\]

A spot size ten times the gap width

FIGURE 6. Directional sensitivity to a vertical displacement of the laser spot on the QPD with a spot size ten times the gap width \(w(s) = 10a\).

If the lateral displacement is of interest too, both, vertical and horizontal sensitivities should be as
The optimal spot size depends on several parameters including measurement range [10], bandwidth [9], and sensitivity [11]. In [10] the measurement range is defined by a lower and upper detection limit. A smaller spot on the QPD reduces the detection limits (high sensitivity, small range) while a larger spot increases the detection limits (low sensitivity, large range). As the AFM is usually operated in feedback a small spot size leading to high sensitivity, can be considered as more important than a large measurement range.

The bandwidth of the deflection readout mainly depends on the capacitance of the QPD and the gain bandwidth product of the operational amplifier in combination with the feedback resistor used in the transimpedance amplifier [9]. The capacitance can be reduced by using a QPD with a small active area in combination with a reduced spot size. For example, using a QPD with an area of $1.3 \times 1.3 \text{mm}^2$ (SPOT-4D, OSI Optoelectronics, Hawthorne, USA) instead of $10 \times 10 \text{mm}^2$ (S5981, Hamamatsu, Shizuoka Pref., Japan) reduces the capacitance from 35 pF to 5 pF, leading to a significant improvement of the detection bandwidth.

Although the sensitivity and bandwidth can be increased by reducing the spot size there are lower limits for the spot size. The spot size must be large enough to not exceed the specified maximum power density on the QPD.

FIGURE 7. Vertical and horizontal sensitivity ($w(s) = 10a$). On top the isolines of the product of the vertical and horizontal sensitivity indicate the optimal setpoint with the maximum value for equal sensitivities.

FIGURE 8. Directional sensitivity to a vertical displacement of the laser spot on the QPD with a spot size equal to the gap width ($w(s) = a$).

THE OPTIMAL SPOT SIZE

If both, lateral and vertical displacements are of interest, both sensitivities should be as high as possible. In Fig. 9 the horizontal and vertical sensitivity is shown one above the other. In comparison to the spot size ten times the gap width, there are four optimal setpoint positions with a maximal value for equal sensitivities indicated by the isolines on top of Fig. 9.
FIGURE 9. Vertical and horizontal sensitivity \(w(s) = \alpha\). On top the isolines of the product of the vertical and horizontal sensitivity indicating the optimal setpoints with a maximum value for equal sensitivities.

Fig. 10 shows the maximal sensitivity for a one dimensional measurement (vertical or horizontal) as well as the maximal sensitivity for a two dimensional measurement (equal vertical and horizontal sensitivity) with respect to the normalized spot size incorporating the diffraction limited case where the displacement on the QPD is proportional to the spot size. As in general the vertical and the lateral sensitivity could be of interest a design guideline can be derived from the maximal equal sensitivity: To loose not more than 20% sensitivity, the spot size should be at least 10 times the gap width of the QPD.

CONCLUSION

This contribution discusses the relation of the laser spot size of the beam deflection method together with the geometry of the QPD, which has a strong influence on important system properties like the detection bandwidth and the deflection sensitivity, leading to the following design rules.

For a high detection bandwidth the capacitance of the QPD should be as low as possible. Therefore a QPD with a small area should be selected.

To reduce the influence on the sensitivity the gap separating the four quadrants of the QPD should be as small as possible.

In order to achieve a high deflection sensitivity the spot size at the QPD should be as small as possible, but large enough to not exceed the specified maximum power density on the QPD. Furthermore the spot size should be at least 10 times the gap width to keep the drop in sensitivity due to the influence of the gap smaller than 20%.

ACKNOWLEDGMENTS

Financial support was provided by the Austrian Research Promotion Agency (FFG).

REFERENCES

DEVELOPMENT OF ANGLE SENSOR WITH 10^{-7}\text{rad.} RESOLUTION FOR DIFFERENTIAL LASER AUTO-COLLMATION

Yutaka Uda\(^1\), Ryosuke Imura\(^1\), Shoichi Shimada\(^1\) and Satoshi Kiyono\(^2\)

\(^1\)Department of Mechanical Engineering
Osaka Electro-communication University
Neyagawa, Osaka, Japan
\(^2\)Precision Measurement Laboratory
Sendai, Miyagi, Japan

INTRODUCTION
Demands for large mechanical and optical parts with high straightness or flatness are increasing. Examples are seen in flat panel for display, throttle die for thin film production and machine elements of semiconductor production equipment. The figure accuracy higher than 0.1 \(\mu\text{m}\) becomes to be required even for the parts larger than 1 m. However, there is no useful method to evaluate precisely the straightness or figure profile of the large parts. The reasons are inevitable difficulties in manufacturing long tangible datum and to avoid the influence of gravity and environment in measuring operation. Development of the highly-precise measuring machine satisfying such requirements is an urgent subject.

In the previous papers [1][2][3], a new concept of straightness measuring machine based on in-situ differential laser auto-collimation (DLAC) is proposed. The principle of the machine is the accumulation of difference angle in inclination between two probing points along a straight line on the specimen surface successively measured step by step using laser auto-collimation as shown in Figure 1. The alignment error of two laser beams and two angle detectors causes a large quadratic component in measured profile as same as the influence of zero adjustment error of the probes in 3-point method.

A high resolution angle sensor is the most important key part to develop the straightness measuring machine based on DLAC. For measuring the straightness of a large parts exceeds 1m with the accuracy higher than 0.1\(\mu\text{m}\), the resolution required for the sensor is higher than 10^{-7} \text{rad.} The dynamic range larger than 10^{-3} \text{rad.} is desirable for easy alignment of specimen opposite to the sensors. Moreover the size and weight of the sensor must be small and light. With these points as background, a new angle sensor is developed with the resolution of 10^{-7} \text{rad.}

PRINCIPLE OF ANGLE SENSOR
When a light beam passes from glass prism into air with the incident angle around the critical angle of the prism, the intensities of reflected and refracted lights remarkably changes as shown in Figure 2. If the incident angle of a laser beam to the bottom surface of a prism is aligned close to the critical angle of the prism, the directional variation of incident angle can be detected with high sensitivity from the ratio of intensities of refracted to reflected beams from the prism. Therefore, in the angle sensor proposed, the reflected laser beam from a specimen surface is set so as to incident to the bottom surface of a prism with the incident angle around the critical angle of the prism as shown in Figure 3. The intensities of reflected and refracted beam are detected by photodiode 1 and 2, respectively and converted to the output voltage.

The directional variation of the reflected laser beam from a specimen surface is detected as a relative change of differential output voltage between photodiode 1 and 2 to the sum of both output voltage to eliminate the influence of intensity fluctuation of laser source. In this paper,
the relative change in differential output is called “relative differential intensity”. The cross section of the prism is specially designed equilateral triangle with the base angles of 42 degrees the angle of which is coincide with the critical angle of the glass of prism. By the use of this prism, both of incident beam to and reflected beam from the prism become perpendicularr to side surfaces of the prism so that stray light reduces.

In general, a laser beam includes both of s-polarization and p-polarization lights. Around the critical angle, the variation in reflectance of p-polarization light is larger than that of s-polarization light as shown in Figure 2. Therefore, p-polarization light is used for the incident beam to the prism.

FIGURE 2. Reflectance of glass prism

EXPERIMENTAL SETUP TO EVALUATE THE PERFORMANCE OF THE SENSOR

Figure 4 shows the evaluation equipment of the performance of angle sensor using a cantilever and an elastic hinge. A mirror mounted on the cantilever is the target of the angle sensor. The displacement of the lever is given by a piezo-actuator including feedback displacement sensor and another capacitance type displacement sensor is used as a reference. The practical experimental setup assembled on the vibration-isolating optical bench is shown in Figure 5.

FIGURE 4. Evaluation equipment of performance of angle sensor

FIGURE 5. Experimental setup for evaluation of angle sensor performance

PERFORMANCE OF ANGLE SENSOR DEVELOPED

Using the equipment described above, the performance of the angle sensor was evaluated. Figure 6 shows the relative differential intensity measured by the angle sensor corresponding to increasing inclination angle of the cantilever with 5x10^-8 rad. step for every 5 seconds. Figure 7 shows the relative differential intensity corresponding to repetition of pulse displacement with the height of 5x10^-8 rad. and the width of 10 second. Both of the resolution and repeatability of the sensor are estimated to be higher than 5x10^-8 rad. from the results.

Figure 8 shows the relative differential intensity corresponding to wide range inclination angle of the cantilever. The linearity of the sensor is estimated to be higher than 1% within the range of inclination angle from 0 to 1.6x10^-4 rad. The linearity within the range from 0 to -1.6x10^-4 rad. is
also higher than 1%. The range of inclination angle is limited by the stroke of the piezo-actuator used in the experiment. Therefore, the dynamic range of the sensor is estimated to be larger than 3.2×10^{-4} rad.

Figure 9 shows the relative differential intensity of the sensor to fixed target mirror for 6 hours at room temperature without air conditioner. The result suggests that the drift rate of the sensor is less than 5×10^{-7} rad for 6 hours.

FIGURE 6. Relative differential intensity corresponding to increasing inclination angle

FIGURE 7. Repeatability of angle sensor corresponding to 5×10^{-8} rad step

FIGURE 8. Relative differential intensity corresponding to wide range

FIGURE 9. Output signal drift

PROTOTYPE SENSOR HEAD FOR DLAC

Using two angle sensors described above, a prototype angle sensor head for DLAC method is designed to detect the difference angle between two reflected laser beams from a specimen surface. Optical system of the sensor head is shown in Figure 10. The size of the sensor head is reduced to 170X150mm for the convenience of on-machine measurement. A common laser diode is used for beam source to eliminate the influence of directional fluctuation of laser beam. Figure 11 shows the practical structure of the sensor head.

FIGURE 10. Prototype angle sensor head for DLAC method

FIGURE 11. Practical structure of the sensor head

Graphs and diagrams are not reproducible in text format.
Using the cantilever shown in Figure 4 with an additional mirror, both of angular variation of angle sensor unit A and B are simultaneously measured. Figure 12 shows the output signals of two angle sensors converted to angle variation corresponding to the sinusoidal inclination angle with 0.1 Hz frequency and 6x10^-6 rad. amplitude. As the inclination angle of the cantilever is identical for two sensors, both of output signals should also be identical. However, a little difference is observed between two signals. Some possible influence factors such as difference in zero-position and sensitivity between two sensors can be compensated on computer. Even after the compensation, the difference like a periodic noise which has 0.2 Hz frequency and 2x10^-7 rad. amplitude is remaining as shown in Figure 13. The cause of the noise is unknown at present. The influence of stray light can be considered to be one of them.

SUMMERY
The high resolution angle sensor is developed by the use of critical angle of a glass prism. The resolution and dynamic range of the angle sensor are estimated to be higher than 5x10^-8 rad. and larger than 3.2x10^-4 rad., respectively. Using two angle sensors, a prototype angle sensor head is designed for DLAC method to detect the difference angle between two reflected laser beams from a specimen surface. The sensor head is considered to be useful if the zero-point and sensitivity of both sensors are properly adjusted. The sensor head is considered to be useful if the zero-point and sensitivity of both sensors are properly adjusted and stray light is reduced.

REFERENCES
DIMENSIONAL METROLOGY OF INTERNAL FEATURES WITH X-RAY COMPUTED TOMOGRAPHY

Herminso Villarraga1, 2, Edward Morse1, 3, Robert Hocken1, 2, 3, and Stuart Smith1, 2, 3

1Center for Precision Metrology
2Department of Physics and Optical Science,
3Department of Mechanical Engineering and Engineering Science,
University of North Carolina at Charlotte
Charlotte, NC, USA

FIGURE 1. Left: NIST artifact made of aluminum and consisting of internal geometry inaccessible to vision-based or tactile CMM measurement. Right: NIST artifact in front of a flat panel detector in a CT machine and fixtured using x-ray transparent styrofoam.

FIGURE 2. Left: 3D CT image for the NIST artifact. Right: Slice sectional cut image through the green plane in the left 3D image.

This paper illustrates strategies for metrology using X-ray computed tomography (CT) to perform dimensional measurements on the interior structures of parts. Of particular interest is understanding how the current CT technology enables measurement of the internal features that are normally inaccessible to tactile coordinate measuring machines (CMMs). To evaluate these measurements, they are compared to reference values obtained by a destructive method. Conventional measurement techniques using CMMs or an optical device like a laser scanner can only measure the exterior surface of a part, but not interior structures. CT is a non-contact measurement technique and the only commercially available non-destructive method to perform dimensional measurements on internal geometry. The National Institute of Standards and Technology (NIST) has designed an artifact with internal geometry (see Fig. 1) to be characterized with CT technologies and to compare the measured dimensions with reference calibration values obtained using a Moore M48 CMM \cite{1}. In this paper we present details of the coordinate measurement analysis completed for the determination of the artifact's dimensional measurements with data from an X-ray CT machine. The main purpose is to guide the reader through a typical process of analysis usually applied on CT tomography to obtain dimensional metrology information. Results obtained by this method and measurements taken by conventional CMM techniques is presented to provide both a comparison of the two sets of data from these two measurement processes and observations about the capabilities of CT technologies as coordinate measurement systems.

CT DIMENSIONAL METROLOGY

To obtain dimensional measurements using the X-ray CT technique, the artifact was fixtured inside of a Zeiss Metrotom 800, CT machine \cite{2, 3}, fixturing is shown in Fig. 1. The setting parameters used during the scanning were: 100 kV voltage, 161 μA current, 40 μm focal spot size, 40 μm voxel size, 3.17 geometrical magnification, 239 mm source-object distance, 800 mm source-detector distance, 800 number of projections, 1X1 binning mode, 2 mm thickness aluminum pre-filter, 267 s integration time with 5 images averaging, offset image correction with 10 images for averaging, 10x gain, gain image correction with 7 homogenization steps and 10 images for averaging, Shepp Logan noise suppression filter, and X-ray intensity correction in dynamic gray scale value determination mode for each image. Visualization of the geometrical internal features inside the artifact in the reconstructed image is achieved using VGStudio MAX \cite{4}. This software uses the scan reconstructed data to create a three-dimensional model of the volume that can be displayed in 3D or in 2D slice images, Fig. 2.
The sectional image in this case (Fig. 2, right) was taken through the planar cut of the 3D volume shown on the left side of Fig. 2 and reveals the shape of a “happy face” made of voids. It is informative to examine sectional planes in other orientations. For example, from Fig. 3, the bottom left image shows two circular voids, and combining this information with the bottom right image it might be reasonable to infer that the NIST artifact apparently contains two cylindrical voids on the inside (hereafter referred to as features F1 and F2).

Further CT metrology characterization of the NIST artifact was carried out with Calypso 5.4 [5], using an activated (automatic parameter definition) gradient threshold (0.25) surface determination method. As is standard practice, all the dimensional measurements reported here will be referenced to 20 °C. Because a precise measurement of the part’s temperature during each scan was not possible, a value in between two measured temperature values: one taken just before starting the scan and the other immediately after finishing the scan was used. The average temperature for all measurements was about 21.8 °C, so -1.8 °C was the temperature compensation applied for each dimension using a 23 ppm/°C expansion coefficient for aluminum, giving a dimensional length correction of -41.4 µm/m.

The first step in dimensional measurements is the construction of a reference coordinate system (see Fig. 5). An initial base alignment can be constructed in the following steps: 1) a restricted spatial rotation plane is fitted through 16 well-distributed virtual probe points chosen on the ‘top’ surface of the artifact, 2) a line on one of the lateral faces for the wider channel of the artifact as the restricted planar rotation, and 3) the Z origin chosen on the top plane constructed in step 1). For the X and Y origin, we choose the axis of rotation of a cone fitted on the artifact by touching its external surface with 16 distributed probe points. This alignment serves as a starting alignment, but a more robust reference coordinate system needs to be established. By using the above alignment as a first reference coordinate system, we chose 28 points. The points are shown in Fig. 5 left, with virtual arrows touching the top surface. Each one of those points was constructed by least square fitting (LSQ) 16 virtual touching micro-probe points (0.1 mm separated) in a square grid centered on the listed coordinates. With those 28 probing fitted points, we constructed a plane by doing an LSQ fit. This plane serves as the spatial rotation restriction (plane XY) for our reference coordinate system (see Fig 5, left). As a planar rotation, we choose the intersection between that top reference plane and another orthogonal plane located midway in between the two lateral channel faces of the wider groove (constructed as
a symmetry plane between planes touching the lateral faces of the wider groove—planes fitted by using virtual touching probes with LSQ and low-pass spline filters), the intersection generating a line that defines the X axis. To determine completely a right-handed coordinate system as shown in Fig. 5, we still need to specify a point for the X and Y origins (the top reference plane serves as Z origin). The origin point can be defined by the intersection of two datums, the line we just constructed to define the X axis and an orthogonal plane (YZ) halfway in between the lateral channel faces of the narrower groove. Thus we have completely defined the reference coordinate system. Auxiliary internal planes were constructed on the bottom and top of each inner feature (F1 and F2) by using grid arrangements of virtual touching probes separated 0.4 mm, and with those touching points, each planar surface was evaluated using LSQ fitting (and passing low-pass spline filters of 2.5 mm LC with outlier elimination). The role of auxiliary planes is to permit the intersection with the calculated inner cylindrical surfaces and thus accurately construct bottom and top circles on each inner feature. An additional (mid) circle can be constructed midway between the bottom and top circles. The centers of the circles define the coordinate position values listed in Table 1.

Table 1. Coordinate center positions for the main inner circles of the NIST artifact referred to the coordinate system from Fig. 4. The symbols indicate measurement uncertainties calculated with Eq. (1). All units are in mm.

<table>
<thead>
<tr>
<th>Feature</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Diam.</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>-4.1457±0.0083</td>
<td>7.2674±0.0082</td>
<td>-9.9753±0.0097</td>
<td>13.5721±0.0085</td>
</tr>
<tr>
<td>Mid</td>
<td>-4.1455±0.0084</td>
<td>7.2523±0.0084</td>
<td>-14.6674±0.0086</td>
<td>13.4688±0.0081</td>
</tr>
<tr>
<td>Bottom</td>
<td>-4.1474±0.0086</td>
<td>7.2397±0.0085</td>
<td>-19.3596±0.0089</td>
<td>13.3656±0.0081</td>
</tr>
<tr>
<td>F2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>4.8772±0.0082</td>
<td>-8.6096±0.0080</td>
<td>-9.9750±0.0124</td>
<td>15.0686±0.0082</td>
</tr>
<tr>
<td>Mid</td>
<td>4.8854±0.0084</td>
<td>-8.6050±0.0082</td>
<td>-14.6674±0.0086</td>
<td>14.6630±0.0082</td>
</tr>
<tr>
<td>Bottom</td>
<td>4.8936±0.0086</td>
<td>-8.6003±0.0083</td>
<td>-19.3389±0.0093</td>
<td>14.6623±0.0082</td>
</tr>
</tbody>
</table>

Once a reference coordinate system is established, measurements on the geometrical features of a part can be calculated. The CT coordinate measurements for the main inner features of the NIST artifact are listed in Table 1, as well as the diameters of the main circles on each feature at the positions indicated in the first column (Table 1). The roundness of each one of those circles is listed on Table 2. The measurement uncertainties were estimated using the Eq. (1) [6],

\[
U = k \sqrt{u_m^2 + u_p^2 + u_r^2}
\]

where \(k \) is a coverage factor (\(k = 2 \) for a confidence level of approximately 95%). The machine uncertainty \(u_m \) is the standard calibration uncertainty of the measurement instrument calculated as MPE/2, where the MPE is the maximum permissible error of the CT machine, corresponding to \((8 + L / 100) \) µm for the error of indication of size measurement with the length \(L \) in mm, and 4 µm for the probing error form (PF). The uncertainty of the measurement procedure \(u_p \) is calculated as

\[
u_p = t_{a/2,µ} \left(s / \sqrt{n} \right),
\]

where \(t_{a/2,µ} \) is the t-statistic safety factor multiplier for the Student’s distribution \((t_{a/2,µ} = 1.771) \) for thirteen measurements and a probability fraction of 95%, \(s \) is the standard deviation of \(n \) repeated measurements \((n = 13) \). The temperature uncertainty \(u_r \) is calculated for a deviation of \(\delta T = \pm 0.5 \) °C and coefficient of linear expansion for aluminum of \(\alpha = 23 \) ppm/ °C, using

\[
u_r = \alpha L |\delta T| / \sqrt{3}
\]

where \(|\delta T| / \sqrt{3} \) is the standard uncertainty coming from a rectangular error distribution for temperature (all values of error within the band \(\pm |\delta T| \) being equally probable).

The two internal features F1 and F2, which appear to be cylindrical voids in Fig. 3, have differences in the diameters of the bottom and top of each feature: 0.2065 mm for F1 and 0.4063 for F2. Conical surfaces therefore provide a better fit for these internal void shapes. To fit these conical surfaces, 2000 virtual touching probes regularly spaced on helical with six total rotations in a right rotation direction were used to provide data to an LSQ cone evaluation method. A low-pass spline filter of 50 undulations per revolution (UPR) with outlier elimination was used. To address accuracy, the geometric information from the CT data can be compared with the original design intended by the NIST manufacturers and with
measurements taken with other, more traditional CMMs. Fig. 6 shows an image of the NIST artifact design, (further CMM data is discussed in the next section of this paper). This information (the NIST artifact design) was revealed only after completion of the CT metrology characterization report. From Fig. 6 it is clear that the geometrical shapes of features F1 and F2 are cones.

FIGURE 6. Design plot for the NIST artifact.

CT VERSUS M48 CMM MEASUREMENTS

In this section, CT measurements are compared with the reference calibration values obtained with an M48 CMM. The reference values were taken at the NIST Gaithersburg location, while the CT measurements were obtained at the Center for Precision Metrology. Table 3 shows a comparison between some of the measurement values reported by the two different techniques, listing the absolute difference between CT and CMM measurements as well as the normalized error E_n, for the same geometrical characteristic on either feature F1 or feature F2. E_n is calculated using the Eq. (2) [7],

$$E_n = \frac{X_{CT} - X_{CMM}}{\sqrt{U_{CT}^2 + U_{CMM}^2}}$$

where U_{CT} and U_{CMM} are the expanded uncertainties associated with the CT and the CMM measurements (X_{CT} and X_{CMM}) respectively. The normalized error (E_n number) is used as a statistical parameter to assess agreement of CT measurements respect to the CMM reference values. For a result to be acceptable, the E_n number must satisfy $|E_n| < 1$; unsatisfactory performance is obtained if $|E_n| > 1$.

As it can be noticed from Table 3, the absolute differences between dimensional measurements taken with the two techniques are in the order of few microns (less than 4 μm for diameter values), which reassures the ability/capability of the emerging CT technologies to perform dimensional measurements with accuracies comparable to contact based CMMs.

| | CT value ± U_{CT} | CMM ± U_{CMM} | $|\text{Delta}|$ | $|E_n|$ |
|-------|---------------------|------------------|-----------------|-------|
| F1 backplane depth (L) | -9.9753 ± 0.0098 | -9.9790 ± 0.0001 | 0.0037 | 0.38 |
| F1 Diameter at Z= -15.479 | 13.4521 ± 0.0082 | 13.4486 ± 0.0001 | 0.0035 | 0.43 |
| F1 x-value at Z= -15.479 | -4.1451 ± 0.0084 | -4.1440 ± 0.0001 | 0.0011 | 0.13 |
| F1 y-value at Z= -15.479 | 7.2498 ± 0.0084 | 7.2480 ± 0.0001 | 0.0018 | 0.13 |
| F1 Cone Angle (deg.) | 1.2610 ± 0.0050 | 1.1870 ± 0.0001 | 0.0740 | 1.48 |
| F2 backplane depth (L) | -9.9750 ± 0.0125 | -9.9790 ± 0.0001 | 0.0040 | 0.32 |
| F2 Diameter at Z= -15.479 | 14.8268 ± 0.0082 | 14.8270 ± 0.0001 | 0.0002 | 0.02 |
| F2 x-value at Z= -15.479 | 4.8867 ± 0.0084 | 4.8750 ± 0.0001 | 0.0117 | 1.10 |
| F2 y-value at Z= -15.479 | -8.6042 ± 0.0081 | -8.5950 ± 0.0001 | 0.0092 | 1.14 |
| F2 Cone Angle (deg.) | 2.4855 ± 0.0050 | 2.4390 ± 0.0001 | 0.0465 | 0.93 |

The precise determination of CT uncertainties is still a subject of investigation; however a fair estimation can be calculated using the Eq. (1). For the case of CMM measurements, uncertainty values were calculated using the Eq. (3) [8],

$$U(k = 2) = (0.11 + 0.2L) \mu m$$

with L in meters. Uncertainties associated with each measurement are presented with the symbol \pm in Table 3. Due to the numerous influencing factors of the whole measurement process and the complexity of the CT phenomena itself, there is not a method that completely characterizes the associated uncertainties of each CT parameter from the tomography scanning process and CT data analysis.
Determining the uncertainty of dimensional CT measurements is challenging, and different procedures for its assessment have been evaluated [9, 10, 11, 12]; the procedure of using calibrated work pieces is regarded as the most promising for quantifying some of the uncertainty factors based on repeated systematic measurements. Alternatively, some computer simulation platforms have been developed in recent years to investigate error sources in a given measuring task for CT dimensional metrology with the introduction of some workflow schemas for estimation of measurement uncertainties [13, 14, 15]. These are based on simulation methods like Monte Carlo, bootstrap, or Bayesian statistics. In this paper, we limit ourselves to CT uncertainty estimations computed solely based on Eq. (1) and a caution interpretation of E_n-values should be taken as pointed in reference [16]. Note from Table 3 that our CT uncertainty budgets cover the absolute difference between CT and CMM measurements for most of the dimensional reported measured values, except for the F1 cone angle, and for the (x, y) position of the circle fitted at Z=-15.479 on F2. It is known in CT metrology that measurements of form are more susceptible to errors coming from the surface extraction algorithm due to the difficulty determining the location of surface (edges) or precise boundary limits between two different media. Also measurements of form are more susceptible to the influence of noise in the CT data than size measurements [17]. This can explain why conical angles (‘F1 cone angle’ in Table 3 for example) are more susceptible to errors than dimensional measurements, given the fact that cone angular measurements are based on conical (form) fitting surfaces. This is not the case of size measurements (backplane depths and diameters in Table 3) because they are calculated as result of averaging distances which reduce the influence of noise and outliers. CT technology in general is more accurate for size (dimensional) measurements than for measurements of form. It then necessary to include additional uncertainty contributors in the estimation of uncertainty budgets for the case of form measurements not solely based on Eq. (1). On the other hand, the larger deviation (absolute difference) between the two methods (bigger than the respective CT uncertainties) on measurements of the (x, y) positions of the fitted circle at Z=-15.479 mm on feature F2, may be due to a possible misalignment of the CT coordinate reference system (Fig. 4) respect to the coordinate system used by the M48 CMM machine (sketched in Fig. 6). If a slightly different way for defining the X and Y origin point is used, for example intersecting the ‘top reference plane’ with the rotation axis of a cone fitted on the lateral external surface of the artifact (see Fig. 5, right), the coordinate positions may change (but not the absolute distances). As an idealization, for a part perfectly machined with symmetric geometry, the point defined this way should coincide with the one determined by the intersection of the X line and YZ plane constructed above, but that is not the reality. By focusing just in dimensional metrology, in Table 3, we see how the reported CT measured backplane depths and diameters (absolute distances) do not have deviations bigger than 4 μm from the CMM calibration distances.

CONCLUSIONS

Working through a particular example of X-ray CT dimensional metrology on a metallic artifact with hidden internal features, we illustrated how CT technology enables us to determine and measure characteristics of the inner features of a part normally inaccessible with tactile CMMs. X-ray CT is a non-contact measurement method to measure dimensionally the internal geometry of the part without cutting (breaking) its components, and the accuracy of the CT measurements were consistent with the manufacturer's specifications. The estimated uncertainties for the CT measurements are larger than uncertainties associated with the M48 CMM, which is reasonable to expect given the complexity of the CT phenomena and the number of influencing parameters manipulated during the tomography scanning process and CT data analysis, particularly for measurement of form due to the difficulty present in CT surface determination or location of precise boundary limits between two different media. Although industrial X-ray CT as a technique applied for metrology purposes is quite new (about one decade or so as far), the technology can be considered as a CMM machine with accuracies in the range of micrometers (and even nanometers for some applications [18, 19]), and is probably the only choice for metrological characterization of internal features for complex component shapes. A major advantage of the CT technology for metrology is that since the whole point cloud of the scanned part is stored, users can return to the CT data to obtain part dimensions as desired. This is something that is not usually available with a contact probe CMM; each time a new
dimension on the part is desired, a new measurement is necessary. However, as to date CT as a precise technique for metrology still continues under revision and further studies should be performed to test not only improvements in accuracy but reliability of measurements, as well as to find a roadmap procedures for reporting CT uncertainties.

ACKNOWLEDGMENTS
The authors would like to express their appreciation to John R. Stoup from the Dimensional Metrology Group at NIST for his cooperation in providing the CT artifact, the design sketch (Fig. 6), and the M48 CMM calibration measurements. Also to Carl Zeiss Industrial Metrology, LLC for providing the CT measuring machine and Calypso software. To Volume Graphics GmbH as well, for providing VGStudio MAX. This study could not have been completed without their collaboration.

REFERENCES
INTRODUCTION

Interpolation-error is one of the most important performance parameters of precision encoders. Nikon/Nanowave developed the modulated laser encoder which has high digital resolution (3.8pm) and low interpolation-errors [1]. In order to evaluate the interpolation errors, we introduced a unique error-measurement system using a tuning fork [2]. Advantages of the error-measurement system are low-cost, simple and easy handling. However, it is difficult to keep the traceability between the measurement system and the length measurement standards. In this study, we used a low noise laser interferometer system developed by National Institute of Advanced Industrial Science and Technology (AIST), which system noise is 0.041nm(RMS) [3]. The system proved the validation of our error measurements.

THE MODULATED LASER ENCODER

Figure 1 illustrates the system configuration of the modulated laser encoder. A sinusoidal-modulated current drives the laser diode, and the laser wavelength changes with the current. The beam out of the laser diode is first collimated by the collimator lens, and goes through an aperture separating the beam paths into three beams. The middle beam goes through a piece of glass to retard the phase compared to the outside beams. Then the middle beam and the outside beams go through a fixed grating. Diffraction beams are generated when each beam goes through the fixed grating. The +1 and -1 order diffraction beams diffract again on the scale which is placed on the moving stage. The fixed grating and the scale have the same pitch; therefore, interference signals are detected on the photo diode at PD1 and PD2 positions.

The amount of phase delay caused by the glass is a function of the wavelength, so the phase of the diffraction light coming into the scale shifts as a function of the wavelength. The light diffracted by the scale will experience a 2π phase shift when the scale grating moves half of its period. Then, modulation of the laser diode wavelength will result in a sinusoidal phase shift generating many harmonic signals which includes the scale position information. A modulation signal oscillator (OSC) and two decoders are provided in single FPGA. The PD1 and PD2 signals are decoded into position information separately. The laser wavelength drift can be canceled and the positions averaged by subtracting PD1’s position output from PD2’s.

Figure 2 shows the actual optical design inside the encoder head. To avoid undesired optical feedback from the scale surface, the laser diode is located in an offset position. The laser beam is reflected by a mirror, before passing through a collimator lens. Both the fixed and the scale grating are 4µm pitch.

Figure 1. Modulated Laser Encoder
INTERPOLATION MEASUREMENT BY USING A TUNING FORK

Figure 4 shows the concept of the tuning fork interpolation-error measurement system. Since the tuning fork has extremely high Q resonance, the fork-arm motion is a purely mono-tone sinusoidal waveform. A tested encoder which has a periodic interpolation error measures the fork arm motion, then, the error is transferred into harmonics distortions upon the tuning fork frequency. Therefore, the error can be extracted by using a FFT and an inverse FFT technique. Figure 5 is a photo of the tuning-fork interpolation measurement tool setup. A 125Hz audio tuning fork is excited by low distortion 125Hz acoustic sound in order to avoid exciting harmonics. Tested encoder head is set facing one of the fork arm on which a small encoder scale had been glued. Figure 6 is the interpolation error measured by the tuning fork system. Fundamental frequency of the error is 2µm, which is the encoder's optical pitch. 2nd order frequency component of the error is caused by optical distortions. [4]

INTERFEROMETER MEASUREMENT SETUP

Figure 7 shows the system configuration of the interpolation-error measurement system using the low-noise interferometer developed by National Institute of Advanced Industrial Science and Technology (AIST). Figure 8 is a photo of the system. Figure 9 shows the residual displacement data when the PZT stage is doing servo control on a position. The amplitude of
residual displacement (position noise) is 0.041nm (RMS).

EXPERIMENTAL RESULTS

Solid line of Figure 10 is the residual error between the encoder output and the interferometer output which is taken by 10nm step & repeat motion. The 2µm cyclic error is caused by the interpolation error of the encoder.

Dotted line of Figure 10 is the interpolation error measured by the tuning fork set, shown as Figure 6.

CONCLUSION

The interpolation error of the encoder, which measured by using the tuning fork measurement system has a good agreement with the result of the low noise interferometer system developed by AIST. Both data are less than 1nmpp.

REFERENCES

FIGURE 10. Interpolation error measured by the low-noise interferometer system and the tuning fork system. These results are obtained at nearly same position.
Authors Index

<table>
<thead>
<tr>
<th>Author Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott, B.</td>
<td>35</td>
</tr>
<tr>
<td>Abbott, Patrick</td>
<td>20</td>
</tr>
<tr>
<td>Abbott, S.</td>
<td>35</td>
</tr>
<tr>
<td>Abolbashari, Mehrdad</td>
<td>403</td>
</tr>
<tr>
<td>Aguirre, Gorka</td>
<td>57</td>
</tr>
<tr>
<td>Allwine, E.</td>
<td>35</td>
</tr>
<tr>
<td>Anderson, Ben</td>
<td>193</td>
</tr>
<tr>
<td>Anthony, Lawrence</td>
<td>529</td>
</tr>
<tr>
<td>Aoyama, Hisayuki</td>
<td>592</td>
</tr>
<tr>
<td>Arencibia, Rosenda V.</td>
<td>654</td>
</tr>
<tr>
<td>Arneson, David A.</td>
<td>30, 314, 549, 624, 628</td>
</tr>
<tr>
<td>Asao, Teruyuki</td>
<td>578</td>
</tr>
<tr>
<td>Baas, Michiel</td>
<td>78</td>
</tr>
<tr>
<td>Babu, S. V.</td>
<td>73</td>
</tr>
<tr>
<td>Bado, Philippe</td>
<td>134</td>
</tr>
<tr>
<td>Baggi, Christian</td>
<td>539</td>
</tr>
<tr>
<td>Barney, Jaden</td>
<td>274</td>
</tr>
<tr>
<td>Barnum, Sam</td>
<td>35</td>
</tr>
<tr>
<td>Barth, Tina</td>
<td>206</td>
</tr>
<tr>
<td>Begg, Nikolai D.</td>
<td>278</td>
</tr>
<tr>
<td>Bellouard, Yves</td>
<td>134</td>
</tr>
<tr>
<td>Beroz, Justin D.</td>
<td>463</td>
</tr>
<tr>
<td>Bertholdi, Jonas</td>
<td>654</td>
</tr>
<tr>
<td>Biegen, Jim F.</td>
<td>163</td>
</tr>
<tr>
<td>Birch, J.</td>
<td>35</td>
</tr>
<tr>
<td>Biscans, S.</td>
<td>35</td>
</tr>
<tr>
<td>Bitou, Youichi</td>
<td>690</td>
</tr>
<tr>
<td>Böhmermann, Florian</td>
<td>486</td>
</tr>
<tr>
<td>Bosmans, Niels</td>
<td>51</td>
</tr>
<tr>
<td>Bosse, Harald</td>
<td>15</td>
</tr>
<tr>
<td>Boyden, Edward S.</td>
<td>215</td>
</tr>
<tr>
<td>Brecher, Christian</td>
<td>30</td>
</tr>
<tr>
<td>Brinksmeier, Ekkard</td>
<td>492, 494</td>
</tr>
<tr>
<td>Brooks, Daniel R.</td>
<td>280</td>
</tr>
<tr>
<td>Brouwer, Dannis Michel</td>
<td>41</td>
</tr>
<tr>
<td>Brown, Christopher A.</td>
<td>596</td>
</tr>
<tr>
<td>Brown, Nicolas S.</td>
<td>280</td>
</tr>
<tr>
<td>Burns, Colin M.</td>
<td>596</td>
</tr>
<tr>
<td>Callaghan, Robert P.</td>
<td>84</td>
</tr>
<tr>
<td>Cao, Austin</td>
<td>20</td>
</tr>
<tr>
<td>Cao, Lei</td>
<td>285, 289, 325</td>
</tr>
<tr>
<td>Cao, Z. C.</td>
<td>496</td>
</tr>
<tr>
<td>Chalifoux, Brandon</td>
<td>553</td>
</tr>
<tr>
<td>Chao, Leon Shih</td>
<td>20, 25</td>
</tr>
<tr>
<td>Charlton Jr., Thomas</td>
<td>84</td>
</tr>
<tr>
<td>Chen, Anlin</td>
<td>428</td>
</tr>
<tr>
<td>Chen, Han</td>
<td>236</td>
</tr>
<tr>
<td>Chen, Jianwei</td>
<td>121</td>
</tr>
<tr>
<td>Chen, Shih-Chi</td>
<td>121, 153, 395</td>
</tr>
<tr>
<td>Cheng, Jianrui</td>
<td>422</td>
</tr>
<tr>
<td>Cheng, Kai</td>
<td>525</td>
</tr>
<tr>
<td>Cheok, Gerry</td>
<td>632</td>
</tr>
<tr>
<td>Chesna, Jacob W.</td>
<td>465</td>
</tr>
<tr>
<td>Cheung, Chi-Fai</td>
<td>496</td>
</tr>
<tr>
<td>Chi, Feng</td>
<td>422</td>
</tr>
<tr>
<td>Choi, Doo-Sun</td>
<td>521</td>
</tr>
<tr>
<td>Choi, Hwan-Jin</td>
<td>521</td>
</tr>
<tr>
<td>Choi, Young-Man</td>
<td>443</td>
</tr>
<tr>
<td>Chong, K.</td>
<td>302</td>
</tr>
<tr>
<td>Chung Ph. D., Sung-Chong</td>
<td>241, 246, 285, 289, 325</td>
</tr>
<tr>
<td>Church, Joseph C.</td>
<td>293</td>
</tr>
<tr>
<td>Clark, Daniel E.</td>
<td>35</td>
</tr>
<tr>
<td>Claverley, James David</td>
<td>78</td>
</tr>
<tr>
<td>Colonna de Lega, Xavier</td>
<td>163, 604</td>
</tr>
<tr>
<td>Coyne, Dennis</td>
<td>35</td>
</tr>
<tr>
<td>Crawford, Brian</td>
<td>670</td>
</tr>
<tr>
<td>Cullinan, Michael Arthur</td>
<td>320</td>
</tr>
<tr>
<td>Culpepper, Martin Luther</td>
<td>479</td>
</tr>
<tr>
<td>D’Angelo, Greta</td>
<td>183</td>
</tr>
<tr>
<td>Daniel, Phillip H.</td>
<td>293</td>
</tr>
<tr>
<td>de Groot, Peter J.</td>
<td>163, 604</td>
</tr>
<tr>
<td>Dean, Patrick J.</td>
<td>73</td>
</tr>
<tr>
<td>DeBra, Daniel B.</td>
<td>35</td>
</tr>
<tr>
<td>Deni, Michele</td>
<td>602</td>
</tr>
<tr>
<td>DeRosa, R.</td>
<td>35</td>
</tr>
<tr>
<td>DeTienne, Michael</td>
<td>553</td>
</tr>
<tr>
<td>Devitt, Andrew J.</td>
<td>297</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Doane, Danielle</td>
<td>609</td>
</tr>
<tr>
<td>Doki, Kae</td>
<td>434</td>
</tr>
<tr>
<td>Dow, Thomas A.</td>
<td>126, 158, 196, 512, 516</td>
</tr>
<tr>
<td>Du, JianJun</td>
<td>502</td>
</tr>
<tr>
<td>Du, Shengwu</td>
<td>445</td>
</tr>
<tr>
<td>Dugan, Mark A.</td>
<td>134</td>
</tr>
<tr>
<td>Echter, Michael A.</td>
<td>473</td>
</tr>
<tr>
<td>Eldredge, J</td>
<td>302</td>
</tr>
<tr>
<td>Elisberg, Brenton</td>
<td>193</td>
</tr>
<tr>
<td>Ellinghaus, Jan Moritz</td>
<td>30</td>
</tr>
<tr>
<td>Ellis, Jonathan D.</td>
<td>178, 280, 408, 412, 417, 473</td>
</tr>
<tr>
<td>Erkorkmaz Ph.D., Kaan</td>
<td>349</td>
</tr>
<tr>
<td>Evans, Christopher J.</td>
<td>47</td>
</tr>
<tr>
<td>Evans, Ryan D.</td>
<td>611</td>
</tr>
<tr>
<td>Farahi, Faramarz</td>
<td>403</td>
</tr>
<tr>
<td>Fay, Martin F.</td>
<td>604</td>
</tr>
<tr>
<td>Felker, Sean J.</td>
<td>609</td>
</tr>
<tr>
<td>Ferraris, Eleonora</td>
<td>539</td>
</tr>
<tr>
<td>Foley, S.</td>
<td>35</td>
</tr>
<tr>
<td>Forest, Craig R.</td>
<td>215</td>
</tr>
<tr>
<td>Fritschel, P</td>
<td>35</td>
</tr>
<tr>
<td>Fritz, Matthias</td>
<td>469</td>
</tr>
<tr>
<td>Fucetola, Jay J.</td>
<td>553</td>
</tr>
<tr>
<td>Fukuda, Mitsuyoshi</td>
<td>63</td>
</tr>
<tr>
<td>Furst, Stephen J.</td>
<td>158, 196</td>
</tr>
<tr>
<td>Furusaka, M.</td>
<td>559, 569</td>
</tr>
<tr>
<td>Furushima, Tsuyoshi</td>
<td>354</td>
</tr>
<tr>
<td>Furushiro, Naomichi</td>
<td>555</td>
</tr>
<tr>
<td>Furutani, Katsushi</td>
<td>508</td>
</tr>
<tr>
<td>Gan, Yifei.</td>
<td>582</td>
</tr>
<tr>
<td>Ganguly, Vasishta</td>
<td>457</td>
</tr>
<tr>
<td>Garrard, Kenneth P.</td>
<td>126, 158, 196, 512</td>
</tr>
<tr>
<td>Gean, Matthew C.</td>
<td>533</td>
</tr>
<tr>
<td>Gebb II, David M.</td>
<td>512</td>
</tr>
<tr>
<td>Giaime, Joseph A.</td>
<td>35</td>
</tr>
<tr>
<td>Gillmer, Steven R.</td>
<td>412</td>
</tr>
<tr>
<td>Gleber, Sophie-Charlotte</td>
<td>138</td>
</tr>
<tr>
<td>Gonda, Satoshi</td>
<td>690</td>
</tr>
<tr>
<td>Gourma, Mustapha</td>
<td>200</td>
</tr>
<tr>
<td>Grabeel, G.</td>
<td>35</td>
</tr>
<tr>
<td>Granchi P.E., William J.</td>
<td>206</td>
</tr>
<tr>
<td>Gray, Cory</td>
<td>35</td>
</tr>
<tr>
<td>Gunning, Sean P.</td>
<td>158</td>
</tr>
<tr>
<td>Guo, Jiang</td>
<td>559, 569</td>
</tr>
<tr>
<td>Gweon, Dae-Gab</td>
<td>310</td>
</tr>
<tr>
<td>Habibi, Nasim</td>
<td>403</td>
</tr>
<tr>
<td>Haddad, Darine.</td>
<td>20, 25</td>
</tr>
<tr>
<td>Hakvoort, W. B. J.</td>
<td>41</td>
</tr>
<tr>
<td>Hama, Tadashi</td>
<td>111</td>
</tr>
<tr>
<td>Hansen, Hans Norgaard</td>
<td>183</td>
</tr>
<tr>
<td>Hansen-Schmidt, Jan</td>
<td>206</td>
</tr>
<tr>
<td>Hanson, J</td>
<td>35</td>
</tr>
<tr>
<td>Hanumara, Nevan C.</td>
<td>371</td>
</tr>
<tr>
<td>Hart, Anastasios John</td>
<td>463</td>
</tr>
<tr>
<td>Heilmann, Ralf K.</td>
<td>553</td>
</tr>
<tr>
<td>Heo, Segon</td>
<td>563</td>
</tr>
<tr>
<td>Hesler, Gregory S.</td>
<td>516</td>
</tr>
<tr>
<td>Hiliard, M.</td>
<td>35</td>
</tr>
<tr>
<td>Hino, M.</td>
<td>559</td>
</tr>
<tr>
<td>Hiroi, Tetsuro</td>
<td>354</td>
</tr>
<tr>
<td>Hirooka, Daisuke.</td>
<td>555</td>
</tr>
<tr>
<td>Hocken, Robert J.</td>
<td>67, 637</td>
</tr>
<tr>
<td>Holst, Gregory L.</td>
<td>215</td>
</tr>
<tr>
<td>Holzhauer, Wolfgang</td>
<td>611</td>
</tr>
<tr>
<td>Honda, Satoshi</td>
<td>439</td>
</tr>
<tr>
<td>Hong, Daewoong</td>
<td>443</td>
</tr>
<tr>
<td>Hopkins Ph.D., Jonathan B.</td>
<td>142, 147</td>
</tr>
<tr>
<td>Hori, Yasuaki</td>
<td>690</td>
</tr>
<tr>
<td>Hu, Chu X.</td>
<td>95, 173, 226, 264</td>
</tr>
<tr>
<td>Hu, Chuxiong</td>
<td>236, 385</td>
</tr>
<tr>
<td>Hu, Jinchun</td>
<td>445</td>
</tr>
<tr>
<td>Huang, Peisen</td>
<td>105</td>
</tr>
<tr>
<td>Huhn, Andreas</td>
<td>582</td>
</tr>
<tr>
<td>Huttenhuis, Stephan</td>
<td>335</td>
</tr>
<tr>
<td>Imani Nejad, Mohammad</td>
<td>101</td>
</tr>
<tr>
<td>Imura, Ryousuke</td>
<td>680</td>
</tr>
<tr>
<td>Inukai, Ryota</td>
<td>508</td>
</tr>
<tr>
<td>Ishibashi, Shingo</td>
<td>434</td>
</tr>
<tr>
<td>Iwasa, Yasuhiro</td>
<td>555</td>
</tr>
<tr>
<td>Jang, Sang-Don.</td>
<td>620</td>
</tr>
<tr>
<td>Jang, Seong-Hyun.</td>
<td>307</td>
</tr>
<tr>
<td>Jared, Bradley H.</td>
<td>193</td>
</tr>
<tr>
<td>Je, Tae-Jin</td>
<td>521</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Jeon, Eun-Chae</td>
<td>521</td>
</tr>
<tr>
<td>Jeong, Jaehwa</td>
<td>443</td>
</tr>
<tr>
<td>Jeong, Ji Hun</td>
<td>640</td>
</tr>
<tr>
<td>Ji, Guofeng</td>
<td>445</td>
</tr>
<tr>
<td>Jiang, Sheng</td>
<td>463</td>
</tr>
<tr>
<td>Jiang, Yi</td>
<td>95</td>
</tr>
<tr>
<td>Jiao, Feifei</td>
<td>525</td>
</tr>
<tr>
<td>Jin, Xiaoliang</td>
<td>567</td>
</tr>
<tr>
<td>Jing, Xiaobei</td>
<td>592</td>
</tr>
<tr>
<td>Jourdain, Renaud P.</td>
<td>200</td>
</tr>
<tr>
<td>Kafashi, Sajad</td>
<td>302</td>
</tr>
<tr>
<td>Kamiya, Kazuhide</td>
<td>616</td>
</tr>
<tr>
<td>Kaneeda, Toshiaki</td>
<td>529</td>
</tr>
<tr>
<td>Kato, J.</td>
<td>559</td>
</tr>
<tr>
<td>Katsuki, Akio</td>
<td>63</td>
</tr>
<tr>
<td>Keck, Alexander</td>
<td>89</td>
</tr>
<tr>
<td>Keene, Andrew D.</td>
<td>473</td>
</tr>
<tr>
<td>Keller, Eric E.</td>
<td>533</td>
</tr>
<tr>
<td>Kelly, Scott</td>
<td>302</td>
</tr>
<tr>
<td>Khajornrungruang, Panart</td>
<td>73</td>
</tr>
<tr>
<td>Khamsee, Behrad</td>
<td>349</td>
</tr>
<tr>
<td>Khim, Gyungho</td>
<td>307, 640</td>
</tr>
<tr>
<td>Kido, Masataka</td>
<td>251</td>
</tr>
<tr>
<td>Kim, Byung-Sub</td>
<td>255</td>
</tr>
<tr>
<td>Kim, Chang-Ju</td>
<td>640</td>
</tr>
<tr>
<td>Kim, Hyunchang</td>
<td>310</td>
</tr>
<tr>
<td>Kim, Jung-Jae</td>
<td>620</td>
</tr>
<tr>
<td>Kim, Kyunghan</td>
<td>132</td>
</tr>
<tr>
<td>Kim, Tae-Gon</td>
<td>563</td>
</tr>
<tr>
<td>Kimura, Atsushi</td>
<td>251</td>
</tr>
<tr>
<td>Kiss, Adrien</td>
<td>30</td>
</tr>
<tr>
<td>Kissel, J.</td>
<td>35</td>
</tr>
<tr>
<td>Kiyono, Satoshi</td>
<td>680</td>
</tr>
<tr>
<td>Knapp, Byron R.</td>
<td>30, 314, 533, 624, 628</td>
</tr>
<tr>
<td>Kniel, Karin</td>
<td>602</td>
</tr>
<tr>
<td>Knox, Wayne H.</td>
<td>280</td>
</tr>
<tr>
<td>Kodandaramiaih, Suhasa B.</td>
<td>215</td>
</tr>
<tr>
<td>Kode, Sai Kumar</td>
<td>575</td>
</tr>
<tr>
<td>Koh, Kyun Hee</td>
<td>533</td>
</tr>
<tr>
<td>Kohn, Charles M.</td>
<td>211, 690</td>
</tr>
<tr>
<td>Kolb, Ilya</td>
<td>215</td>
</tr>
<tr>
<td>Koya, Narahara</td>
<td>567</td>
</tr>
<tr>
<td>Kubarych, Zeina</td>
<td>20</td>
</tr>
<tr>
<td>Kucharczyk, C.</td>
<td>35</td>
</tr>
<tr>
<td>Kuhfuß, Bernd</td>
<td>469</td>
</tr>
<tr>
<td>Kurihara, Haruya</td>
<td>251</td>
</tr>
<tr>
<td>Kwon, Sangwon</td>
<td>255</td>
</tr>
<tr>
<td>Ladner, Ian</td>
<td>320</td>
</tr>
<tr>
<td>Lai, Barry</td>
<td>138</td>
</tr>
<tr>
<td>Land II, William Stafford</td>
<td>220</td>
</tr>
<tr>
<td>Lanphear, Joseph</td>
<td>473</td>
</tr>
<tr>
<td>Lantz, Brian T.</td>
<td>35</td>
</tr>
<tr>
<td>Lavergne, Thomas</td>
<td>30</td>
</tr>
<tr>
<td>Le Roux, A.</td>
<td>35</td>
</tr>
<tr>
<td>Leach, Richard K.</td>
<td>78</td>
</tr>
<tr>
<td>Lee, Chan-Hong</td>
<td>563</td>
</tr>
<tr>
<td>Lee, Jae-Chang</td>
<td>451</td>
</tr>
<tr>
<td>Lee, Jaehoon</td>
<td>132</td>
</tr>
<tr>
<td>Lee, Kwang-Il</td>
<td>451</td>
</tr>
<tr>
<td>Lee, Sang-Jo</td>
<td>563</td>
</tr>
<tr>
<td>Lee, Sungcheul</td>
<td>255</td>
</tr>
<tr>
<td>Lee, Vincent</td>
<td>632, 648</td>
</tr>
<tr>
<td>Lewandowski, John</td>
<td>463</td>
</tr>
<tr>
<td>Lhuillier, V.</td>
<td>35</td>
</tr>
<tr>
<td>Li, Changlin</td>
<td>153, 502</td>
</tr>
<tr>
<td>Li, Min</td>
<td>226, 264</td>
</tr>
<tr>
<td>Li, Shisong</td>
<td>25</td>
</tr>
<tr>
<td>Li, Zeng Qiang</td>
<td>588</td>
</tr>
<tr>
<td>Liebers, Melvin J.</td>
<td>314, 549, 624</td>
</tr>
<tr>
<td>Liu, Feng</td>
<td>428</td>
</tr>
<tr>
<td>Liu, Jie</td>
<td>138</td>
</tr>
<tr>
<td>Liu, Zhao</td>
<td>173, 385, 428</td>
</tr>
<tr>
<td>Llerngsin, Pimpisa</td>
<td>670</td>
</tr>
<tr>
<td>Los, Anna</td>
<td>232</td>
</tr>
<tr>
<td>Lu, Chao</td>
<td>408</td>
</tr>
<tr>
<td>Macinnis, Myron E.</td>
<td>35</td>
</tr>
<tr>
<td>Makinouchi, Susumu</td>
<td>211, 690</td>
</tr>
<tr>
<td>Manabe, Kenichi</td>
<td>354</td>
</tr>
<tr>
<td>Marsh, Eric R.</td>
<td>533, 549, 628</td>
</tr>
<tr>
<td>Name</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Maser, Jorg</td>
<td>138</td>
</tr>
<tr>
<td>Mason, Kenneth R.</td>
<td>35</td>
</tr>
<tr>
<td>Matichard, Fabrice</td>
<td>35</td>
</tr>
<tr>
<td>Matsuda, Shigetaka</td>
<td>555</td>
</tr>
<tr>
<td>Matsumoto, Kimihisa</td>
<td>616</td>
</tr>
<tr>
<td>Mayer, J. R. René</td>
<td>232</td>
</tr>
<tr>
<td>Menten, Andreas</td>
<td>494</td>
</tr>
<tr>
<td>Miller, Bill</td>
<td>193</td>
</tr>
<tr>
<td>Min, Bog-Ki</td>
<td>289, 325</td>
</tr>
<tr>
<td>Min, Byung-Kwon</td>
<td>563</td>
</tr>
<tr>
<td>Mittleman, Richard</td>
<td>35</td>
</tr>
<tr>
<td>Mohammadi, Hossein</td>
<td>188, 575</td>
</tr>
<tr>
<td>Montesanti, Richard C.</td>
<td>329</td>
</tr>
<tr>
<td>Mooney, David P.</td>
<td>341</td>
</tr>
<tr>
<td>Moore, Duncan T.</td>
<td>417</td>
</tr>
<tr>
<td>Morita, Shin-ya</td>
<td>559, 569</td>
</tr>
<tr>
<td>Morse, Edward P.</td>
<td>67, 684</td>
</tr>
<tr>
<td>Mototani, Suguru</td>
<td>434</td>
</tr>
<tr>
<td>Mu, Haihua</td>
<td>236</td>
</tr>
<tr>
<td>Murakami, Hiroshi</td>
<td>63</td>
</tr>
<tr>
<td>Muralikrishnan, Bala</td>
<td>632, 648, 660</td>
</tr>
<tr>
<td>Nakamura, Kotaro</td>
<td>211, 690</td>
</tr>
<tr>
<td>Newell, David B.</td>
<td>20</td>
</tr>
<tr>
<td>Nguyen, Nhan</td>
<td>457</td>
</tr>
<tr>
<td>Ni, Kang</td>
<td>637</td>
</tr>
<tr>
<td>Niehaus, Frank</td>
<td>335</td>
</tr>
<tr>
<td>Nielsen, Jakob Skov</td>
<td>183</td>
</tr>
<tr>
<td>Nielson, Greg</td>
<td>193</td>
</tr>
<tr>
<td>Noh, Minkyun</td>
<td>341</td>
</tr>
<tr>
<td>Nomura, Takashi</td>
<td>616</td>
</tr>
<tr>
<td>Nowak, W. John</td>
<td>126</td>
</tr>
<tr>
<td>Nowakowski Ph.D., Bartosz K.</td>
<td>167</td>
</tr>
<tr>
<td>Obara, Takuya</td>
<td>345</td>
</tr>
<tr>
<td>Oh, Jeong-Seok</td>
<td>640</td>
</tr>
<tr>
<td>Oh, Kwangje</td>
<td>241, 246</td>
</tr>
<tr>
<td>Obara, Tetsuo</td>
<td>211, 690</td>
</tr>
<tr>
<td>Ohlsen, Inken</td>
<td>492</td>
</tr>
<tr>
<td>Ohue, Hiroyuki</td>
<td>508</td>
</tr>
<tr>
<td>Okada, Akira</td>
<td>251</td>
</tr>
<tr>
<td>Okada, Tatsuaki</td>
<td>508</td>
</tr>
<tr>
<td>Okamoto, Yasuhiro</td>
<td>251</td>
</tr>
<tr>
<td>Okandam, Murat</td>
<td>193</td>
</tr>
<tr>
<td>Ouwudire, Chinedum E.</td>
<td>380</td>
</tr>
<tr>
<td>Okay, Ahmet</td>
<td>349</td>
</tr>
<tr>
<td>Ono, Manabu</td>
<td>354, 361, 666</td>
</tr>
<tr>
<td>Ono, Takenori</td>
<td>535</td>
</tr>
<tr>
<td>O’Reilly, B.</td>
<td>35</td>
</tr>
<tr>
<td>Oss, Daniel D.</td>
<td>314, 549, 624</td>
</tr>
<tr>
<td>Ottaway, David J.</td>
<td>35</td>
</tr>
<tr>
<td>Oyama, Katsunori</td>
<td>345</td>
</tr>
<tr>
<td>Padhye, Nikhil</td>
<td>357</td>
</tr>
<tr>
<td>Palmateer, John</td>
<td>648</td>
</tr>
<tr>
<td>Pan, Yuhao</td>
<td>380</td>
</tr>
<tr>
<td>Panas, Robert Matthew</td>
<td>142, 147</td>
</tr>
<tr>
<td>Paris, H.</td>
<td>35</td>
</tr>
<tr>
<td>Park, Chun-Hong</td>
<td>241, 246, 285, 307, 640</td>
</tr>
<tr>
<td>Park, Eun-Suk</td>
<td>521</td>
</tr>
<tr>
<td>Park, Jaehyun</td>
<td>310</td>
</tr>
<tr>
<td>Park, Jongkweon</td>
<td>132</td>
</tr>
<tr>
<td>Park, Sang-Hyun</td>
<td>620</td>
</tr>
<tr>
<td>Parks, David M.</td>
<td>357</td>
</tr>
<tr>
<td>Parks, Robert E.</td>
<td>644</td>
</tr>
<tr>
<td>Patten, John A.</td>
<td>188</td>
</tr>
<tr>
<td>Pedersen, David Bue</td>
<td>183</td>
</tr>
<tr>
<td>Pereira, Leandro Carvalho</td>
<td>654</td>
</tr>
<tr>
<td>Pérez de Nanclares, Aitor</td>
<td>57</td>
</tr>
<tr>
<td>Phillips, Steven D.</td>
<td>632, 648</td>
</tr>
<tr>
<td>Pisarski, Alexander</td>
<td>335</td>
</tr>
<tr>
<td>Poyraz, H. Bogac</td>
<td>188</td>
</tr>
<tr>
<td>Pratt, Jon R.</td>
<td>20, 25</td>
</tr>
<tr>
<td>Preuss, Werner R.</td>
<td>486, 492, 494</td>
</tr>
<tr>
<td>Pullan, Emersyn E.</td>
<td>473</td>
</tr>
<tr>
<td>Puma, M.</td>
<td>35</td>
</tr>
<tr>
<td>Qian, Jun.</td>
<td>51, 539</td>
</tr>
<tr>
<td>Rachakonda, Prem Kumar</td>
<td>632, 648</td>
</tr>
<tr>
<td>Radkins, H.</td>
<td>35</td>
</tr>
<tr>
<td>Ramet, C.</td>
<td>35</td>
</tr>
<tr>
<td>Rasmussen, Jakob</td>
<td>183</td>
</tr>
<tr>
<td>Ravindra, Deepak R.</td>
<td>188, 575</td>
</tr>
<tr>
<td>Reichert, Jeff Edward</td>
<td>670</td>
</tr>
<tr>
<td>Reynaerts, Dominiek</td>
<td>51, 539</td>
</tr>
<tr>
<td>Ricci, Michael A.</td>
<td>473</td>
</tr>
<tr>
<td>Riemer, Oltmann</td>
<td>486</td>
</tr>
<tr>
<td>Name</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Ro, Seung-Kook</td>
<td>255</td>
</tr>
<tr>
<td>Robinson, M.</td>
<td>35</td>
</tr>
<tr>
<td>Roehrig, C.</td>
<td>138</td>
</tr>
<tr>
<td>Rosa, Vanessa Aparecida de Oliveira</td>
<td>654</td>
</tr>
<tr>
<td>Ruet, L.</td>
<td>35</td>
</tr>
<tr>
<td>Saavedra, Michael P.</td>
<td>193</td>
</tr>
<tr>
<td>Said, Ali A.</td>
<td>134</td>
</tr>
<tr>
<td>Saidi, Kamel</td>
<td>632</td>
</tr>
<tr>
<td>Saiki, Kazuto</td>
<td>508</td>
</tr>
<tr>
<td>Sajima, Takao</td>
<td>63</td>
</tr>
<tr>
<td>Sakamoto, Makoto</td>
<td>354, 361, 666</td>
</tr>
<tr>
<td>Sareen, P.</td>
<td>35</td>
</tr>
<tr>
<td>Sato, Kaiji</td>
<td>111</td>
</tr>
<tr>
<td>Savage, Daniel E.</td>
<td>280</td>
</tr>
<tr>
<td>Sawodny, Oliver</td>
<td>89</td>
</tr>
<tr>
<td>Sawyer, Daniel S.</td>
<td>632, 648, 660</td>
</tr>
<tr>
<td>Schattenburg, Mark Lee</td>
<td>553</td>
</tr>
<tr>
<td>Schitter, Georg</td>
<td>674</td>
</tr>
<tr>
<td>Schlamminginger, Stephan</td>
<td>20, 25</td>
</tr>
<tr>
<td>Schmidt, Greg</td>
<td>417</td>
</tr>
<tr>
<td>Schmidt, Michael</td>
<td>604</td>
</tr>
<tr>
<td>Schmitz, Tony L.</td>
<td>47, 408, 457</td>
</tr>
<tr>
<td>Schoellner, Dirk</td>
<td>465</td>
</tr>
<tr>
<td>Seifert, Frank</td>
<td>20, 25</td>
</tr>
<tr>
<td>Seugling, Richard M.</td>
<td>609</td>
</tr>
<tr>
<td>Shilling, K. Meghan.</td>
<td>632, 660</td>
</tr>
<tr>
<td>Shimada, Shoichi</td>
<td>680</td>
</tr>
<tr>
<td>Shimazaki, Mamoru</td>
<td>354, 361, 666</td>
</tr>
<tr>
<td>Shirai, Kenji</td>
<td>345</td>
</tr>
<tr>
<td>Shoemaker, David H.</td>
<td>35, 162</td>
</tr>
<tr>
<td>Shore, Paul</td>
<td>200</td>
</tr>
<tr>
<td>Shu, Deming</td>
<td>138</td>
</tr>
<tr>
<td>Sirovita, Attila</td>
<td>670</td>
</tr>
<tr>
<td>Slocum, Alexander H.</td>
<td>278, 357, 371</td>
</tr>
<tr>
<td>Smith, Douglas T.</td>
<td>167</td>
</tr>
<tr>
<td>Smith, Stuart T.</td>
<td>67, 167, 274, 302, 375, 637, 684</td>
</tr>
<tr>
<td>Son, Tae-Kyu</td>
<td>620</td>
</tr>
<tr>
<td>Song, Chang Kyu</td>
<td>255</td>
</tr>
<tr>
<td>Song, Yujing</td>
<td>365</td>
</tr>
<tr>
<td>Spaan, Henny A. M.</td>
<td>78</td>
</tr>
<tr>
<td>Staman, K.</td>
<td>41</td>
</tr>
<tr>
<td>Stauder, Alexander</td>
<td>469</td>
</tr>
<tr>
<td>Stein, Andrew J.</td>
<td>35</td>
</tr>
<tr>
<td>Steininger, Juergen</td>
<td>674</td>
</tr>
<tr>
<td>Stock, Michael</td>
<td>30</td>
</tr>
<tr>
<td>Stocker, Mark A.</td>
<td>115</td>
</tr>
<tr>
<td>Stockslager, Max A.</td>
<td>215</td>
</tr>
<tr>
<td>Stoy, William</td>
<td>215</td>
</tr>
<tr>
<td>Suit, Brandon</td>
<td>516</td>
</tr>
<tr>
<td>Sun, Tao</td>
<td>588</td>
</tr>
<tr>
<td>Sun, Zhanwen</td>
<td>502</td>
</tr>
<tr>
<td>Suzuki, Akitoshi</td>
<td>251</td>
</tr>
<tr>
<td>Suzuki, Shinya</td>
<td>616</td>
</tr>
<tr>
<td>Sweatt, William C.</td>
<td>193</td>
</tr>
<tr>
<td>Takahashi, Katsumasa</td>
<td>361</td>
</tr>
<tr>
<td>Takano, Takayoshi</td>
<td>508</td>
</tr>
<tr>
<td>Takeda, S.</td>
<td>559, 569</td>
</tr>
<tr>
<td>Tambo, Ami.</td>
<td>616</td>
</tr>
<tr>
<td>Tarbutton, Joshua</td>
<td>408</td>
</tr>
<tr>
<td>Tashiro, Hatsuzo</td>
<td>616</td>
</tr>
<tr>
<td>Taylor, David D. J.</td>
<td>371</td>
</tr>
<tr>
<td>Terai, Hisanobu</td>
<td>578</td>
</tr>
<tr>
<td>Terauchi, Shuntaro</td>
<td>555</td>
</tr>
<tr>
<td>Thomas, J.</td>
<td>35</td>
</tr>
<tr>
<td>Thomas, Marcel Adam Craig</td>
<td>479</td>
</tr>
<tr>
<td>Thousand, Jeffery D.</td>
<td>274, 302, 375</td>
</tr>
<tr>
<td>Tokuoh, Narumi</td>
<td>63</td>
</tr>
<tr>
<td>Tondorf, Marcel</td>
<td>582</td>
</tr>
<tr>
<td>Torii, Akihiro</td>
<td>434</td>
</tr>
<tr>
<td>Trout, Bernhardt L.</td>
<td>357</td>
</tr>
<tr>
<td>Troutman, John</td>
<td>47, 408, 457</td>
</tr>
<tr>
<td>Trumper, David L.</td>
<td>101, 293, 341</td>
</tr>
<tr>
<td>Uda, Yutaka</td>
<td>680</td>
</tr>
<tr>
<td>Urreta, Harkaitz</td>
<td>57</td>
</tr>
<tr>
<td>Vallance, Ryan R.</td>
<td>533</td>
</tr>
<tr>
<td>van de Ridder, L.</td>
<td>41</td>
</tr>
<tr>
<td>van Dijk, J.</td>
<td>41</td>
</tr>
<tr>
<td>Vargas, M.</td>
<td>35</td>
</tr>
<tr>
<td>Vila-Comamala, Joan</td>
<td>138</td>
</tr>
<tr>
<td>Villarraga-Gómez, Herminso.</td>
<td>67, 684</td>
</tr>
<tr>
<td>Vogt, Stefan</td>
<td>138</td>
</tr>
<tr>
<td>Wakabayashi, Hiroyuki</td>
<td>345</td>
</tr>
<tr>
<td>Wang, Chen</td>
<td>178, 412</td>
</tr>
</tbody>
</table>